Skip to main content
Erschienen in: Neuroinformatics 4/2022

18.03.2022 | Original Article

Estimating the Parameters of the Epileptor Model for Epileptic Seizure Suppression

verfasst von: João Angelo Ferres Brogin, Jean Faber, Douglas D. Bueno

Erschienen in: Neuroinformatics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epilepsy is one of the most common brain disorders worldwide, affecting millions of people every year. Given the partially successful existing treatments for epileptiform activity suppression, dynamic mathematical models have been proposed with the purpose of better understanding the factors that might trigger an epileptic seizure and how to mitigate it, among which Epileptor stands out, due to its relative simplicity and consistency with experimental observations. Recent studies using this model have provided evidence that establishing a feedback-based control approach is possible. However, for this strategy to work properly, Epileptor’s parameters, which describe the dynamic characteristics of a seizure, must be known beforehand. Therefore, this work proposes a methodology for estimating such parameters based on a successive optimization technique. The results show that it is feasible to approximate their values as they converge to reference values based on different initial conditions, which are modeled by an uncertainty factor or noise addition. Also, interictal (healthy) and ictal (ongoing seizure) conditions, as well as time resolution, must be taken into account for an appropriate estimation. At last, integrating such a parameter estimation approach with observers and controllers for purposes of seizure suppression is carried out, which might provide an interesting alternative for seizure suppression in practice in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
See, for instance, references Hodgkin and Huxley (1952); FitzHugh (1961); Morris and Lecar (1981); Hindmarsh and Rose (1984); Izhikevich (2003); Grimbert and Faugeras (2006); Jirsa et al. (2014); Chizhov et al. (2018).
 
2
In the context of system identification, this process is known as parameter estimation, which implies finding the parameters of a model that best describe the existing data Ljung (1998); Van den Bos (2007).
 
3
An interesting investigation on this topic is provided by Luersen and Le Riche (2004).
 
4
As stated by Ref. Luersen and Le Riche (2004), the number of analyses (in this case, optimizations) in real situations is usually restricted. Naturally, we take this fact into account by using a limited number of iterations and threshold, since computational applications are sometimes time-consuming and require a high processing. However, as seen in the next sections, our approach provides a good strategy for estimating the parameters of the system with a strong practical appeal.
 
5
This formulation, although applied to the notation developed in this work, is consistent with Gao and Han (2012).
 
6
A detailed formulation on how to obtain such an equivalence can be found in Tanaka and Wang (2004); Brogin et al. (20202021) and Appendix A.
 
7
In practice, once the model and nonlinear functions are available, they are measured for a specific time interval of interest, so the model is exactly reconstructed for this period of time. Further details can be found in Brogin et al. (2020).
 
8
Further details about how to obtain these MFs can be found in Appendix A.
 
9
All the steps and derivatives for this formulation have been addressed elsewhere. For a detailed analysis, refer to Brogin et al. (2021).
 
10
Although II is considered as the best region for \(I_{\text{rest2}}\), note that there is not a clear visual distinction between II and IC, in terms of estimation.
 
11
The effect of progressive degradation caused by noise is commonly found in applications envolving brain signals, in which the source can be from eye movements, muscle artifacts or the environment, for example Agarwal et al. (2017); Hussein et al. (2018).
 
Literatur
Zurück zum Zitat Abuhasel, K. A., Iliyasu, A. M., & Fatichah, C. (2015). A hybrid particle swarm optimization and neural network with fuzzy membership function technique for epileptic seizure classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 19(3), 447–455.CrossRef Abuhasel, K. A., Iliyasu, A. M., & Fatichah, C. (2015). A hybrid particle swarm optimization and neural network with fuzzy membership function technique for epileptic seizure classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 19(3), 447–455.CrossRef
Zurück zum Zitat Agarwal, S., Rani, A., Singh, V., & Mittal, A. P. (2017). EEG signal enhancement using cascaded S-Golay filter. Biomedical Signal Processing and Control, 36, 194–204.CrossRef Agarwal, S., Rani, A., Singh, V., & Mittal, A. P. (2017). EEG signal enhancement using cascaded S-Golay filter. Biomedical Signal Processing and Control, 36, 194–204.CrossRef
Zurück zum Zitat Altan, A. (2020). Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. In: 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–6.) IEEE Altan, A. (2020). Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. In: 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–6.) IEEE
Zurück zum Zitat Altan, A & Parlak, A. (2020). Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs. In: Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. pp. 1–5). IEEE. Altan, A & Parlak, A. (2020). Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs. In: Innovations in Intelligent Systems and Applications Conference (ASYU) (pp.  pp. 1–5). IEEE.
Zurück zum Zitat Boyd, S., El Ghaoui, L., & Feron, E. (1994). & Balakrishnan (Vol. Linear). SIAM-Philadelphia, Pennsylvania: Matrix Inequalities in System and Control Theory. Boyd, S., El Ghaoui, L., & Feron, E. (1994). & Balakrishnan (Vol. Linear). SIAM-Philadelphia, Pennsylvania: Matrix Inequalities in System and Control Theory.
Zurück zum Zitat Brogin, J. A. F., Faber, J., & Bueno, D. D. (2020). An efficient approach to define the input stimuli to suppress epileptic seizures described by the epileptor model. Journal of Neural Systems, 2050062. Brogin, J. A. F., Faber, J., & Bueno, D. D. (2020). An efficient approach to define the input stimuli to suppress epileptic seizures described by the epileptor model. Journal of Neural Systems, 2050062.
Zurück zum Zitat Brogin, J. A. F., Faber, J., & Bueno, D. D. (2021). Burster reconstruction considering unmeasurable variables in the Epileptor model. Neural Computation, 33(12), 3288–3333.PubMedCrossRef Brogin, J. A. F., Faber, J., & Bueno, D. D. (2021). Burster reconstruction considering unmeasurable variables in the Epileptor model. Neural Computation, 33(12), 3288–3333.PubMedCrossRef
Zurück zum Zitat Browne, T. R., & Holmes, G. L. (2008). Handbook of epilepsy. Pennsylvania: Lippincott Williams & Wilkins-Philadelphia. Browne, T. R., & Holmes, G. L. (2008). Handbook of epilepsy. Pennsylvania: Lippincott Williams & Wilkins-Philadelphia.
Zurück zum Zitat Chen, X., Liu, A., Chiang, J., Wang, Z. J., McKeown, M. J., & Ward, R. K. (2015). Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sensors Journal, 16(7), 1986–1997.CrossRef Chen, X., Liu, A., Chiang, J., Wang, Z. J., McKeown, M. J., & Ward, R. K. (2015). Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sensors Journal, 16(7), 1986–1997.CrossRef
Zurück zum Zitat Chizhov, A. V., Zefirov, A. V., Amakhin, D. V., Smirnova, E. Y., & Zaitsev, A. V. (2018). Minimal model of interictal and ictal discharges epileptor-2. PLOS Computational Biology, 14(5), 1–25.CrossRef Chizhov, A. V., Zefirov, A. V., Amakhin, D. V., Smirnova, E. Y., & Zaitsev, A. V. (2018). Minimal model of interictal and ictal discharges epileptor-2. PLOS Computational Biology, 14(5), 1–25.CrossRef
Zurück zum Zitat Cota, V. R., de Castro Medeiros, D., da Páscoa Vilela, M. R. S., Doretto, M. C., & Moraes, M. F. D. (2009). Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. Epilepsy & Behavior, 14(1), 26–31.CrossRef Cota, V. R., de Castro Medeiros, D., da Páscoa Vilela, M. R. S., Doretto, M. C., & Moraes, M. F. D. (2009). Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. Epilepsy & Behavior, 14(1), 26–31.CrossRef
Zurück zum Zitat D’Andrea Meira, I., Romão, T. T., Pires do Prado, H. J., Krüger, L. T., Pires, M. E. P. & da Conceição, P. O. (2019). Ketogenic diet and epilepsy: what we know so far. Frontiers in Neuroscience-Switz, 13, 5. D’Andrea Meira, I., Romão, T. T., Pires do Prado, H. J., Krüger, L. T., Pires, M. E. P. & da Conceição, P. O. (2019). Ketogenic diet and epilepsy: what we know so far. Frontiers in Neuroscience-Switz, 13, 5.
Zurück zum Zitat Dollfuss, P., Hartmann, M. M., Skupch, A., Frbass, F., & Kluge, T. (2013). Automatic optimization of parameters for seizure detection systems. In: 5th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1976–1979). IEE,. Dollfuss, P., Hartmann, M. M., Skupch, A., Frbass, F., & Kluge, T. (2013). Automatic optimization of parameters for seizure detection systems. In: 5th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1976–1979). IEE,.
Zurück zum Zitat El Houssaini, K., Ivanov, A. I., Bernard, C., & Jirsa, V. K. (2015). Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E, 91, 010701. El Houssaini, K., Ivanov, A. I., Bernard, C., & Jirsa, V. K. (2015). Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E, 91, 010701.
Zurück zum Zitat Fisher, R. S., & Schachter, S. C. (2000). The postictal state: a neglected entity in the management of epilepsy. Epilepsy & Behavior, 1(1), 52–59.CrossRef Fisher, R. S., & Schachter, S. C. (2000). The postictal state: a neglected entity in the management of epilepsy. Epilepsy & Behavior, 1(1), 52–59.CrossRef
Zurück zum Zitat Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51(1), 259–277.CrossRef Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51(1), 259–277.CrossRef
Zurück zum Zitat Grimbert, F., & Faugeras, O. (2006). Bifurcation analysis of Jansen’s neural mass model. Neural Computation, 18(12), 3052–3068.PubMedCrossRef Grimbert, F., & Faugeras, O. (2006). Bifurcation analysis of Jansen’s neural mass model. Neural Computation, 18(12), 3052–3068.PubMedCrossRef
Zurück zum Zitat Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018). Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals. In: International conference on advanced machine learning technologies and applications (pp. 82–91). Springer, Cham Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018). Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals. In: International conference on advanced machine learning technologies and applications (pp. 82–91). Springer, Cham
Zurück zum Zitat Hardt, M., Schraknepper, D., & Bergs, T. (2021). Investigations on the application of the downhill-simplex-algorithm to the inverse determination of material model parameters for FE-machining simulations. Simulation Modelling Practice and Theory, 107, 102214. Hardt, M., Schraknepper, D., & Bergs, T. (2021). Investigations on the application of the downhill-simplex-algorithm to the inverse determination of material model parameters for FE-machining simulations. Simulation Modelling Practice and Theory, 107, 102214.
Zurück zum Zitat Hashemi, M., Vattikonda, A. N., Sip, V., Guye, M., Bartolomei, F., Woodman, M. M., & Jirsa, V. K. (2020). The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. NeuroImage, 217, 116839. Hashemi, M., Vattikonda, A. N., Sip, V., Guye, M., Bartolomei, F., Woodman, M. M., & Jirsa, V. K. (2020). The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. NeuroImage, 217, 116839.
Zurück zum Zitat Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1–12.PubMedCrossRef Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1–12.PubMedCrossRef
Zurück zum Zitat Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society B: Biological Sciences, 221(1222), 87–102. Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society B: Biological Sciences, 221(1222), 87–102.
Zurück zum Zitat Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology London, 117(4), 500–544. Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology London, 117(4), 500–544.
Zurück zum Zitat Hussein, R., Elgendi, M., Wang, Z. J., & Ward, R. K. (2018). Robust detection of epileptic seizures based on L1-penalized robust regression of EEG signals. Expert Systems with Applications, 104, 153–167.CrossRef Hussein, R., Elgendi, M., Wang, Z. J., & Ward, R. K. (2018). Robust detection of epileptic seizures based on L1-penalized robust regression of EEG signals. Expert Systems with Applications, 104, 153–167.CrossRef
Zurück zum Zitat Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.PubMedCrossRef Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.PubMedCrossRef
Zurück zum Zitat Ichalal, D., Arioui, H. & Mammar, S. (2011). Observer design for two-wheeled vehicle: A Takagi-Sugeno approach with unmeasurable premise variables. In: 2011 19th Mediterranean Conference on Control & Automation (MED) (pp. 934–939). IEEE. Ichalal, D., Arioui, H. & Mammar, S. (2011). Observer design for two-wheeled vehicle: A Takagi-Sugeno approach with unmeasurable premise variables. In: 2011 19th Mediterranean Conference on Control & Automation (MED) (pp. 934–939). IEEE.
Zurück zum Zitat Islam, M. K., Rastegarnia, A., & Yang, Z. (2015). A wavelet-based artifact reduction from scalp EEG for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics, 20(5), 1321–1332.PubMedCrossRef Islam, M. K., Rastegarnia, A., & Yang, Z. (2015). A wavelet-based artifact reduction from scalp EEG for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics, 20(5), 1321–1332.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks and Learning Systems, 14(6), 1569–1572.CrossRef Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks and Learning Systems, 14(6), 1569–1572.CrossRef
Zurück zum Zitat Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J., et al. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.PubMedCrossRef Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J., et al. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.PubMedCrossRef
Zurück zum Zitat Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., & Bernard, C. (2014). On the nature of seizure dynamics. Brain, 137(8), 2210–2230.PubMedPubMedCentralCrossRef Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., & Bernard, C. (2014). On the nature of seizure dynamics. Brain, 137(8), 2210–2230.PubMedPubMedCentralCrossRef
Zurück zum Zitat Luersen, M. A., & Le Riche, R. (2004). Globalized Nelder-Mead method for engineering optimization. Computers & Structures, 82(23–26), 2251–2260.CrossRef Luersen, M. A., & Le Riche, R. (2004). Globalized Nelder-Mead method for engineering optimization. Computers & Structures, 82(23–26), 2251–2260.CrossRef
Zurück zum Zitat Kim, H., Bernhardt, B. C., Kulaga-Yoskovitz, J., Caldairou, B., Bernasconi, A., & Bernasconi, N. (2014). Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 170–178). Springer, Cham. Kim, H., Bernhardt, B. C., Kulaga-Yoskovitz, J., Caldairou, B., Bernasconi, A., & Bernasconi, N. (2014). Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 170–178). Springer, Cham.
Zurück zum Zitat Li, Y., Wang, X. D., Luo, M. L., Li, K., Yang, X. F., & Guo, Q. (2017). Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions. IEEE Journal of Biomedical and Health Informatics, 22(2), 386–397.PubMedCrossRef Li, Y., Wang, X. D., Luo, M. L., Li, K., Yang, X. F., & Guo, Q. (2017). Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions. IEEE Journal of Biomedical and Health Informatics, 22(2), 386–397.PubMedCrossRef
Zurück zum Zitat Liu, W., & Lin, W. (2006). Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing., 22(3), 872–883.CrossRef Liu, W., & Lin, W. (2006). Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing., 22(3), 872–883.CrossRef
Zurück zum Zitat Ljung, L. (1998). System identification: theory for the user. New Jersey: Prentice Hall. Ljung, L. (1998). System identification: theory for the user. New Jersey: Prentice Hall.
Zurück zum Zitat Lofberg, J. (2011). YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE international conference on robotics and automation (pp. 284–289). IEEE. Lofberg, J. (2011). YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE international conference on robotics and automation (pp. 284–289). IEEE.
Zurück zum Zitat Nagaraj, V., Lamperski, A. & Netoff, T. I. (2017). Seizure control in a computational model using a reinforcement learning stimulation paradigm. International Journal of Neural Systems, 27(07). Nagaraj, V., Lamperski, A. & Netoff, T. I. (2017). Seizure control in a computational model using a reinforcement learning stimulation paradigm. International Journal of Neural Systems, 27(07).
Zurück zum Zitat Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.CrossRef Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.CrossRef
Zurück zum Zitat Neto L. A., Erasme D., Genay N, Chanclou P., Deniel Q., Traore F., Anfray T., Hmadou R. & Aupetit-Berthelemot C. (2012). Simple estimation of fiber dispersion and laser chirp parameters using the downhill simplex fitting algorithm. Journal of Lightwave Technology, 31(2), 334–342. Neto L. A., Erasme D., Genay N, Chanclou P., Deniel Q., Traore F., Anfray T., Hmadou R. & Aupetit-Berthelemot C. (2012). Simple estimation of fiber dispersion and laser chirp parameters using the downhill simplex fitting algorithm. Journal of Lightwave Technology, 31(2), 334–342.
Zurück zum Zitat Pinheiro, D. J., Oliveira, L. F., Souza, I. N., Brogin, J. A. F., Bueno, D. D., Miranda, I. A., et al. (2020). Modulation in phase and frequency of neural oscillations during epileptiform activity induced by neonatal Zika virus infection in mice. Scientific Reports, 10(1), 1–14.CrossRef Pinheiro, D. J., Oliveira, L. F., Souza, I. N., Brogin, J. A. F., Bueno, D. D., Miranda, I. A., et al. (2020). Modulation in phase and frequency of neural oscillations during epileptiform activity induced by neonatal Zika virus infection in mice. Scientific Reports, 10(1), 1–14.CrossRef
Zurück zum Zitat Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.CrossRef Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.CrossRef
Zurück zum Zitat Powell, T. D. (2002). Automated tuning of an extended Kalman filter using the downhill simplex algorithm. Journal of Guidance, Control, and Dynamics, 25(5), 901–908.CrossRef Powell, T. D. (2002). Automated tuning of an extended Kalman filter using the downhill simplex algorithm. Journal of Guidance, Control, and Dynamics, 25(5), 901–908.CrossRef
Zurück zum Zitat Proix, T., Bartolomei, F., Guye, M., & Jirsa, V. K. (2017). Individual brain structure and modeling predict seizure propagation. Brain, 140(3), 641–654.PubMedPubMedCentralCrossRef Proix, T., Bartolomei, F., Guye, M., & Jirsa, V. K. (2017). Individual brain structure and modeling predict seizure propagation. Brain, 140(3), 641–654.PubMedPubMedCentralCrossRef
Zurück zum Zitat Proix, T., Bartolomei, F., Chauvel, P., Bernard, C., & Jirsa, V. K. (2014). Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. Journal of Neuroscience, 34(45), 15009–15021.PubMedCrossRef Proix, T., Bartolomei, F., Chauvel, P., Bernard, C., & Jirsa, V. K. (2014). Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. Journal of Neuroscience, 34(45), 15009–15021.PubMedCrossRef
Zurück zum Zitat Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M., & Truccolo, W. (2018). Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nature Communications, 9(1), 1–15.CrossRef Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M., & Truccolo, W. (2018). Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nature Communications, 9(1), 1–15.CrossRef
Zurück zum Zitat Saggio, M. L., Crisp, D., Scott, J. M., Karoly, P., Kuhlmann, L., Nakatani, M., Murai, T., Dmpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S. V., Lin, J., Bernard, C., Jirsa, V. & Stacey, W. C. (2020). A taxonomy of seizure dynamotypes. Elife, 9, e55632. Saggio, M. L., Crisp, D., Scott, J. M., Karoly, P., Kuhlmann, L., Nakatani, M., Murai, T., Dmpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S. V., Lin, J., Bernard, C., Jirsa, V. & Stacey, W. C. (2020). A taxonomy of seizure dynamotypes. Elife, 9, e55632.
Zurück zum Zitat Sip, V., Guye, M., Bartolomei, F., & Jirsa, V. (2021). Computational modeling of seizure spread on a cortical surface. Journal of Computational Neuroscience, 1–15. Sip, V., Guye, M., Bartolomei, F., & Jirsa, V. (2021). Computational modeling of seizure spread on a cortical surface. Journal of Computational Neuroscience, 1–15.
Zurück zum Zitat Subasi, A., Kevric, J., & Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), 317–325.CrossRef Subasi, A., Kevric, J., & Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), 317–325.CrossRef
Zurück zum Zitat Ogata, K. (2010). Modern control engineering. Prentice Hall. Ogata, K. (2010). Modern control engineering. Prentice Hall.
Zurück zum Zitat Oppenheim, A. V., Willsky, A. S., & Nawab, H. (1997). S. Prentice Hall-New Jersey: Signals and Systems. Oppenheim, A. V., Willsky, A. S., & Nawab, H. (1997). S. Prentice Hall-New Jersey: Signals and Systems.
Zurück zum Zitat Reyhanoglu, M., van der Schaft, A., McClamroch, N. H., & Kolmanovsky, I. (1999). Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control, 44(9), 1663–1671.CrossRef Reyhanoglu, M., van der Schaft, A., McClamroch, N. H., & Kolmanovsky, I. (1999). Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control, 44(9), 1663–1671.CrossRef
Zurück zum Zitat Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery & Psychiatry, 71(2), 215–219.CrossRef Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery & Psychiatry, 71(2), 215–219.CrossRef
Zurück zum Zitat Sagnol, G. (2012). Picos documentation. A Python interface to conic optimization solvers. Sagnol, G. (2012). Picos documentation. A Python interface to conic optimization solvers.
Zurück zum Zitat Slotine, J. J. E. (1991). & Li. Prentice hall-Englewood Cliffs, New Jersey: W. Applied Nonlinear Control. Slotine, J. J. E. (1991). & Li. Prentice hall-Englewood Cliffs, New Jersey: W. Applied Nonlinear Control.
Zurück zum Zitat Spong, M. W. (1998). Underactuated mechanical systems. In Control problems in robotics and automation (pp. 135-150). Springer, Berlin, Heidelberg. Spong, M. W. (1998). Underactuated mechanical systems. In Control problems in robotics and automation (pp. 135-150). Springer, Berlin, Heidelberg.
Zurück zum Zitat Soong, T. T. (2004). Fundamentals of probability and statistics for engineers. John Wiley & Sons. Soong, T. T. (2004). Fundamentals of probability and statistics for engineers. John Wiley & Sons.
Zurück zum Zitat Tanaka, K., & Wang, H. O. (2004). Fuzzy control systems design and analysis: a linear matrix inequality approach. New York: Wiley-New York. Tanaka, K., & Wang, H. O. (2004). Fuzzy control systems design and analysis: a linear matrix inequality approach. New York: Wiley-New York.
Zurück zum Zitat Taniguchi, T., Tanaka, K., Ohtake, H., & Wang, H. O. (2001). Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 9(4), 525–538.CrossRef Taniguchi, T., Tanaka, K., Ohtake, H., & Wang, H. O. (2001). Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 9(4), 525–538.CrossRef
Zurück zum Zitat Tellez-Zenteno, J. F., McLachlan, R. S., Parrent, A., Kubu, C. S., & Wiebe, S. (2006). Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology, 66(10), 1490–1494.PubMedCrossRef Tellez-Zenteno, J. F., McLachlan, R. S., Parrent, A., Kubu, C. S., & Wiebe, S. (2006). Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology, 66(10), 1490–1494.PubMedCrossRef
Zurück zum Zitat Van den Bos, A. (2007). Parameter estimation for scientists and engineers. New Jersey: John Wiley & Sons. Van den Bos, A. (2007). Parameter estimation for scientists and engineers. New Jersey: John Wiley & Sons.
Zurück zum Zitat Velasco, F., Velasco, M., Velasco, A. L., Menez, D., & Rocha, L. (2001). Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotactic & Functional Neurosurgery, 77(1–4), 223–227.CrossRef Velasco, F., Velasco, M., Velasco, A. L., Menez, D., & Rocha, L. (2001). Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotactic & Functional Neurosurgery, 77(1–4), 223–227.CrossRef
Zurück zum Zitat Velasco, A. L., Velasco, F., Velasco, M., Trejo, D., Castro, G., & Carrillo-Ruiz, J. D. (2007). Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia, 48(10), 1895–1903.PubMedCrossRef Velasco, A. L., Velasco, F., Velasco, M., Trejo, D., Castro, G., & Carrillo-Ruiz, J. D. (2007). Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia, 48(10), 1895–1903.PubMedCrossRef
Zurück zum Zitat Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2011). The role of inflammation in epilepsy. Nature Reviews Neurology, 7(1), 31.PubMedCrossRef Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2011). The role of inflammation in epilepsy. Nature Reviews Neurology, 7(1), 31.PubMedCrossRef
Zurück zum Zitat Walker, J. E., & Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. Child and Adolescent Psychiatric Clinics, 14(1), 163–176.CrossRef Walker, J. E., & Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. Child and Adolescent Psychiatric Clinics, 14(1), 163–176.CrossRef
Zurück zum Zitat Wendling, F., Benquet, P., Bartolomei, F., & Jirsa, V. (2015). Computational models of epileptiform activity. Journal of Neuroscience Methods, 260, 233–251.PubMedCrossRef Wendling, F., Benquet, P., Bartolomei, F., & Jirsa, V. (2015). Computational models of epileptiform activity. Journal of Neuroscience Methods, 260, 233–251.PubMedCrossRef
Zurück zum Zitat Zhang, H., & Xiao, P. (2018). Seizure dynamics of coupled oscillators with epileptor field model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 28(03), 1850041. Zhang, H., & Xiao, P. (2018). Seizure dynamics of coupled oscillators with epileptor field model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 28(03), 1850041.
Zurück zum Zitat Zhu, D., Bieger, J., Molina, G. G. & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIs, Computational Intelligence and Neuroscience, 1–13. Zhu, D., Bieger, J., Molina, G. G. & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIs, Computational Intelligence and Neuroscience, 1–13.
Metadaten
Titel
Estimating the Parameters of the Epileptor Model for Epileptic Seizure Suppression
verfasst von
João Angelo Ferres Brogin
Jean Faber
Douglas D. Bueno
Publikationsdatum
18.03.2022
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 4/2022
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-022-09583-6

Weitere Artikel der Ausgabe 4/2022

Neuroinformatics 4/2022 Zur Ausgabe

Premium Partner