Skip to main content
Erschienen in: Environmental Earth Sciences 2/2012

01.09.2012 | Special Issue

Evaluation of thermal equations of state for CO2 in numerical simulations

verfasst von: Norbert Böttcher, Joshua Taron, Olaf Kolditz, Chan-Hee Park, Rudolf Liedl

Erschienen in: Environmental Earth Sciences | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three commonly used thermal equations of state for carbon dioxide, as well as the ideal gas law, have been compared against a large number of measurement data taken from the literature. Complex equations of state reach a higher accuracy than simple ones. The inaccuracy of the density function can cause large errors in fluid property correlations, such as heat capacity or viscosity. The influence of this inaccuracy on the results of numerical simulations have been evaluated by two examples: The first one assumes isothermal gas expansion from a volume, while the second one considers heat transport along a fracture. For both examples, different equations of state have been utilized. The simulations have been performed on the scientific software platform OpenGeoSys. The difference among the particular simulation results is significant. Apparently small errors in the density function can cause considerably different results of otherwise identical simulation setups.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bear J (1972) Dynamics of fluids in porous media. American Elevier, New York Bear J (1972) Dynamics of fluids in porous media. American Elevier, New York
Zurück zum Zitat Böttcher N (2012) Thermo-hydro-mechanical-chemical processes in porous media, chap. In: Heat transport. Lecture notes in computational science and engineering. Springer, Berlin. doi:10.1007/978-3-642-27177-9 Böttcher N (2012) Thermo-hydro-mechanical-chemical processes in porous media, chap. In: Heat transport. Lecture notes in computational science and engineering. Springer, Berlin. doi:10.​1007/​978-3-642-27177-9
Zurück zum Zitat Böttcher N, Singh AK, Kolditz O, Liedl R (2011) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math. doi:10.1016/jcam.2011.11.013 Böttcher N, Singh AK, Kolditz O, Liedl R (2011) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math. doi:10.​1016/​jcam.​2011.​11.​013
Zurück zum Zitat Brent R (1971) An algorithm with guaranteed convergence for finding a zero of a function. Comput J 14:422–425CrossRef Brent R (1971) An algorithm with guaranteed convergence for finding a zero of a function. Comput J 14:422–425CrossRef
Zurück zum Zitat Carslaw HS, Jaeger JC (1986) Conduction of heat in soilds. Oxford science publications, Clarendon Press Carslaw HS, Jaeger JC (1986) Conduction of heat in soilds. Oxford science publications, Clarendon Press
Zurück zum Zitat Clifford AA, Kestin J, Wakeham WA (1979) Thermal conductivity of N2, CH4 and CO2 at room temperature and at pressures up to 35 MPa. Phys A 97:287–295CrossRef Clifford AA, Kestin J, Wakeham WA (1979) Thermal conductivity of N2, CH4 and CO2 at room temperature and at pressures up to 35 MPa. Phys A 97:287–295CrossRef
Zurück zum Zitat Cohen E, Taylor B (1986) The 1986 adjustment of the fundamental physical constants. Rev Mod Phys 59(4):1121–1148CrossRef Cohen E, Taylor B (1986) The 1986 adjustment of the fundamental physical constants. Rev Mod Phys 59(4):1121–1148CrossRef
Zurück zum Zitat Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci, pp. 1105–1117. doi:10.1007/s12665-011-1360-x Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci, pp. 1105–1117. doi:10.​1007/​s12665-011-1360-x
Zurück zum Zitat Duan Z, Møller N, Weare JH (1992) An equation of state for the CH4 − CO2 − H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar. Geochimica et Cosmochimica Acta 56:2606–2617 Duan Z, Møller N, Weare JH (1992) An equation of state for the CH4 − CO2 − H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar. Geochimica et Cosmochimica Acta 56:2606–2617
Zurück zum Zitat Duschek W, Kleinrahm R, Wagner W (1990a) Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. I. The homogeneous gas and liquid region in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J Chem Thermodyn 22:827–840CrossRef Duschek W, Kleinrahm R, Wagner W (1990a) Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. I. The homogeneous gas and liquid region in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J Chem Thermodyn 22:827–840CrossRef
Zurück zum Zitat Duschek W, Kleinrahm R, Wagner W (1990b) Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve. J Chem Thermodyn 22:841–864CrossRef Duschek W, Kleinrahm R, Wagner W (1990b) Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve. J Chem Thermodyn 22:841–864CrossRef
Zurück zum Zitat Ely JF, Haynes WM, Bain BC (1989) Isochoric (p, V m , T) measurements on CO2 and on (0.982 CO2 + 0.018N2) from 250 to 330 K at pressures to 35 MPa). J Chem Thermodyn 21:979–984CrossRef Ely JF, Haynes WM, Bain BC (1989) Isochoric (p, V m , T) measurements on CO2 and on (0.982 CO2 + 0.018N2) from 250 to 330 K at pressures to 35 MPa). J Chem Thermodyn 21:979–984CrossRef
Zurück zum Zitat Fenghour A, Wakeham W, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27:31–44CrossRef Fenghour A, Wakeham W, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27:31–44CrossRef
Zurück zum Zitat Fenghour A, Wakeham WA, Watson JTR (1995) Amount of substance density of CO2 at temperatures from 329 K to 698 K and pressures up to 34 MPa. J Chem Thermodyn 27:219–223CrossRef Fenghour A, Wakeham WA, Watson JTR (1995) Amount of substance density of CO2 at temperatures from 329 K to 698 K and pressures up to 34 MPa. J Chem Thermodyn 27:219–223CrossRef
Zurück zum Zitat Gilgen R, Kleinrahm R, Wagner W (1992) Measurement of the (pressure, density, temperature) relation of sulfurhexafluoride in the homogeneous region from 321.15 K to 333.15 K and on the coexistence curve from 288.15 K to 315.15 K. J Chem Thermodyn 24:953–964CrossRef Gilgen R, Kleinrahm R, Wagner W (1992) Measurement of the (pressure, density, temperature) relation of sulfurhexafluoride in the homogeneous region from 321.15 K to 333.15 K and on the coexistence curve from 288.15 K to 315.15 K. J Chem Thermodyn 24:953–964CrossRef
Zurück zum Zitat Guildner LA (1958) The thermal conductivity of carbon dioxide in the region of the critical point. Proc Natl Acad Sci USA 44(11):1149–1153CrossRef Guildner LA (1958) The thermal conductivity of carbon dioxide in the region of the critical point. Proc Natl Acad Sci USA 44(11):1149–1153CrossRef
Zurück zum Zitat Kestin J, Korfali Ö, Sengers JV (1980) Density expansion of the viscosity of carbon dioxide near the critical temperature. Phys A 100:335–348CrossRef Kestin J, Korfali Ö, Sengers JV (1980) Density expansion of the viscosity of carbon dioxide near the critical temperature. Phys A 100:335–348CrossRef
Zurück zum Zitat Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012a) A systematic benchmarking approach for geologic CO2 injection and storage. Environ Earth Sci. doi:10.1007/s12665-012-1656-5 Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012a) A systematic benchmarking approach for geologic CO2 injection and storage. Environ Earth Sci. doi:10.​1007/​s12665-012-1656-5
Zurück zum Zitat Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu, W, Zehner B (2012b) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci. doi:10.1007/s12665-012-1546-x Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu, W, Zehner B (2012b) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci. doi:10.​1007/​s12665-012-1546-x
Zurück zum Zitat Kolditz O, Görke UJ, Shao H, Wang W (2012c) Thermo-hydro-mechanical–processes in fractured porous media. In: Lecture notes in computational science and engineering, vol. 86. Springer, Berlin. doi:10.1007/978-3-642-27177-9 Kolditz O, Görke UJ, Shao H, Wang W (2012c) Thermo-hydro-mechanical–processes in fractured porous media. In: Lecture notes in computational science and engineering, vol. 86. Springer, Berlin. doi:10.​1007/​978-3-642-27177-9
Zurück zum Zitat Michels A, Sengers JV, van der Gulik PS (1957) The viscosity of carbon dioxide between 0 °C and 75 °C and at pressures up to 2000 atmospheres. Physica XXIII:95–102CrossRef Michels A, Sengers JV, van der Gulik PS (1957) The viscosity of carbon dioxide between 0 °C and 75 °C and at pressures up to 2000 atmospheres. Physica XXIII:95–102CrossRef
Zurück zum Zitat Michels A, Sengers JV, van der Gulik PS (1962) The thermal conductivity of carbon dioxide in the critical region. Physica 28:1216–1237CrossRef Michels A, Sengers JV, van der Gulik PS (1962) The thermal conductivity of carbon dioxide in the critical region. Physica 28:1216–1237CrossRef
Zurück zum Zitat Millat J, Mustafa M, Ross M, Wakeham WA, Zalaf M (1987) Thermal conductivity of argon, carbon dioxide and nitrous oxide. Phys A 145:461–497CrossRef Millat J, Mustafa M, Ross M, Wakeham WA, Zalaf M (1987) Thermal conductivity of argon, carbon dioxide and nitrous oxide. Phys A 145:461–497CrossRef
Zurück zum Zitat Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. Tech rep, Geological Survey (US), Washington, DC Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. Tech rep, Geological Survey (US), Washington, DC
Zurück zum Zitat Padua A, Wakeham WA, Wilhelm J (1994) The viscosity of liquid carbon dioxide. Int J Thermophys 5:767–777 Padua A, Wakeham WA, Wilhelm J (1994) The viscosity of liquid carbon dioxide. Int J Thermophys 5:767–777
Zurück zum Zitat Park CH, Böttcher N, Wang W, Kolditz O (2011a) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230(22):8304–8312CrossRef Park CH, Böttcher N, Wang W, Kolditz O (2011a) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230(22):8304–8312CrossRef
Zurück zum Zitat Park CH, Taron J, Görke UJ, Singh A, Kolditz O (2011b) The fluidal interface is where the action is in CO2 sequestration and storage: Hydromechanical analysis of mechanical failure. Energy Procedia 4:3691–3698CrossRef Park CH, Taron J, Görke UJ, Singh A, Kolditz O (2011b) The fluidal interface is where the action is in CO2 sequestration and storage: Hydromechanical analysis of mechanical failure. Energy Procedia 4:3691–3698CrossRef
Zurück zum Zitat Peng D, Robinson D (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef Peng D, Robinson D (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef
Zurück zum Zitat Pitzer K (1939) Corresponding states for perfect liquids. J Chem Phys 7(8):583–590CrossRef Pitzer K (1939) Corresponding states for perfect liquids. J Chem Phys 7(8):583–590CrossRef
Zurück zum Zitat Scalabrin G, Marchi P, Finezzo F, Span R (2006) A reference multiparameter thermal conductivity equation for carbon dioxide with an optimized functional Form. J Phys Chem Ref Data 35(4):1549–1575CrossRef Scalabrin G, Marchi P, Finezzo F, Span R (2006) A reference multiparameter thermal conductivity equation for carbon dioxide with an optimized functional Form. J Phys Chem Ref Data 35(4):1549–1575CrossRef
Zurück zum Zitat Scott A, Johns AI, Watson JTR (1983) Thermal conductivity of carbon dioxide in the temperature range 300–348 K and pressures up to 25 MPa. J Chem Soc Faraday Trans 1(79):733–740 Scott A, Johns AI, Watson JTR (1983) Thermal conductivity of carbon dioxide in the temperature range 300–348 K and pressures up to 25 MPa. J Chem Soc Faraday Trans 1(79):733–740
Zurück zum Zitat Singh AK, Baumann G, Hennings J, Görke UJ, Kolditz O (2012a) Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a theoretical case study for the Altmark gas field. Environ Earth Sci. doi:10.1007/s12665-012-1689-9 Singh AK, Baumann G, Hennings J, Görke UJ, Kolditz O (2012a) Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a theoretical case study for the Altmark gas field. Environ Earth Sci. doi:10.​1007/​s12665-012-1689-9
Zurück zum Zitat Singh AK, Pilz P, Zimmer M, Kalbacher T, Görke UJ, Kolditz O (2012b) Numerical simulation of tracer transport in the Altmark gas field. Environ Earth Sci. doi:10.1007/s12665-012-1688-x Singh AK, Pilz P, Zimmer M, Kalbacher T, Görke UJ, Kolditz O (2012b) Numerical simulation of tracer transport in the Altmark gas field. Environ Earth Sci. doi:10.​1007/​s12665-012-1688-x
Zurück zum Zitat Singh AK, Görke UJ, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36(5):3446–3458CrossRef Singh AK, Görke UJ, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36(5):3446–3458CrossRef
Zurück zum Zitat Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596CrossRef Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596CrossRef
Zurück zum Zitat Stephan K, Krauss R, Laesecke A (1987) Viscosity and thermal conductivity of nitrogen for a wide range of fluid states. J Phys Chem Ref Data 16(4):993–1023 Stephan K, Krauss R, Laesecke A (1987) Viscosity and thermal conductivity of nitrogen for a wide range of fluid states. J Phys Chem Ref Data 16(4):993–1023
Zurück zum Zitat van der Gulik PS (1997) Viscosity of carbon dioxide in the liquid phase. Phys A 238:81–112CrossRef van der Gulik PS (1997) Viscosity of carbon dioxide in the liquid phase. Phys A 238:81–112CrossRef
Zurück zum Zitat Vesovic V, Wakeham W (1990) The transport properties of carbon dioxide. J Phys Chem Ref Data 19(3):763–807CrossRef Vesovic V, Wakeham W (1990) The transport properties of carbon dioxide. J Phys Chem Ref Data 19(3):763–807CrossRef
Zurück zum Zitat Wang W, Rutqvist J, Görke U, Birkholzer J, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of richards and two-phase flow approaches. Environ Earth Sci 62:1197–1207CrossRef Wang W, Rutqvist J, Görke U, Birkholzer J, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of richards and two-phase flow approaches. Environ Earth Sci 62:1197–1207CrossRef
Zurück zum Zitat Watanabe N, Wang W, McDermott C, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280CrossRef Watanabe N, Wang W, McDermott C, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280CrossRef
Zurück zum Zitat Weber JA (1992) Measurements of the virial coefficients and equation of state of the carbon dioxide + ethane system in the supercritical region. Int J Thermophys 13:1011–1032CrossRef Weber JA (1992) Measurements of the virial coefficients and equation of state of the carbon dioxide + ethane system in the supercritical region. Int J Thermophys 13:1011–1032CrossRef
Zurück zum Zitat Younglove BA, Ely JF (1987) Thermophysical properties of fluids. ii. Methane, ethane, propane, isobutane, and normal butane. J Phys Chem Ref Data 16(4):577–798 Younglove BA, Ely JF (1987) Thermophysical properties of fluids. ii. Methane, ethane, propane, isobutane, and normal butane. J Phys Chem Ref Data 16(4):577–798
Metadaten
Titel
Evaluation of thermal equations of state for CO2 in numerical simulations
verfasst von
Norbert Böttcher
Joshua Taron
Olaf Kolditz
Chan-Hee Park
Rudolf Liedl
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Environmental Earth Sciences / Ausgabe 2/2012
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-012-1704-1

Weitere Artikel der Ausgabe 2/2012

Environmental Earth Sciences 2/2012 Zur Ausgabe