Skip to main content
Erschienen in: Thermal Engineering 2/2021

01.02.2021 | NUCLEAR POWER PLANTS

Experimental and Calculated Studies of Condensation-Induced Water Hammer

Erschienen in: Thermal Engineering | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

Experience gained from the operation of nuclear power plants shows that emergencies or incorrect actions of the personnel may give rise to water hammer phenomena, which exert additional impacts on the pipelines and equipment. Condensation-induced water hammer (CIWH) is one of the most destructive kinds of water hammer. Experimental studies of CIWH were carried out in a number of scientific organizations around the world. The main features of the experimental facilities used in the world are considered. For studying the CIWH phenomena occurring in a horizontal channel, a special experimental test facility was set up in 2018 at the Elektrogorsk Research and Engineering Center for Nuclear Power Plants’ Safety (EREC). The facility’s test section and the parameters of experimental regimes are described. Fifty-two experiments were carried out on the facility under different initial and boundary conditions for three values of the water flowrate supplied to the facility (1, 3, and 5 t/h), two values of water temperature (30 and 60°С), and two values of vapor pressure in the test section (0.6 and 1.0 MPa). In all experiments, CIWH phenomena were recorded. As an example, one experimental regime was considered in detail, and the CIWH occurrence mechanism is described proceeding from the readings of pressure and level gages and temperature sensors. The described experimental regime was modeled using the RELAP5 and WAHA thermal-hydraulic codes. The effect that the size of nodalization diagram cells and the integration time step have on the computation results is analyzed. The significant amount of experimental points obtained from the study can be used for setting up a database for validating computer codes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. M. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).CrossRef O. M. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).CrossRef
5.
Zurück zum Zitat Yu. F. Selivanov, A. D. Yefanov, and P. L. Kirillov, “Water hammer phenomena occurring in nuclear power installations at filling horizontal pipe containing saturated steam with liquid,” in Proc. 7th Int. Meeting on Nuclear Thermal-Hydraulics (NURETH-7), Saratoga Springs, N.Y., Sep. 10–15, 1995 (U.S. Nuclear Regulatory Commission, Washington, DC, 1995), Vol. 4, p. 2916. Yu. F. Selivanov, A. D. Yefanov, and P. L. Kirillov, “Water hammer phenomena occurring in nuclear power installations at filling horizontal pipe containing saturated steam with liquid,” in Proc. 7th Int. Meeting on Nuclear Thermal-Hydraulics (NURETH-7), Saratoga Springs, N.Y., Sep. 10–15, 1995 (U.S. Nuclear Regulatory Commission, Washington, DC, 1995), Vol. 4, p. 2916.
6.
Zurück zum Zitat Yu. F. Selivanov, A. D. Efanov, and A. D. Martynov, “Study of the modes of occurrence and magnitude of condensation hydraulic impacts in the equipment elements of reactor plants with VVER,” in Thermophysics-98 (Thermophysical Aspects of VVER Safety) (Proc. Int. Conf., Obninsk, Russia, May 26–29, 1998) (Fiz.-Energ. Inst. im. A. I. Leipunskogo, Obninsk, 1998), Vol. 1, p. 180. Yu. F. Selivanov, A. D. Efanov, and A. D. Martynov, “Study of the modes of occurrence and magnitude of condensation hydraulic impacts in the equipment elements of reactor plants with VVER,” in Thermophysics-98 (Thermophysical Aspects of VVER Safety) (Proc. Int. Conf., Obninsk, Russia, May 26–29, 1998) (Fiz.-Energ. Inst. im. A. I. Leipunskogo, Obninsk, 1998), Vol. 1, p. 180.
9.
Zurück zum Zitat Yu. B. Khripachev, A. N. Churkin, Yu. A. Bezrukov, E. A. Lisenkov, and A. V. Seleznev, “Analytical review of publications on the experimental computational study of condensation hydraulic impacts in the equipment of light-water nuclear power plants. Part 1,” Tyazh. Mashinostr., No. 1–2, 27–33 (2016). Yu. B. Khripachev, A. N. Churkin, Yu. A. Bezrukov, E. A. Lisenkov, and A. V. Seleznev, “Analytical review of publications on the experimental computational study of condensation hydraulic impacts in the equipment of light-water nuclear power plants. Part 1,” Tyazh. Mashinostr., No. 1–2, 27–33 (2016).
10.
Zurück zum Zitat Yu. B. Khripachev, A. N. Churkin, Yu. A. Bezrukov, E. A. Lisenkov, and A. V. Seleznev, “Analytical review of publications on the experimental computational study of condensation hydraulic impacts in the equipment of light-water nuclear power plants. Part 2,” Tyazh. Mashinostr., No. 3–4, 22–28 (2016). Yu. B. Khripachev, A. N. Churkin, Yu. A. Bezrukov, E. A. Lisenkov, and A. V. Seleznev, “Analytical review of publications on the experimental computational study of condensation hydraulic impacts in the equipment of light-water nuclear power plants. Part 2,” Tyazh. Mashinostr., No. 3–4, 22–28 (2016).
11.
Zurück zum Zitat RELAP5/MOD3.3 Code Manual, NUREG/CR-5535 (Idaho National Engineering Laboratory, 2001), Vol. 1–8. RELAP5/MOD3.3 Code Manual, NUREG/CR-5535 (Idaho National Engineering Laboratory, 2001), Vol. 1–8.
12.
Zurück zum Zitat I. Tiselj, A. Horvat, G. Černe, J. Gale, I. Parzer, B. Mavko, M. Giot, J. M. Seynhaeve, B. Kucienska, and H. Lemonnier, WAHA3 Code Manual, Josef Stefan Institute Report IJS-DP-8841, Revision March-04 (Josef Stefan Institute, Ljubljana, 2004). I. Tiselj, A. Horvat, G. Černe, J. Gale, I. Parzer, B. Mavko, M. Giot, J. M. Seynhaeve, B. Kucienska, and H. Lemonnier, WAHA3 Code Manual, Josef Stefan Institute Report IJS-DP-8841, Revision March-04 (Josef Stefan Institute, Ljubljana, 2004).
14.
Zurück zum Zitat E. V. Vilyura, G. Yu. Volkov, V. I. Melikhov, and O. I. Melikhov, “Testing and verification of WAHA code for modeling a condensation hydraulic impact,” Tekhnol. Obespecheniya Zhiznennogo Tsikla Yad. Energ. Ustanovok, No. 1, 45–55 (2019). E. V. Vilyura, G. Yu. Volkov, V. I. Melikhov, and O. I. Melikhov, “Testing and verification of WAHA code for modeling a condensation hydraulic impact,” Tekhnol. Obespecheniya Zhiznennogo Tsikla Yad. Energ. Ustanovok, No. 1, 45–55 (2019).
15.
Zurück zum Zitat V. N. Blinkov, V. I. Melikhov, and O. I. Melikhov, “State-of-the-art and development tendencies of mathematical modeling of thermophysical processes in nuclear power plants,” Tekhnol. Obespecheniya Zhiznennogo Tsikla Yad. Energ. Ustanovok, No. 4, 61–73 (2018). V. N. Blinkov, V. I. Melikhov, and O. I. Melikhov, “State-of-the-art and development tendencies of mathematical modeling of thermophysical processes in nuclear power plants,” Tekhnol. Obespecheniya Zhiznennogo Tsikla Yad. Energ. Ustanovok, No. 4, 61–73 (2018).
Metadaten
Titel
Experimental and Calculated Studies of Condensation-Induced Water Hammer
Publikationsdatum
01.02.2021
Erschienen in
Thermal Engineering / Ausgabe 2/2021
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601521020087

Weitere Artikel der Ausgabe 2/2021

Thermal Engineering 2/2021 Zur Ausgabe

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Determining Optimum Productivity of a Ball Drum Mill When Milling Brown Coals

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Experimental Studies into the Effect that the Rotor Rotation and Flow Swirling Upstream of Seals Have on the Leakage Flowrate

    Premium Partner