Skip to main content

2019 | OriginalPaper | Buchkapitel

31. Experimental and Numerical Study of Velocity Profile of Air over an Aerofoil in a Free Wind Stream in Wind Tunnel

verfasst von : Pringale Kumar Das, Sombuddha Bagchi, Soham Mondal, Pranibesh Mandal

Erschienen in: Advances in Materials, Mechanical and Industrial Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aerofoils have been used comprehensively in the research and development of aerodynamic equipment and machineries. Implementation of computational fluid dynamics (CFD) for study of aerofoils for numerous conditions has been on the rise. Despite the reduction in cost and efforts, the simulation data still differ considerably from the real-life data as a result of several assumptions taken in numerical simulations. Henceforth, validation against experimental data is of utmost importance. Furthermore, determination of numerical and experimental data for new aerofoil sections has been a necessity as the use of such sections may enhance the aerodynamic properties of various vehicles and instruments. In this paper, a numerical simulation has been performed to obtain the velocity profile for a non-standard aerofoil over five angles-of-attack (AoAs) including negative ones which have been validated against the data obtained from wind tunnel experimentation for conditions compatible with the simulation. The contemporary results obtained show commendable convergence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ethridge, M.I., Cutbirth, J.M., Bogard, D.G.: Scaling of performance for varying density ratio coolants on an airfoil with strong curvature and pressure gradient effects. In: ASME Turbo Expo 2000: Power for Land, Sea, and Air, vol. 3, p. V003T01A047 (2000) Ethridge, M.I., Cutbirth, J.M., Bogard, D.G.: Scaling of performance for varying density ratio coolants on an airfoil with strong curvature and pressure gradient effects. In: ASME Turbo Expo 2000: Power for Land, Sea, and Air, vol. 3, p. V003T01A047 (2000)
2.
Zurück zum Zitat Addy, H., Broeren, A., Zoeckler, J., Lee, S.: A wind tunnel study of icing effects on a business jet airfoil. In: 41st Aerospace Sciences Meeting and Exhibit, p. 727 (2003) Addy, H., Broeren, A., Zoeckler, J., Lee, S.: A wind tunnel study of icing effects on a business jet airfoil. In: 41st Aerospace Sciences Meeting and Exhibit, p. 727 (2003)
3.
Zurück zum Zitat Dassen, T., Parchen, R., Bruggeman, J., Hagg, F.: Results of a wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges. In: Procedure of the European Union Wind Energy Conference and Exhibition, No. NLR TP 96350, pp. 5–8 (1996) Dassen, T., Parchen, R., Bruggeman, J., Hagg, F.: Results of a wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges. In: Procedure of the European Union Wind Energy Conference and Exhibition, No. NLR TP 96350, pp. 5–8 (1996)
4.
Zurück zum Zitat Selig, M.S., Maughmer, M.D., Somers, D.M.: Natural-laminar-flow airfoil for general-aviation applications. J. Aircr. 32(4), 710–715 (1995)CrossRef Selig, M.S., Maughmer, M.D., Somers, D.M.: Natural-laminar-flow airfoil for general-aviation applications. J. Aircr. 32(4), 710–715 (1995)CrossRef
5.
Zurück zum Zitat Mojola, O.O.: Aerodynamic design of the Savonius windmill rotor. J. Wind Eng. Ind. Aerodyn. 21(2), 223–231 (1985)CrossRef Mojola, O.O.: Aerodynamic design of the Savonius windmill rotor. J. Wind Eng. Ind. Aerodyn. 21(2), 223–231 (1985)CrossRef
6.
Zurück zum Zitat Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA Technical Report 460, No. NACA-TR-460, PB-177874, pp. 3–58 (1933) Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA Technical Report 460, No. NACA-TR-460, PB-177874, pp. 3–58 (1933)
7.
Zurück zum Zitat Liebeck, R.H.: Design of subsonic airfoils for high lift. J. Aircr. 15(9), 547–561 (1978)CrossRef Liebeck, R.H.: Design of subsonic airfoils for high lift. J. Aircr. 15(9), 547–561 (1978)CrossRef
8.
Zurück zum Zitat Englar, R.L.L.: Circulation control for high lift and drag generation on STOL aircraft. J. Aircr. 12(5), 457–463 (1975)CrossRef Englar, R.L.L.: Circulation control for high lift and drag generation on STOL aircraft. J. Aircr. 12(5), 457–463 (1975)CrossRef
9.
Zurück zum Zitat Maybury, W.J., Rayner, J.M.V., Couldrick, L.B.: Lift generation by the avian tail. Proc. Roy. Soc. Lond. B Biol. Sci. 268(1475), 1443–1448 (2001)CrossRef Maybury, W.J., Rayner, J.M.V., Couldrick, L.B.: Lift generation by the avian tail. Proc. Roy. Soc. Lond. B Biol. Sci. 268(1475), 1443–1448 (2001)CrossRef
10.
Zurück zum Zitat Sturm, H., Dumstorff, G., Busche, P., Westermann, D., Lang, W.: Boundary layer separation and reattachment detection on airfoils by thermal flow sensors. Sensors 12(11), 14292–14306 (2012)CrossRef Sturm, H., Dumstorff, G., Busche, P., Westermann, D., Lang, W.: Boundary layer separation and reattachment detection on airfoils by thermal flow sensors. Sensors 12(11), 14292–14306 (2012)CrossRef
11.
Zurück zum Zitat Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90(6), 689–707 (2002)CrossRef Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90(6), 689–707 (2002)CrossRef
12.
Zurück zum Zitat Selig, M.S., McGranahan, B.D.: Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. J. Sol. Energy Eng. 126(4), 986–1001 (2004)CrossRef Selig, M.S., McGranahan, B.D.: Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. J. Sol. Energy Eng. 126(4), 986–1001 (2004)CrossRef
13.
Zurück zum Zitat McCroskey, W.J., McAlister, K.W., Carr, L.W., Pucci, S.L.: An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, vol. 1. Summary of the Experiment. National Aeronautics and Space Administration Moffett Field Ca Ames Research Center, No. NASA-A-8924-VOL-1, pp. 1–93 (1982) McCroskey, W.J., McAlister, K.W., Carr, L.W., Pucci, S.L.: An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, vol. 1. Summary of the Experiment. National Aeronautics and Space Administration Moffett Field Ca Ames Research Center, No. NASA-A-8924-VOL-1, pp. 1–93 (1982)
14.
Zurück zum Zitat Das, P.K., Mondal, S., Bagchi, S., Mandal, P.: Experimental study of velocity profile of air over an aerofoil in a free wind stream in wind tunnel. In: Proceedings of First International Conference on Mechanical Engineering (INCOM 2018), Department of Mechanical Engineering, pp. 329–332 (2018) Das, P.K., Mondal, S., Bagchi, S., Mandal, P.: Experimental study of velocity profile of air over an aerofoil in a free wind stream in wind tunnel. In: Proceedings of First International Conference on Mechanical Engineering (INCOM 2018), Department of Mechanical Engineering, pp. 329–332 (2018)
15.
Zurück zum Zitat Roberts, W.B.: Calculation of laminar separation bubbles and their effect on airfoil performance. AIAA J. 18(1), 25–31 (1980)CrossRef Roberts, W.B.: Calculation of laminar separation bubbles and their effect on airfoil performance. AIAA J. 18(1), 25–31 (1980)CrossRef
16.
Zurück zum Zitat Timmer, W.A., Van Rooij, R.P.J.O.M.: Summary of the Delft University wind turbine dedicated airfoils. J. Sol. Energy Eng. 125(4), 488–496 (2003)CrossRef Timmer, W.A., Van Rooij, R.P.J.O.M.: Summary of the Delft University wind turbine dedicated airfoils. J. Sol. Energy Eng. 125(4), 488–496 (2003)CrossRef
17.
Zurück zum Zitat Blackwell Jr., J.A.: Preliminary study of effects of Reynolds number and boundary-layer transition location on shock-induced separation. Langley Research Center Langley Station, Hampton, National Aeronautics and Space Administration, Washington, D.C., Nasa Technical Note NASA TN D-5003, pp. 1–25 (1969) Blackwell Jr., J.A.: Preliminary study of effects of Reynolds number and boundary-layer transition location on shock-induced separation. Langley Research Center Langley Station, Hampton, National Aeronautics and Space Administration, Washington, D.C., Nasa Technical Note NASA TN D-5003, pp. 1–25 (1969)
18.
Zurück zum Zitat Li, Y., Wang, J., Zhang, P.: Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul. Combust. 68(1), 27 (2002)CrossRef Li, Y., Wang, J., Zhang, P.: Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul. Combust. 68(1), 27 (2002)CrossRef
19.
Zurück zum Zitat Migliore, P., Oerlemans, S.: Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines. J. Sol. Energy Eng. 126(4), 974–985 (2004)CrossRef Migliore, P., Oerlemans, S.: Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines. J. Sol. Energy Eng. 126(4), 974–985 (2004)CrossRef
20.
Zurück zum Zitat Alford Jr., W.J., Henderson, W.P., Luoma, A.A.: Wind-tunnel studies at subsonic and transonic speeds of a multiple-mission variable-wing-sweep airplane configuration. Technical Memorandum X-206, pp. 1–73 (1959) Alford Jr., W.J., Henderson, W.P., Luoma, A.A.: Wind-tunnel studies at subsonic and transonic speeds of a multiple-mission variable-wing-sweep airplane configuration. Technical Memorandum X-206, pp. 1–73 (1959)
21.
Zurück zum Zitat Jasinski, W.J., Selig, M.S.: Experimental study of open-wheel race-car front wings. SAE Technical Paper Series, Motorsports Engineering Conference Proceedings, vol. 1, No. 983042 (1998) Jasinski, W.J., Selig, M.S.: Experimental study of open-wheel race-car front wings. SAE Technical Paper Series, Motorsports Engineering Conference Proceedings, vol. 1, No. 983042 (1998)
22.
Zurück zum Zitat Patel, T.B., Patel, S.T., Patel, D.T., Bhensdadiya, M.: An analysis of lift and drag forces of NACA airfoils using python. Int. J. Appl. Innovation Eng. Manage. 4(4), 198–205 (2015) Patel, T.B., Patel, S.T., Patel, D.T., Bhensdadiya, M.: An analysis of lift and drag forces of NACA airfoils using python. Int. J. Appl. Innovation Eng. Manage. 4(4), 198–205 (2015)
23.
Zurück zum Zitat Patel, K.S., Patel, S.B., Patel, U.B., Ahuja, A.P.: CFD analysis of an aerofoil. Int. J. Eng. Res. 3(3), 154–158 (2014)CrossRef Patel, K.S., Patel, S.B., Patel, U.B., Ahuja, A.P.: CFD analysis of an aerofoil. Int. J. Eng. Res. 3(3), 154–158 (2014)CrossRef
24.
Zurück zum Zitat Gunel, O., Koc, E., Yavuz, T.: Comparison of CFD and Xfoil airfoil analyses for low Reynolds number. Int. J. Energy Appl. Technol. 3(2), 83–86 (2016) Gunel, O., Koc, E., Yavuz, T.: Comparison of CFD and Xfoil airfoil analyses for low Reynolds number. Int. J. Energy Appl. Technol. 3(2), 83–86 (2016)
25.
Zurück zum Zitat McCroskey W. J.: A critical assessment of wind tunnel results for the NACA 0012 airfoil. Technical Memo National Aeronautics and Space Administration Moffett Field Ca Ames Research Center, No. ADA193182 (1987) McCroskey W. J.: A critical assessment of wind tunnel results for the NACA 0012 airfoil. Technical Memo National Aeronautics and Space Administration Moffett Field Ca Ames Research Center, No. ADA193182 (1987)
26.
Zurück zum Zitat Rubel, R.I., Uddin, K., Islam, Z., Rokunuzzaman, M.D.: Numerical and experimental investigation of aerodynamics characteristics of NACA 0015 aerofoil. Int. J. Eng. Technol. 2(4), 132–141 (2016) Rubel, R.I., Uddin, K., Islam, Z., Rokunuzzaman, M.D.: Numerical and experimental investigation of aerodynamics characteristics of NACA 0015 aerofoil. Int. J. Eng. Technol. 2(4), 132–141 (2016)
27.
Zurück zum Zitat Conner, M.D., Tang, D.M., Dowell, E.H., Virgin, L.N.: Non-linear behaviour of a typical airfoil section with control surface freeplay: a numerical and experimental study. J. Fluids Struct. 11(1), 89–109 (1997)CrossRef Conner, M.D., Tang, D.M., Dowell, E.H., Virgin, L.N.: Non-linear behaviour of a typical airfoil section with control surface freeplay: a numerical and experimental study. J. Fluids Struct. 11(1), 89–109 (1997)CrossRef
28.
Zurück zum Zitat Cummings, R.M., Morton, S.A., Siegel, S.G.: Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle. Aerosp. Sci. Technol. 12(5), 355–364 (2008)CrossRef Cummings, R.M., Morton, S.A., Siegel, S.G.: Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle. Aerosp. Sci. Technol. 12(5), 355–364 (2008)CrossRef
29.
Zurück zum Zitat Murphy, J.T., Hu, H.: An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications. Exp. Fluids 49(2), 531–546 (2010)CrossRef Murphy, J.T., Hu, H.: An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications. Exp. Fluids 49(2), 531–546 (2010)CrossRef
30.
Zurück zum Zitat Panigrahi, D.C., Mishra, D.P.: CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans. J. Sustain. Min. 13(1), 15–21 (2014)CrossRef Panigrahi, D.C., Mishra, D.P.: CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans. J. Sustain. Min. 13(1), 15–21 (2014)CrossRef
31.
Zurück zum Zitat Wordley, S., Saunders, J.: Aerodynamics for formula SAE: a numerical, wind tunnel and on-track study. SAE Technical Paper Series, Vehicle Aerodynamics, No. 2006-01-0808 (2006) Wordley, S., Saunders, J.: Aerodynamics for formula SAE: a numerical, wind tunnel and on-track study. SAE Technical Paper Series, Vehicle Aerodynamics, No. 2006-01-0808 (2006)
32.
Zurück zum Zitat Troolin, D.R., Longmire, E.K., Lai, W.T.: Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp. Fluids 41(2), 241–254 (2006)CrossRef Troolin, D.R., Longmire, E.K., Lai, W.T.: Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp. Fluids 41(2), 241–254 (2006)CrossRef
33.
Zurück zum Zitat Sheldahl, R.E., Klimas, P.C.: Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle-of-Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. United States Department of Energy, Sandia National Labs, Albuquerque, NM (USA), No. SAND-80-2114, pp. 3–111 (1981) Sheldahl, R.E., Klimas, P.C.: Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle-of-Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. United States Department of Energy, Sandia National Labs, Albuquerque, NM (USA), No. SAND-80-2114, pp. 3–111 (1981)
34.
Zurück zum Zitat McCroskey, W.J., Carr, L.W., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14(1), 57–63 (1976)CrossRef McCroskey, W.J., Carr, L.W., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14(1), 57–63 (1976)CrossRef
35.
Zurück zum Zitat Mohamed, M.H.: Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy AIAA J. 47(1), 522–530 (2012)CrossRef Mohamed, M.H.: Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy AIAA J. 47(1), 522–530 (2012)CrossRef
36.
Zurück zum Zitat Amitay, M., Smith, D.R., Kibens, V., Parekh, D.E., Glezer, A.: Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39(3), 361–370 (2001)CrossRef Amitay, M., Smith, D.R., Kibens, V., Parekh, D.E., Glezer, A.: Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39(3), 361–370 (2001)CrossRef
37.
Zurück zum Zitat Ranzenbach, R., Barlow, J.: Cambered airfoil in ground effect-an experimental and computational study. SAE Technical Paper Series, Vehicle Aerodynamics: Wind Tunnels, CFD, Aeroacoustics and Ground Transportation systems, No. 960909 (1996) Ranzenbach, R., Barlow, J.: Cambered airfoil in ground effect-an experimental and computational study. SAE Technical Paper Series, Vehicle Aerodynamics: Wind Tunnels, CFD, Aeroacoustics and Ground Transportation systems, No. 960909 (1996)
38.
Zurück zum Zitat Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill Series in Aeronautical And Aerospace Engineering (2001) Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill Series in Aeronautical And Aerospace Engineering (2001)
Metadaten
Titel
Experimental and Numerical Study of Velocity Profile of Air over an Aerofoil in a Free Wind Stream in Wind Tunnel
verfasst von
Pringale Kumar Das
Sombuddha Bagchi
Soham Mondal
Pranibesh Mandal
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-96968-8_31

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.