Skip to main content
Erschienen in: Journal of Materials Science 14/2018

19.04.2018 | Chemical routes to materials

Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt

verfasst von: Celina M. Miyazaki, Marco A. E. Maria, Daiane Damasceno Borges, Cristiano F. Woellner, Gustavo Brunetto, Alexandre F. Fonseca, Carlos J. L. Constantino, Marcelo A. Pereira-da-Silva, Abner de Siervo, Douglas S. Galvao, Antonio Riul Jr.

Erschienen in: Journal of Materials Science | Ausgabe 14/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The production of large-area interfaces and the use of scalable methods to build up designed nanostructures generating advanced functional properties are of high interest for many materials science applications. Nevertheless, large-area coverage remains a major problem even for pristine graphene, and here we present a hybrid, composite graphene-like material soluble in water that can be exploited in many areas such as energy storage, electrodes fabrication, selective membranes and biosensing. Graphene oxide (GO) was produced by the traditional Hummers’ method being further reduced in the presence of poly(styrene sulfonate) sodium salt (PSS), thus creating stable reduced graphene oxide (rGO) nanoplatelets wrapped by PSS (GPSS). Molecular dynamics simulations were carried out to further clarify the interactions between PSS molecules and rGO nanoplatelets, with calculations supported by Fourier transform infrared spectroscopy analysis. The intermolecular forces between rGO nanoplatelets and PSS lead to the formation of a hybrid material (GPSS) stabilized by van der Waals forces, allowing the fabrication of high-quality layer-by-layer (LbL) films with poly(allylamine hydrochloride) (PAH). Raman and electrical characterizations corroborated the successful modifications in the electronic structures from GO to GPSS after the chemical treatment, resulting in (PAH/GPSS) LbL films four orders of magnitude more conductive than (PAH/GO).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sour 196:4873–4885CrossRef Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sour 196:4873–4885CrossRef
2.
Zurück zum Zitat Cai H, Li J, Xu X et al (2017) Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells. J Alloys Compd 697:132–137CrossRef Cai H, Li J, Xu X et al (2017) Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells. J Alloys Compd 697:132–137CrossRef
3.
Zurück zum Zitat Liang B, Guo X, Fang L et al (2015) Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface. Electrochem Commun 50:1–5CrossRef Liang B, Guo X, Fang L et al (2015) Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface. Electrochem Commun 50:1–5CrossRef
4.
Zurück zum Zitat Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRef Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRef
5.
Zurück zum Zitat Gupta V, Chaudhary N, Srivastava R et al (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963CrossRef Gupta V, Chaudhary N, Srivastava R et al (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963CrossRef
6.
Zurück zum Zitat Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRef Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRef
7.
Zurück zum Zitat Kholmanov IN, Magnuson CW, Piner R et al (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059CrossRef Kholmanov IN, Magnuson CW, Piner R et al (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059CrossRef
8.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
9.
Zurück zum Zitat Jang J, Son M, Chung S et al (2015) Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci Rep 5:17955CrossRef Jang J, Son M, Chung S et al (2015) Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci Rep 5:17955CrossRef
10.
Zurück zum Zitat Shao J-J, Lv W, Yang Q-H (2014) Self-assembly of graphene oxide at interfaces. Adv Mater 26:5586–5612CrossRef Shao J-J, Lv W, Yang Q-H (2014) Self-assembly of graphene oxide at interfaces. Adv Mater 26:5586–5612CrossRef
11.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
12.
Zurück zum Zitat Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef Wang G, Shen X, Wang B et al (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef
13.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
14.
Zurück zum Zitat Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024CrossRef Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024CrossRef
15.
Zurück zum Zitat Richardson JJ, Bjornmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491–2491CrossRef Richardson JJ, Bjornmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491–2491CrossRef
16.
Zurück zum Zitat Hu J, He B, Lu J et al (2012) Facile preparation of Pt/polyallylamine/reduced graphene oxide composites and their application in the electrochemical catalysis on methanol oxidation. Int J Electrochem Sci 7:10094–10107 Hu J, He B, Lu J et al (2012) Facile preparation of Pt/polyallylamine/reduced graphene oxide composites and their application in the electrochemical catalysis on methanol oxidation. Int J Electrochem Sci 7:10094–10107
17.
Zurück zum Zitat Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868CrossRef Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868CrossRef
18.
Zurück zum Zitat Cohen-Tanugi D, Lin L-C, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16:1027–1033CrossRef Cohen-Tanugi D, Lin L-C, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16:1027–1033CrossRef
19.
Zurück zum Zitat Long Y, Wang K, Xiang G et al (2017) Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Adv Mater 29:1606093–1606097CrossRef Long Y, Wang K, Xiang G et al (2017) Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Adv Mater 29:1606093–1606097CrossRef
20.
Zurück zum Zitat Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89(1):167–186CrossRef Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89(1):167–186CrossRef
22.
Zurück zum Zitat Hsiao S-T, Ma C-CM, Liao W-H et al (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678CrossRef Hsiao S-T, Ma C-CM, Liao W-H et al (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678CrossRef
23.
Zurück zum Zitat Lee DW, Hong T-K, Kang D et al (2011) Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J Mater Chem 21:3438CrossRef Lee DW, Hong T-K, Kang D et al (2011) Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J Mater Chem 21:3438CrossRef
24.
Zurück zum Zitat Zou J, Kim F (2014) Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat Commun 5:5254CrossRef Zou J, Kim F (2014) Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat Commun 5:5254CrossRef
25.
Zurück zum Zitat Liu Y, Liu Y, Feng H et al (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68CrossRef Liu Y, Liu Y, Feng H et al (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68CrossRef
26.
Zurück zum Zitat Marmisollé WA, Azzaroni O (2016) Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale 8:9890–9918CrossRef Marmisollé WA, Azzaroni O (2016) Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale 8:9890–9918CrossRef
27.
Zurück zum Zitat Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef
28.
Zurück zum Zitat Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 2:831–835CrossRef Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 2:831–835CrossRef
30.
Zurück zum Zitat Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155CrossRef Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155CrossRef
31.
Zurück zum Zitat Girotto EM, Santos IA (2002) Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente. Quím Nova 25:639CrossRef Girotto EM, Santos IA (2002) Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente. Quím Nova 25:639CrossRef
32.
Zurück zum Zitat Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef
33.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
34.
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
35.
Zurück zum Zitat Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRef Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRef
36.
Zurück zum Zitat Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643CrossRef Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643CrossRef
37.
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef
38.
Zurück zum Zitat Carrillo J-MY, Dobrynin AV (2010) Detailed molecular dynamics simulations of a model NaPSS in water. J Phys Chem B 114:9391–9399CrossRef Carrillo J-MY, Dobrynin AV (2010) Detailed molecular dynamics simulations of a model NaPSS in water. J Phys Chem B 114:9391–9399CrossRef
39.
Zurück zum Zitat Jiao S, Xu Z (2015) Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interf 7:9052–9059CrossRef Jiao S, Xu Z (2015) Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interf 7:9052–9059CrossRef
40.
Zurück zum Zitat Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164CrossRef Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164CrossRef
41.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamic. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamic. J Comput Phys 117:1–19CrossRef
42.
Zurück zum Zitat Khanra P, Kuila T, Kim NH et al (2012) Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem Eng J 183:526–533CrossRef Khanra P, Kuila T, Kim NH et al (2012) Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem Eng J 183:526–533CrossRef
43.
Zurück zum Zitat Liu Y, Gao L, Sun J et al (2009) Stable nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20:465605CrossRef Liu Y, Gao L, Sun J et al (2009) Stable nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20:465605CrossRef
44.
Zurück zum Zitat Jiang G, Baba A, Advincula R (2007) Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) ultrathin films. Langmuir 23:817–825CrossRef Jiang G, Baba A, Advincula R (2007) Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) ultrathin films. Langmuir 23:817–825CrossRef
45.
Zurück zum Zitat Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276CrossRef Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276CrossRef
46.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef
47.
Zurück zum Zitat Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563CrossRef Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563CrossRef
48.
Zurück zum Zitat Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152CrossRef Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152CrossRef
49.
Zurück zum Zitat Pham VH, Cuong TV, Hur SH et al (2010) Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48:1945–1951CrossRef Pham VH, Cuong TV, Hur SH et al (2010) Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48:1945–1951CrossRef
50.
Zurück zum Zitat Rani A, Oh KA, Koo H et al (2011) Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly. Appl Surf Sci 257:4982–4989CrossRef Rani A, Oh KA, Koo H et al (2011) Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly. Appl Surf Sci 257:4982–4989CrossRef
51.
Zurück zum Zitat Wang S, Yu D, Dai L et al (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209CrossRef Wang S, Yu D, Dai L et al (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209CrossRef
52.
Zurück zum Zitat Zhang Y, Hu W, Li B et al (2011) Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. Nanotechnology 22:345601CrossRef Zhang Y, Hu W, Li B et al (2011) Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. Nanotechnology 22:345601CrossRef
53.
Zurück zum Zitat Lu J, Do I, Fukushima H et al (2010) Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes. J Nanomater 2010:11 Lu J, Do I, Fukushima H et al (2010) Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes. J Nanomater 2010:11
54.
Zurück zum Zitat Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef
55.
Zurück zum Zitat He P, Derby B (2017) Inkjet printing ultra-large graphene oxide flakes. 2D Mater 4:021021CrossRef He P, Derby B (2017) Inkjet printing ultra-large graphene oxide flakes. 2D Mater 4:021021CrossRef
56.
Zurück zum Zitat Gross MA, Sales MJA, Soler MAG et al (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4:17917–17924CrossRef Gross MA, Sales MJA, Soler MAG et al (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4:17917–17924CrossRef
57.
Zurück zum Zitat Zheng Q, Kim J-K (2015) Graphene for transparent conductors—synthesis properties. Springer, New YorkCrossRef Zheng Q, Kim J-K (2015) Graphene for transparent conductors—synthesis properties. Springer, New YorkCrossRef
58.
Zurück zum Zitat Kotov NA, Dékány I, Fendler JH (1996) Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8:637–641CrossRef Kotov NA, Dékány I, Fendler JH (1996) Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8:637–641CrossRef
59.
Zurück zum Zitat Kim Y-K, Min D-H (2009) Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 25:11302–11306CrossRef Kim Y-K, Min D-H (2009) Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 25:11302–11306CrossRef
60.
Zurück zum Zitat Jimenez MJM, Oliveira RF, Almeida TP et al (2017) Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology 28:495711CrossRef Jimenez MJM, Oliveira RF, Almeida TP et al (2017) Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology 28:495711CrossRef
Metadaten
Titel
Experimental and computational investigation of reduced graphene oxide nanoplatelets stabilized in poly(styrene sulfonate) sodium salt
verfasst von
Celina M. Miyazaki
Marco A. E. Maria
Daiane Damasceno Borges
Cristiano F. Woellner
Gustavo Brunetto
Alexandre F. Fonseca
Carlos J. L. Constantino
Marcelo A. Pereira-da-Silva
Abner de Siervo
Douglas S. Galvao
Antonio Riul Jr.
Publikationsdatum
19.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2325-1

Weitere Artikel der Ausgabe 14/2018

Journal of Materials Science 14/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.