Skip to main content
Erschienen in: Journal of Electronic Materials 7/2021

20.04.2021 | Original Research Article

Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer

verfasst von: Jianjun Zhou, Pan Liu, Yongqiang Du, Wansheng Zong, Bingbing Zhang, Yingliang Liu, Shengang Xu, Shaokui Cao

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The CuSCN-containing perovskite solar cells (PSCs) are presently of great research focus due to the high carrier mobility and well-aligned work function of the CuSCN hole-transporting layer. The improvement of photovoltaic performance and stability is still an important subject in the practical applications of CuSCN-containing PSCs. Herein, a facile approach to improve the efficiency and stability of CuSCN-containing PSCs is developed by spin-coating the triphenylamine-based macromolecules between the CuSCN hole-transporting layer and metallic electrode, such as linear macromolecule poly-TPD and branched macromolecule CRA-TPA. The maximum power conversion efficiency (PCE) of CuSCN-containing PSCs is increased by linear triphenylamine-based macromolecule poly-TPD to 10.36% while the PCE value of CuSCN-containing PSCs, being modified by branched triphenylamine-based macromolecule CRA-TPA, reaches up to 11.97%. Evidently, the PCE values are nearly two times higher than 5.95% of CuSCN-containing control device. The photovoltaic improvement of macromolecule-modified CuSCN-containing PSCs is mainly caused by the strong hole-transporting capacity of triphenylamine-based macromolecules inducing the reduction of charge recombination, which is derived from the reduced potential barrier of hole transportation including the flatness and coverage improvement in the triphenylamine-based macromolecular functional layer. In addition, the stability of macromolecule-modified CuSCN-containing PSCs is significantly improved due to the protection of triphenylamine-based macromolecular layer on the perovskite film, so that the unencapsulated macromolecule-modified CuSCN-containing PSC device can keep over 70–80% of initial PCE value after 20-day exposure under ambient environment (relative humidity (RH) = 50%, 25°C). This work provides a facile approach to enhance the efficiency and stability of CuSCN-containing PSCs through the modification of triphenylamine-based macromolecules between the CuSCN hole-transporting layer and metallic electrode.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRef A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRef
2.
Zurück zum Zitat H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, and N.G. Park, Sci. Rep. 2, 591 (2012).CrossRef H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, and N.G. Park, Sci. Rep. 2, 591 (2012).CrossRef
3.
Zurück zum Zitat M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 643 (2012).CrossRef M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 643 (2012).CrossRef
4.
Zurück zum Zitat Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, and J.B. You, Nat. Photon. 13, 460 (2019).CrossRef Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, and J.B. You, Nat. Photon. 13, 460 (2019).CrossRef
5.
Zurück zum Zitat G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science 342, 344 (2013).CrossRef G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science 342, 344 (2013).CrossRef
6.
Zurück zum Zitat S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).CrossRef S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).CrossRef
7.
Zurück zum Zitat N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015).CrossRef N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015).CrossRef
8.
Zurück zum Zitat C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, and V. Sundstrom, J. Am. Chem. Soc. 136, 5189 (2014).CrossRef C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, and V. Sundstrom, J. Am. Chem. Soc. 136, 5189 (2014).CrossRef
9.
Zurück zum Zitat E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.Y. Yang, J.H. Noh, and J. Seo, Nature 567, 511 (2019).CrossRef E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.Y. Yang, J.H. Noh, and J. Seo, Nature 567, 511 (2019).CrossRef
11.
Zurück zum Zitat P. Docampo, J.M. Ball, M. Darwich, and G.E. Eperon, HJNat. Commun. 4, 2761 (2013).CrossRef P. Docampo, J.M. Ball, M. Darwich, and G.E. Eperon, HJNat. Commun. 4, 2761 (2013).CrossRef
12.
Zurück zum Zitat J.A. Christians, R.C.M. Fung, and P.V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).CrossRef J.A. Christians, R.C.M. Fung, and P.V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).CrossRef
14.
Zurück zum Zitat H.X. Rao, W.H. Sun, S.Y. Ye, W.B. Yan, Y.L. Li, H.T. Peng, Z.W. Liu, Z.Q. Bian, and C.H. Huang, ACS Appl. Mater. Interfaces 8, 7800 (2016).CrossRef H.X. Rao, W.H. Sun, S.Y. Ye, W.B. Yan, Y.L. Li, H.T. Peng, Z.W. Liu, Z.Q. Bian, and C.H. Huang, ACS Appl. Mater. Interfaces 8, 7800 (2016).CrossRef
15.
Zurück zum Zitat V.E. Madhavan, I. Zimmermann, C. Roldan-Carmona, G. Grancini, M. Buffiere, A. Belaidi, and M.K. Nazeeruddin, ACS Energy Lett. 1, 1112 (2016).CrossRef V.E. Madhavan, I. Zimmermann, C. Roldan-Carmona, G. Grancini, M. Buffiere, A. Belaidi, and M.K. Nazeeruddin, ACS Energy Lett. 1, 1112 (2016).CrossRef
16.
Zurück zum Zitat G.A. Casas, M.A. Cappelletti, A.P. Cedola, B.M. Soucase, and E.L.P.Y. Blanca, Superlattices Microstruct. 107, 136 (2017).CrossRef G.A. Casas, M.A. Cappelletti, A.P. Cedola, B.M. Soucase, and E.L.P.Y. Blanca, Superlattices Microstruct. 107, 136 (2017).CrossRef
17.
Zurück zum Zitat P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O’Regan, A. Amassian, and T.D. Anthopoulos, Chem. Commun. 49, 4154 (2013).CrossRef P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O’Regan, A. Amassian, and T.D. Anthopoulos, Chem. Commun. 49, 4154 (2013).CrossRef
18.
Zurück zum Zitat M. Jung, Y.C. Kim, N.J. Jeon, W.S. Yang, J. Seo, J.H. Noh, and S.I. Seok, Chemsuschem 9, 2592 (2016).CrossRef M. Jung, Y.C. Kim, N.J. Jeon, W.S. Yang, J. Seo, J.H. Noh, and S.I. Seok, Chemsuschem 9, 2592 (2016).CrossRef
19.
Zurück zum Zitat S. Chavhan, O. Miguel, H.J. Grande, V. Gonzalez-Pedro, R.S. Sanchez, E.M. Barea, I. Mora-Sero, and R. Tena-Zaera, J. Mater. Chem. A 2, 12754 (2014).CrossRef S. Chavhan, O. Miguel, H.J. Grande, V. Gonzalez-Pedro, R.S. Sanchez, E.M. Barea, I. Mora-Sero, and R. Tena-Zaera, J. Mater. Chem. A 2, 12754 (2014).CrossRef
20.
Zurück zum Zitat N. Yaacobi-Gross, N.D. Treat, P. Pattanasattayavong, H. Faber, A.K. Perumal, N. Stingelin, D.D.C. Bradley, P.N. Stavrinou, M. Heeney, and T.D. Anthopoulos, Adv. Energy Mater. 5, 1401529 (2015).CrossRef N. Yaacobi-Gross, N.D. Treat, P. Pattanasattayavong, H. Faber, A.K. Perumal, N. Stingelin, D.D.C. Bradley, P.N. Stavrinou, M. Heeney, and T.D. Anthopoulos, Adv. Energy Mater. 5, 1401529 (2015).CrossRef
21.
Zurück zum Zitat N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, and M. Gratzel, Science 358, 768 (2017).CrossRef N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, and M. Gratzel, Science 358, 768 (2017).CrossRef
22.
Zurück zum Zitat I.S. Yang, S. Lee, J. Choi, M.T. Jung, J. Kim, and W.I. Lee, J. Mater. Chem. A 7, 6028 (2019).CrossRef I.S. Yang, S. Lee, J. Choi, M.T. Jung, J. Kim, and W.I. Lee, J. Mater. Chem. A 7, 6028 (2019).CrossRef
23.
Zurück zum Zitat S.Y. Ye, W.H. Sun, Y.L. Li, W.B. Yan, H.T. Peng, Z.Q. Bian, Z.W. Liu, and C.H. Huang, Nano Lett. 15, 3723 (2015).CrossRef S.Y. Ye, W.H. Sun, Y.L. Li, W.B. Yan, H.T. Peng, Z.Q. Bian, Z.W. Liu, and C.H. Huang, Nano Lett. 15, 3723 (2015).CrossRef
24.
Zurück zum Zitat Q. Li, Y.C. Zhao, R. Fu, W.K. Zhou, Y. Zhao, F. Lin, S. Liu, D.P. Yu, and Q. Zhao, J. Mater. Chem. A 5, 14881 (2017).CrossRef Q. Li, Y.C. Zhao, R. Fu, W.K. Zhou, Y. Zhao, F. Lin, S. Liu, D.P. Yu, and Q. Zhao, J. Mater. Chem. A 5, 14881 (2017).CrossRef
25.
Zurück zum Zitat X.W. Xu, C.Q. Ma, Y.H. Cheng, Y.M. Xie, X.P. Yi, B. Gautam, S.M. Chen, H.W. Li, C.S. Lee, F. So, and S.W. Tsang, J. Power Sour. 360, 157 (2017).CrossRef X.W. Xu, C.Q. Ma, Y.H. Cheng, Y.M. Xie, X.P. Yi, B. Gautam, S.M. Chen, H.W. Li, C.S. Lee, F. So, and S.W. Tsang, J. Power Sour. 360, 157 (2017).CrossRef
26.
Zurück zum Zitat W. Liu, H.T. Yang, W.B. Wu, H.Y. Gao, S.D. Xu, Q. Guo, Y.L. Liu, S.G. Xu, and S.K. Cao, J. Mater. Chem. C 4, 10684 (2016).CrossRef W. Liu, H.T. Yang, W.B. Wu, H.Y. Gao, S.D. Xu, Q. Guo, Y.L. Liu, S.G. Xu, and S.K. Cao, J. Mater. Chem. C 4, 10684 (2016).CrossRef
27.
Zurück zum Zitat S.G. Xu, C. Fang, Y.Z. Wu, W.B. Wu, Q. Guo, J. Zeng, X.Z. Wang, Y.L. Liu, and S.K. Cao, Dyes Pigments 142, 8 (2017).CrossRef S.G. Xu, C. Fang, Y.Z. Wu, W.B. Wu, Q. Guo, J. Zeng, X.Z. Wang, Y.L. Liu, and S.K. Cao, Dyes Pigments 142, 8 (2017).CrossRef
28.
Zurück zum Zitat W.S. Zong, L.X. Wang, Q. Guo, J. Li, W.B. Wu, Y.L. Liu, S.G. Xu, and S.K. Cao, Dyes Pigments 160, 579 (2019).CrossRef W.S. Zong, L.X. Wang, Q. Guo, J. Li, W.B. Wu, Y.L. Liu, S.G. Xu, and S.K. Cao, Dyes Pigments 160, 579 (2019).CrossRef
29.
Zurück zum Zitat W.S. Zong, S. Wang, J. Li, J.T. Wang, M.M. Li, Y.L. Liu, S.G. Xu, and S.K. Cao, React. Funct. Polym. 143, 104321 (2019).CrossRef W.S. Zong, S. Wang, J. Li, J.T. Wang, M.M. Li, Y.L. Liu, S.G. Xu, and S.K. Cao, React. Funct. Polym. 143, 104321 (2019).CrossRef
30.
Zurück zum Zitat Y.Q. Du, X. Wang, D.Q. Lian, Y.L. Liu, L. Zhang, S.G. Xu, and S.K. Cao, Electrochim. Acta 349, 136387 (2020).CrossRef Y.Q. Du, X. Wang, D.Q. Lian, Y.L. Liu, L. Zhang, S.G. Xu, and S.K. Cao, Electrochim. Acta 349, 136387 (2020).CrossRef
31.
Zurück zum Zitat H. Li, C. Liang, Y.L. Liu, Y.Q. Zhang, J.C. Tong, W.W. Zuo, S.G. Xu, G.S. Shao, and S.K. Cao, ACS Appl. Mater. Interfaces 9, 6064 (2017).CrossRef H. Li, C. Liang, Y.L. Liu, Y.Q. Zhang, J.C. Tong, W.W. Zuo, S.G. Xu, G.S. Shao, and S.K. Cao, ACS Appl. Mater. Interfaces 9, 6064 (2017).CrossRef
32.
Zurück zum Zitat X.F. Cao, Y.Z. Han, J.K. Zhou, W.W. Zuo, X. Gao, L.F. Han, X.C. Pang, L. Zhang, Y.L. Liu, and S.K. Cao, ACS Appl. Mater. Interfaces 11, 35914 (2019).CrossRef X.F. Cao, Y.Z. Han, J.K. Zhou, W.W. Zuo, X. Gao, L.F. Han, X.C. Pang, L. Zhang, Y.L. Liu, and S.K. Cao, ACS Appl. Mater. Interfaces 11, 35914 (2019).CrossRef
33.
Zurück zum Zitat P. Shu, X.F. Cao, Y.Q. Du, J.K. Zhou, J.J. Zhou, S.G. Xu, Y.L. Liu, and S.K. Cao, J. Mater. Chem. C 8, 12865 (2020).CrossRef P. Shu, X.F. Cao, Y.Q. Du, J.K. Zhou, J.J. Zhou, S.G. Xu, Y.L. Liu, and S.K. Cao, J. Mater. Chem. C 8, 12865 (2020).CrossRef
34.
Zurück zum Zitat C. Schmitz, P. Posch, M. Thelakkat, H.W. Schmidt, A. Montali, K. Feldman, P. Smith, and C. Weder, Adv. Funct. Mater. 11, 41 (2001).CrossRef C. Schmitz, P. Posch, M. Thelakkat, H.W. Schmidt, A. Montali, K. Feldman, P. Smith, and C. Weder, Adv. Funct. Mater. 11, 41 (2001).CrossRef
35.
Zurück zum Zitat A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P.D. Yang, Nano Lett. 15, 4096 (2015).CrossRef A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P.D. Yang, Nano Lett. 15, 4096 (2015).CrossRef
36.
Zurück zum Zitat L. Meng, C.K. Sun, R. Wang, W.C. Huang, Z.P. Zhao, P.Y. Sun, T.Y. Huang, J.J. Xue, J.W. Lee, C.H. Zhu, Y. Huang, Y.F. Li, and Y. Yang, J. Am. Chem. Soc. 140, 17255 (2018).CrossRef L. Meng, C.K. Sun, R. Wang, W.C. Huang, Z.P. Zhao, P.Y. Sun, T.Y. Huang, J.J. Xue, J.W. Lee, C.H. Zhu, Y. Huang, Y.F. Li, and Y. Yang, J. Am. Chem. Soc. 140, 17255 (2018).CrossRef
37.
Zurück zum Zitat W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, and C. Huang, Adv. Energy Mater. 6, 1600474 (2016).CrossRef W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, and C. Huang, Adv. Energy Mater. 6, 1600474 (2016).CrossRef
Metadaten
Titel
Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer
verfasst von
Jianjun Zhou
Pan Liu
Yongqiang Du
Wansheng Zong
Bingbing Zhang
Yingliang Liu
Shengang Xu
Shaokui Cao
Publikationsdatum
20.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08916-6

Weitere Artikel der Ausgabe 7/2021

Journal of Electronic Materials 7/2021 Zur Ausgabe

Neuer Inhalt