Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.01.2021

Exact Splitting Methods for Kinetic and Schrödinger Equations

verfasst von: Joackim Bernier, Nicolas Crouseilles, Yingzhe Li

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In (Bernier in Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators. arXiv:​1912.​13219, (2019)), some exact splittings are proposed for inhomogeneous quadratic differential equations including, for example, transport equations, Fokker–Planck equations, and Schrödinger type equations with an angular momentum rotation term. In this work, these exact splittings are used combined with pseudo-spectral methods in space. High accuracy and efficiency of exact splitting methods are illustrated and comparison are performed with the numerical methods in literature. We show that our methods can be used to improve significantly some classical splitting methods for some nonlinear or non-quadratic equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
http://gpelab.math.cnrs.fr
 
Literatur
1.
Zurück zum Zitat Alphonse, P., Bernier, J.: Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects. arXiv:1909.03662 (2019) Alphonse, P., Bernier, J.: Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects. arXiv:​1909.​03662 (2019)
2.
Zurück zum Zitat Ameres, J.: Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system. arXiv preprint arXiv:1907.05319 (2019) Ameres, J.: Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system. arXiv preprint arXiv:​1907.​05319 (2019)
3.
Zurück zum Zitat Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184(12), 2621–2633 (2013)MathSciNetCrossRef Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184(12), 2621–2633 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Antoine, X., Duboscq, R.: GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations I: computation of stationary solutions. Comput. Phys. Commun. 185(11), 2969–2991 (2014)CrossRef Antoine, X., Duboscq, R.: GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations I: computation of stationary solutions. Comput. Phys. Commun. 185(11), 2969–2991 (2014)CrossRef
5.
Zurück zum Zitat Antoine, X., Duboscq, R.: Gpelab, a matlab toolbox to solve Gross–Pitaevskii equations II: dynamics and stochastic simulations. Comput. Phys. Commun. 193, 95–117 (2015)CrossRef Antoine, X., Duboscq, R.: Gpelab, a matlab toolbox to solve Gross–Pitaevskii equations II: dynamics and stochastic simulations. Comput. Phys. Commun. 193, 95–117 (2015)CrossRef
6.
Zurück zum Zitat Bader, P.: Fourier-splitting methods for the dynamics of rotating Bose–Einstein condensates. J. Comput. Appl. Math. 336, 267–280 (2018)MathSciNetCrossRef Bader, P.: Fourier-splitting methods for the dynamics of rotating Bose–Einstein condensates. J. Comput. Appl. Math. 336, 267–280 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Bader, P., Blanes, S.: Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E 83(4), 046711 (2011)CrossRef Bader, P., Blanes, S.: Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E 83(4), 046711 (2011)CrossRef
8.
Zurück zum Zitat Bader, P., Blanes, S., Casas, F.: Efficient time integration methods for Gross–Pitaevskii equations with rotation term. preprint arXiv:1910.12097 (2019) Bader, P., Blanes, S., Casas, F.: Efficient time integration methods for Gross–Pitaevskii equations with rotation term. preprint arXiv:​1910.​12097 (2019)
9.
Zurück zum Zitat Bao, W., Du, Q., Zhang, Y.: Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation. SIAM J. Appl. Math. 66(3), 758–786 (2006)MathSciNetCrossRef Bao, W., Du, Q., Zhang, Y.: Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation. SIAM J. Appl. Math. 66(3), 758–786 (2006)MathSciNetCrossRef
10.
Zurück zum Zitat Bao, W., Marahrens, D., Tang, Q., Zhang, Y.: A simple and efficient numerical method for computing the dynamics of rotating Bose–Einstein condensates via rotating Lagrangian coordinates. SIAM J. Sci. Comput. 35(6), A2671–A2695 (2013)MathSciNetCrossRef Bao, W., Marahrens, D., Tang, Q., Zhang, Y.: A simple and efficient numerical method for computing the dynamics of rotating Bose–Einstein condensates via rotating Lagrangian coordinates. SIAM J. Sci. Comput. 35(6), A2671–A2695 (2013)MathSciNetCrossRef
11.
Zurück zum Zitat Bao, W., Wang, H.: An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates. J. Comput. Phys. 217(2), 612–626 (2006)MathSciNetCrossRef Bao, W., Wang, H.: An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates. J. Comput. Phys. 217(2), 612–626 (2006)MathSciNetCrossRef
12.
Zurück zum Zitat Bernier, J.: Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators. Preprint, arXiv:1912.13219 (2019) Bernier, J.: Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators. Preprint, arXiv:​1912.​13219 (2019)
13.
Zurück zum Zitat Bernier, J., Casas, F., Crouseilles, N.: Splitting methods for rotations: application to Vlasov equations. SIAM J. Sci. Comput. 42(2), 1 (2020)MathSciNetCrossRef Bernier, J., Casas, F., Crouseilles, N.: Splitting methods for rotations: application to Vlasov equations. SIAM J. Sci. Comput. 42(2), 1 (2020)MathSciNetCrossRef
14.
Zurück zum Zitat Besse, C., Descombes, S., Dujardin, G., Lacroix-Violet, I.: Energy preserving methods for nonlinear Schrödinger equations. IMA J. Numer. Anal. 1, drz067 (2020)CrossRef Besse, C., Descombes, S., Dujardin, G., Lacroix-Violet, I.: Energy preserving methods for nonlinear Schrödinger equations. IMA J. Numer. Anal. 1, drz067 (2020)CrossRef
15.
Zurück zum Zitat Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. SIAM J. Numer. Anal. 55(3), 1387–1411 (2017)MathSciNetCrossRef Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. SIAM J. Numer. Anal. 55(3), 1387–1411 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Besse, N., Mehrenberger, M.: Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system. Math. Comput. 77(261), 93–123 (2008)MathSciNetCrossRef Besse, N., Mehrenberger, M.: Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system. Math. Comput. 77(261), 93–123 (2008)MathSciNetCrossRef
17.
Zurück zum Zitat Caliari, M., Ostermann, A., Piazzola, C.: A splitting approach for the magnetic Schrödinger equation. J. Comput. Appl. Math. 316, 74–85 (2017)MathSciNetCrossRef Caliari, M., Ostermann, A., Piazzola, C.: A splitting approach for the magnetic Schrödinger equation. J. Comput. Appl. Math. 316, 74–85 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Chen, B., Kaufman, A.: 3D volume rotation using shear transformations. Graph. Models 62(4), 308–322 (2000)CrossRef Chen, B., Kaufman, A.: 3D volume rotation using shear transformations. Graph. Models 62(4), 308–322 (2000)CrossRef
19.
Zurück zum Zitat Coulaud, O., Sonnendrücker, E., Dillon, E., Bertrand, P.: J. Plasma Phys. 61, 435–448 (1999)CrossRef Coulaud, O., Sonnendrücker, E., Dillon, E., Bertrand, P.: J. Plasma Phys. 61, 435–448 (1999)CrossRef
20.
Zurück zum Zitat Dujardin, G., Hérau, F., Lafitte, P.: Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations. arXiv preprint arXiv:1802.02173 (2018) Dujardin, G., Hérau, F., Lafitte, P.: Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations. arXiv preprint arXiv:​1802.​02173 (2018)
21.
Zurück zum Zitat Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics (2006) Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics (2006)
22.
Zurück zum Zitat Hérau, F., Sjöstrand, J., Hitrik, M.: Tunnel effect for the Kramers-Fokker-Planck type operators: return to equilibrium and applications. Int. Math. Res. Not. 57, 48 (2008)MATH Hérau, F., Sjöstrand, J., Hitrik, M.: Tunnel effect for the Kramers-Fokker-Planck type operators: return to equilibrium and applications. Int. Math. Res. Not. 57, 48 (2008)MATH
23.
Zurück zum Zitat Hérau, F., Sjöstrand, J., Hitrik, M.: Tunnel effect for the Kramers–Fokker–Planck type operators. Ann. Henri Poincaré 9, 209–274 (2008)MathSciNetCrossRef Hérau, F., Sjöstrand, J., Hitrik, M.: Tunnel effect for the Kramers–Fokker–Planck type operators. Ann. Henri Poincaré 9, 209–274 (2008)MathSciNetCrossRef
24.
Zurück zum Zitat Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)MathSciNetCrossRef Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Hörmander, L.: Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219, 413–449 (1995)MathSciNetCrossRef Hörmander, L.: Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219, 413–449 (1995)MathSciNetCrossRef
28.
Zurück zum Zitat Jin, S., Zhou, Z.: A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials. Commun. Inf. Syst. 13(3), 247–289 (2013)MathSciNetMATH Jin, S., Zhou, Z.: A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials. Commun. Inf. Syst. 13(3), 247–289 (2013)MathSciNetMATH
29.
Zurück zum Zitat Li, Y., He, Y., Sun, Y., et al.: Solving the Vlasov–Maxwell equations using Hamiltonian splitting. J. Comput. Phys. 396, 381–399 (2019)MathSciNetCrossRef Li, Y., He, Y., Sun, Y., et al.: Solving the Vlasov–Maxwell equations using Hamiltonian splitting. J. Comput. Phys. 396, 381–399 (2019)MathSciNetCrossRef
31.
Zurück zum Zitat Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, Berlin (2013)MATH Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, Berlin (2013)MATH
32.
Zurück zum Zitat Raymond, N.: Bound States of the Magnetic Schrödinger Operator. EMS Tracts Math. (2017) Raymond, N.: Bound States of the Magnetic Schrödinger Operator. EMS Tracts Math. (2017)
33.
Zurück zum Zitat Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Birkhäuser, Basel (2010)CrossRef Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Birkhäuser, Basel (2010)CrossRef
34.
Zurück zum Zitat Welling, J.S., Eddy, W.F., Young, T.K.: Rotation of 3D volumes by Fourier-interpolated shears. Graph. Models 68(4), 356–370 (2006)CrossRef Welling, J.S., Eddy, W.F., Young, T.K.: Rotation of 3D volumes by Fourier-interpolated shears. Graph. Models 68(4), 356–370 (2006)CrossRef
35.
Zurück zum Zitat Zeng, R., Zhang, Y.: Efficiently computing vortex lattices in rapid rotating Bose–Einstein condensates. Comput. Phys. Commun. 180(6), 854–860 (2009)MathSciNetCrossRef Zeng, R., Zhang, Y.: Efficiently computing vortex lattices in rapid rotating Bose–Einstein condensates. Comput. Phys. Commun. 180(6), 854–860 (2009)MathSciNetCrossRef
Metadaten
Titel
Exact Splitting Methods for Kinetic and Schrödinger Equations
verfasst von
Joackim Bernier
Nicolas Crouseilles
Yingzhe Li
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01369-9

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe