Skip to main content
Erschienen in: International Journal of Material Forming 1/2016

16.11.2014 | Original Research

Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology

verfasst von: Rizwan Zafar, Lihui Lang, Rongjing Zhang

Erschienen in: International Journal of Material Forming | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Being light weight and superior in characteristics, hybrid materials such as fiber metal laminate (FMLs) and functionally graded structures (FGS) are becoming increasingly popular in aeronautical, automobile and military industries. In the present work, an innovative methodology which hereafter will be named as “3A method” has been proposed to replace complex shaped, monolithic, metallic sheet parts with hybrid parts. This method is based on simultaneous forming of any number of multiple metallic blanks in required shape by applying hydroforming (HF) technology. Based on numerical simulations, forming limit diagrams (FLDs) are established for three types of blanks forming hemispherical shaped parts using Barlat 2000 yield criteria/DYNA Form/LS Dyna. To validate the simulation results, experimental study is accomplished and optimal process parameters are determined by varying the cavity pressure under constant die-binder gap. Effects of number of layers and thickness of blanks on thinning, wrinkling and punch force have been well studied for three types of blanks and a comparative analysis is made to investigate various failure modes. To achieve a composite layered structure, post forming procedure has been devised and implemented to get a final hybrid part. Furthermore, limitations of the 3A method in terms of final shape of parts are discussed. Good agreement can be found between numerical and experimental research. The new methodology is capable of employing any types of resins and composite materials at any required place in parts for desired characteristics. Elimination of repeated heating and solidification of blank assembly as well as precise punch force and speed requirements make this multilayer blank forming method more efficient, economical and user friendly for manufacturing of FMLs and FGSs at commercial scales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang SH (1991) Developments in hydroforming. J Mater Process Technol 91:236–244CrossRef Zhang SH (1991) Developments in hydroforming. J Mater Process Technol 91:236–244CrossRef
2.
Zurück zum Zitat Kocańda A, Sadłowska H (2008) “Automotive component development by means of hydroforming”. Arch Civil Mech Eng 8(No 3) Kocańda A, Sadłowska H (2008) “Automotive component development by means of hydroforming”. Arch Civil Mech Eng 8(No 3)
3.
Zurück zum Zitat Sinmazçelik T, Avcu E, Özgür Bora M, Coban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods, materials and design. Mater Des 32:3671–3685CrossRef Sinmazçelik T, Avcu E, Özgür Bora M, Coban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods, materials and design. Mater Des 32:3671–3685CrossRef
4.
Zurück zum Zitat Botelho EC, Silva RA, Pardini LC, Rezende MC (2006) A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res 9(3):247–256CrossRef Botelho EC, Silva RA, Pardini LC, Rezende MC (2006) A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res 9(3):247–256CrossRef
5.
Zurück zum Zitat Vogelesang LB, Schijve J (1995) Fibre metal laminates: damage tolerant aerospace materials. Case Stud Manuf Adv Mater 2:259–260 Vogelesang LB, Schijve J (1995) Fibre metal laminates: damage tolerant aerospace materials. Case Stud Manuf Adv Mater 2:259–260
6.
Zurück zum Zitat Takamatsu T, Matsumura T, Ogura N, Shimokawa T, Kakuta Y (1999) Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Eng Fract Mech 63:253–272CrossRef Takamatsu T, Matsumura T, Ogura N, Shimokawa T, Kakuta Y (1999) Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Eng Fract Mech 63:253–272CrossRef
7.
Zurück zum Zitat Carrillo JG, Cantwell WJ (2009) Mechanical properties of a novel fiber—metal laminate based on a polypropylene composite. Mech Mater 41:828–838CrossRef Carrillo JG, Cantwell WJ (2009) Mechanical properties of a novel fiber—metal laminate based on a polypropylene composite. Mech Mater 41:828–838CrossRef
8.
Zurück zum Zitat Takamatsu T, Shimokawa T, Matsumura T, Miyoshi Y, Tanabe Y (2003) Evaluation of fatigue crack growth behavior of GLARE3 fiber/metal laminates using a compliance method. Eng Fract Mech 70:2603–2616CrossRef Takamatsu T, Shimokawa T, Matsumura T, Miyoshi Y, Tanabe Y (2003) Evaluation of fatigue crack growth behavior of GLARE3 fiber/metal laminates using a compliance method. Eng Fract Mech 70:2603–2616CrossRef
9.
Zurück zum Zitat Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28:366–374CrossRef Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28:366–374CrossRef
10.
Zurück zum Zitat Long AC (2007) “Composite forming technologies”. Woodhead Publishing Limited and CRC Press LLC, ISBN-13: 978-1-84569-033-5, pp. 207 Long AC (2007) “Composite forming technologies”. Woodhead Publishing Limited and CRC Press LLC, ISBN-13: 978-1-84569-033-5, pp. 207
11.
Zurück zum Zitat Park SY, Choi WJ, Choi HS (2010) A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. Int J Adv Manuf Technol 49:605–613CrossRef Park SY, Choi WJ, Choi HS (2010) A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. Int J Adv Manuf Technol 49:605–613CrossRef
12.
Zurück zum Zitat Kumar KV, Safiullah M, Ahmad ANK (2013) Root cause analysis of heating rate deviations in autoclave curing of CFRP structures. Int J Innov Res Stud 2(Issue 5):369–378 Kumar KV, Safiullah M, Ahmad ANK (2013) Root cause analysis of heating rate deviations in autoclave curing of CFRP structures. Int J Innov Res Stud 2(Issue 5):369–378
13.
Zurück zum Zitat Dmitriev O, Mischenko S (2011) “Optimization of curing cycles for thick-wall products of the polymeric composite materials”. Advances in Composite Materials - Ecodesign and Analysis, ISBN 978-953-307-150-3, pp. 141–160. Dmitriev O, Mischenko S (2011) “Optimization of curing cycles for thick-wall products of the polymeric composite materials”. Advances in Composite Materials - Ecodesign and Analysis, ISBN 978-953-307-150-3, pp. 141–160.
14.
Zurück zum Zitat Abdullah MR, Cantwell WJ (2012) The high-velocity impact response of thermoplastic—matrix fibre—metal laminates. J Strain Anal 47(Issue 7):432–443CrossRef Abdullah MR, Cantwell WJ (2012) The high-velocity impact response of thermoplastic—matrix fibre—metal laminates. J Strain Anal 47(Issue 7):432–443CrossRef
15.
Zurück zum Zitat Mosse L, Compston P, Cantwell W, Cardew-Hall M, Kalyanasundaram S (2005) Effect of process temperature on the formability of fibre—metal laminates. Compos Part A 36:1158–1166CrossRef Mosse L, Compston P, Cantwell W, Cardew-Hall M, Kalyanasundaram S (2005) Effect of process temperature on the formability of fibre—metal laminates. Compos Part A 36:1158–1166CrossRef
16.
Zurück zum Zitat Mossea L, Compstona P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S (2006) Stamp forming of polypropylene based fibre—metal laminates: the effect of process variables on formability. J Mater Process Technol 172:163–168CrossRef Mossea L, Compstona P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S (2006) Stamp forming of polypropylene based fibre—metal laminates: the effect of process variables on formability. J Mater Process Technol 172:163–168CrossRef
17.
Zurück zum Zitat Huang SF, Huang K-J (2002) Stamp forming of locally heated thermoplastic composites. Compos Part A 33:669–676CrossRef Huang SF, Huang K-J (2002) Stamp forming of locally heated thermoplastic composites. Compos Part A 33:669–676CrossRef
18.
Zurück zum Zitat Kalyanasundaram S, DharMalingam S, Venkatesan S, Sexton A (2013) Effect of process parameters during forming of self reinforced—PP based fiber metal laminate. Compos Struct 97:332–337CrossRef Kalyanasundaram S, DharMalingam S, Venkatesan S, Sexton A (2013) Effect of process parameters during forming of self reinforced—PP based fiber metal laminate. Compos Struct 97:332–337CrossRef
19.
Zurück zum Zitat Hou M (1997) Stamp forming of continuous glass fibre reinforced polypropylene. Compos Part A 28A:695–702CrossRef Hou M (1997) Stamp forming of continuous glass fibre reinforced polypropylene. Compos Part A 28A:695–702CrossRef
20.
Zurück zum Zitat Wojciechowski S (2000) New trends in the development of mechanical engineering materials. J Mater Process Technol 106:230–235CrossRef Wojciechowski S (2000) New trends in the development of mechanical engineering materials. J Mater Process Technol 106:230–235CrossRef
21.
Zurück zum Zitat Yoshida Y, Urabe M, Hino R, Toropov VV (2003) Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Intern J Plast 19:2149–2170CrossRefMATH Yoshida Y, Urabe M, Hino R, Toropov VV (2003) Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Intern J Plast 19:2149–2170CrossRefMATH
22.
Zurück zum Zitat Yuen WYD (1996) A generalised solution for the prediction of spring- back in laminated strip. J Mater Process Technol 61:254–264CrossRef Yuen WYD (1996) A generalised solution for the prediction of spring- back in laminated strip. J Mater Process Technol 61:254–264CrossRef
23.
Zurück zum Zitat Wlosinski W, Olesinska W, Pietrzak K (1996) Bonding of alumina to steel using copper interlayer. J Mater Process Technol 56:190–199CrossRef Wlosinski W, Olesinska W, Pietrzak K (1996) Bonding of alumina to steel using copper interlayer. J Mater Process Technol 56:190–199CrossRef
24.
Zurück zum Zitat Lang L, Danckert J, Nielsen KB (2005) Multi-layer sheet hydroforming: Experimental and numerical investigation into the very thin layer in the middle. J Mater Process Technol 170:524–535CrossRef Lang L, Danckert J, Nielsen KB (2005) Multi-layer sheet hydroforming: Experimental and numerical investigation into the very thin layer in the middle. J Mater Process Technol 170:524–535CrossRef
25.
Zurück zum Zitat Yoshida F (1997) Deformation and fracture of sheet metal laminates in plastic forming. Proceedings of 4th international conference on composite engineering, 61–64 Yoshida F (1997) Deformation and fracture of sheet metal laminates in plastic forming. Proceedings of 4th international conference on composite engineering, 61–64
26.
Zurück zum Zitat Hwang YM, Hsu HH, Lee HJ (1995) Analysis of sandwich sheet rolling by stream function method. Int J Mech Sci 37(3):297–315CrossRefMATH Hwang YM, Hsu HH, Lee HJ (1995) Analysis of sandwich sheet rolling by stream function method. Int J Mech Sci 37(3):297–315CrossRefMATH
27.
Zurück zum Zitat Takuda H, Fujimoto H, Hatta N (1998) Formabilities of steel/aluminium alloy laminated composite sheets. J Mater Sci 33:91–97CrossRef Takuda H, Fujimoto H, Hatta N (1998) Formabilities of steel/aluminium alloy laminated composite sheets. J Mater Sci 33:91–97CrossRef
28.
Zurück zum Zitat Takuda H, Hatta N (1998) “Numerical Analysis of the Formability of an Aluminum 2024 Alloy Sheet and Its Laminates with Steel Sheets”. Metall Mater Trans A, 29A: 1998–2829 Takuda H, Hatta N (1998) “Numerical Analysis of the Formability of an Aluminum 2024 Alloy Sheet and Its Laminates with Steel Sheets”. Metall Mater Trans A, 29A: 1998–2829
29.
Zurück zum Zitat Morovvati MR, Fatemi A, Sadighi M (2011) Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process. Int J Adv Manuf Technol 54:113–121CrossRef Morovvati MR, Fatemi A, Sadighi M (2011) Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process. Int J Adv Manuf Technol 54:113–121CrossRef
30.
Zurück zum Zitat Aghchai AJ, Shakeri M, Mollaei-Dariani B (2008) Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proc Inst Mech Eng B J Eng Manuf 222:1131CrossRef Aghchai AJ, Shakeri M, Mollaei-Dariani B (2008) Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proc Inst Mech Eng B J Eng Manuf 222:1131CrossRef
31.
Zurück zum Zitat Keeler SP (1965) Determination of forming limits in automotive stampings. Sheet Met Ind 42:683–691 Keeler SP (1965) Determination of forming limits in automotive stampings. Sheet Met Ind 42:683–691
32.
Zurück zum Zitat Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. Metall Ital 60:764–774 Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. Metall Ital 60:764–774
33.
Zurück zum Zitat Sowerby R, Duncan JL (1971) Failure in sheet metal in biaxial tension. Int J Mech Sci 13:217–229CrossRef Sowerby R, Duncan JL (1971) Failure in sheet metal in biaxial tension. Int J Mech Sci 13:217–229CrossRef
34.
Zurück zum Zitat Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminium alloys sheets. Mater Des 31:4866–4875CrossRef Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminium alloys sheets. Mater Des 31:4866–4875CrossRef
35.
Zurück zum Zitat Rezaee-Bazzaz A, Noori H, Mahmudi R (2011) Calculation of forming limit diagrams using Hill’s 1993 yield criterion. Int J Mech Sci 53(4):262–270CrossRef Rezaee-Bazzaz A, Noori H, Mahmudi R (2011) Calculation of forming limit diagrams using Hill’s 1993 yield criterion. Int J Mech Sci 53(4):262–270CrossRef
36.
Zurück zum Zitat Percy JH, Brown RH (1980) The effect of strain rate on the forming limit diagram for sheet metal. CIRP Ann Technol 29(1):151–152CrossRef Percy JH, Brown RH (1980) The effect of strain rate on the forming limit diagram for sheet metal. CIRP Ann Technol 29(1):151–152CrossRef
37.
Zurück zum Zitat Jie M, Cheng CH, Chan LC et al (2009) Forming limit diagrams of strain-rate-dependent sheet metals. Int J Mech Sci 51(4):269–275CrossRefMATH Jie M, Cheng CH, Chan LC et al (2009) Forming limit diagrams of strain-rate-dependent sheet metals. Int J Mech Sci 51(4):269–275CrossRefMATH
38.
Zurück zum Zitat Lee YS, Kwon YN, Kang SH et al (2008) Forming limit of AZ31 alloy sheet and strain rate on warm sheet metal forming. J Mater Process Technol 201(1–3):431–435CrossRef Lee YS, Kwon YN, Kang SH et al (2008) Forming limit of AZ31 alloy sheet and strain rate on warm sheet metal forming. J Mater Process Technol 201(1–3):431–435CrossRef
39.
Zurück zum Zitat Palumbo G, Sorgente D, Tricarico L (2010) A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test. Mater Des 31:1308–1316CrossRef Palumbo G, Sorgente D, Tricarico L (2010) A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test. Mater Des 31:1308–1316CrossRef
40.
Zurück zum Zitat Wilson DV, Mirshams AR, Roberts WT (1983) An experimental study of the effect of sheet thickness and grain size on limit-strains in biaxial stretching. Int J Mech Sci 25(12):859–870CrossRef Wilson DV, Mirshams AR, Roberts WT (1983) An experimental study of the effect of sheet thickness and grain size on limit-strains in biaxial stretching. Int J Mech Sci 25(12):859–870CrossRef
41.
Zurück zum Zitat Stachowicz F (1989) Effects of microstructure on the mechanical properties and limit strains in uniaxial and biaxial stretching. J Mech Work Technol 19:305–317CrossRef Stachowicz F (1989) Effects of microstructure on the mechanical properties and limit strains in uniaxial and biaxial stretching. J Mech Work Technol 19:305–317CrossRef
42.
Zurück zum Zitat Narayanasamy R, SathiyaNarayanan C (2008) Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Mater Des 29(7):1467–1475CrossRef Narayanasamy R, SathiyaNarayanan C (2008) Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Mater Des 29(7):1467–1475CrossRef
43.
Zurück zum Zitat Kleemola HJ, Kumpulainen JO (1980) Factors influencing the forming limit diagram: part II—influence of sheet thickness. J Mech Work Technol 3(3–4):303–311CrossRef Kleemola HJ, Kumpulainen JO (1980) Factors influencing the forming limit diagram: part II—influence of sheet thickness. J Mech Work Technol 3(3–4):303–311CrossRef
44.
Zurück zum Zitat Zadpoor AA, Sinke J, Benedictus R (2009) The effects of thickness on the formability of 2000 and 7000 series high strength aluminum alloys. Key Eng Mater 410–411:459–466CrossRef Zadpoor AA, Sinke J, Benedictus R (2009) The effects of thickness on the formability of 2000 and 7000 series high strength aluminum alloys. Key Eng Mater 410–411:459–466CrossRef
45.
Zurück zum Zitat Marciniak Z, Kuczynski K (1967) Limit strains in the processes of stretch-forming sheet. Int J Mech Sci 9(9):609–620CrossRef Marciniak Z, Kuczynski K (1967) Limit strains in the processes of stretch-forming sheet. Int J Mech Sci 9(9):609–620CrossRef
46.
Zurück zum Zitat Zafar R, Lihui L, Rongjing Z, Shaohua W (2014) “Formability analysis of fiber metal laminates using rubber sheet and forming techniques”. Proc Int Bhurban Conf Appl Sci Technol (IBCAST) 44–47 Zafar R, Lihui L, Rongjing Z, Shaohua W (2014) “Formability analysis of fiber metal laminates using rubber sheet and forming techniques”. Proc Int Bhurban Conf Appl Sci Technol (IBCAST) 44–47
Metadaten
Titel
Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology
verfasst von
Rizwan Zafar
Lihui Lang
Rongjing Zhang
Publikationsdatum
16.11.2014
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 1/2016
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-014-1198-3

Weitere Artikel der Ausgabe 1/2016

International Journal of Material Forming 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.