Skip to main content

2015 | OriginalPaper | Buchkapitel

Experimental Studies on TGM and BM Dominated Curvilinear Laser Bending of Aluminum Alloy Sheets

verfasst von : Ravi Kant, Parag M. Bhuyan, S. N. Joshi

Erschienen in: Lasers Based Manufacturing

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During Laser bending process, the worksheet bends by means of thermal stresses induced by the laser beam irradiation. It can be achieved by various mechanisms viz. temperature gradient mechanism (TGM), buckling mechanism (BM) and upsetting mechanism (UM). The interactive effect of process parameters viz. laser power, scanning speed, beam diameter and absorption coefficient decide the occurrence of bending mechanism during a laser bending operation. Literature reports experimental as well numerical studies on the effect of process parameters viz. laser power, scan speed, beam diameter on the process mechanism and process performance. However, a very few attempts have been made on the study of shape of laser irradiation path on the quality and productivity of laser bending operation. Curvilinear laser bending is generally used to produce complex shapes using lasers. In this chapter an experimental study on the curvilinear laser bending of aluminum sheets for TGM and BM mechanisms has been presented. Initially the basic principle of the laser bending process and TGM and BM are discussed. Then the experimental procedure, plans are presented. The results are discussed in terms of the effect of laser power and scan speed on the bend angle and edge effect during parabolic irradiation. The experiments are carried out for both thick as well as thin worksheets. It was found that, in thin sheets, the scanning path curvature does not have significant effect on the bend angle however, in thick sheets the bend angle increases with decrease in scanning path curvature. The deformation behavior of curvilinear laser bending was found to be different from that of straight line laser bending process. The presented results may be used as guidelines to generate complex shapes in aluminum and its alloys using lasers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bao, J., & Yao, Y. (2001). Analysis and prediction of edge effects in laser bending. Journal of Manufacturing Science and Engineering, 123, 53–61.CrossRef Bao, J., & Yao, Y. (2001). Analysis and prediction of edge effects in laser bending. Journal of Manufacturing Science and Engineering, 123, 53–61.CrossRef
Zurück zum Zitat Casamichele, L., Quadrini, F., & Tagliaferri, V. (2007). Process-efficiency prediction in high power diode laser forming. Journal of Manufacturing Science and Engineering, 129, 868–873.CrossRef Casamichele, L., Quadrini, F., & Tagliaferri, V. (2007). Process-efficiency prediction in high power diode laser forming. Journal of Manufacturing Science and Engineering, 129, 868–873.CrossRef
Zurück zum Zitat Chen, D., Wu, S., & Li, M. (2004). Deformation behaviours of laser curve bending of sheet metals. Journal of Materials Processing Technology, 148, 30–34.CrossRef Chen, D., Wu, S., & Li, M. (2004). Deformation behaviours of laser curve bending of sheet metals. Journal of Materials Processing Technology, 148, 30–34.CrossRef
Zurück zum Zitat Chen, G., & Xu, X. (2001). Experimental and 3D finite element studies of CW laser forming of thin stainless steel sheets. Journal of Manufacturing Science and Engineering, 123, 66–73.CrossRef Chen, G., & Xu, X. (2001). Experimental and 3D finite element studies of CW laser forming of thin stainless steel sheets. Journal of Manufacturing Science and Engineering, 123, 66–73.CrossRef
Zurück zum Zitat Cheng, J., & Yao, Y. (2001). Cooling effects in multiscan laser forming. Journal of Manufacturing Processes, 3, 60–72.CrossRef Cheng, J., & Yao, Y. (2001). Cooling effects in multiscan laser forming. Journal of Manufacturing Processes, 3, 60–72.CrossRef
Zurück zum Zitat Geiger, M., Merklein, M., & Pitz, M. (2004). Laser and forming technology—an idea and the way of implementation. Journal of Materials Processing Technology, 151, 3–11.CrossRef Geiger, M., Merklein, M., & Pitz, M. (2004). Laser and forming technology—an idea and the way of implementation. Journal of Materials Processing Technology, 151, 3–11.CrossRef
Zurück zum Zitat Hennige, T. (2000). Development of irradiation strategies for 3D-laser forming. Journal of Materials Processing Technology, 103, 102–108.CrossRef Hennige, T. (2000). Development of irradiation strategies for 3D-laser forming. Journal of Materials Processing Technology, 103, 102–108.CrossRef
Zurück zum Zitat Hu, Z., Kovacevic, R., & Labudovic, M. (2002). Experimental and numerical modeling of buckling instability of laser sheet forming. International Journal of Machine Tools and Manufacture, 42, 1427–1439.CrossRef Hu, Z., Kovacevic, R., & Labudovic, M. (2002). Experimental and numerical modeling of buckling instability of laser sheet forming. International Journal of Machine Tools and Manufacture, 42, 1427–1439.CrossRef
Zurück zum Zitat Hu, J., Xu, H., & Dang, D. (2013). Modeling and reducing edge effects in laser bending. Journal of Materials Processing Technology, 213, 1989–1996.CrossRef Hu, J., Xu, H., & Dang, D. (2013). Modeling and reducing edge effects in laser bending. Journal of Materials Processing Technology, 213, 1989–1996.CrossRef
Zurück zum Zitat Jain, V. K. (Ed.). (2012). Micromanufacturing processes (pp. 283–303). CRC Press, Boca Raton. Jain, V. K. (Ed.). (2012). Micromanufacturing processes (pp. 283–303). CRC Press, Boca Raton.
Zurück zum Zitat Jamil, M., Sheikh, M., & Li, L. (2011). A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism. Optics & Laser Technology, 43, 183–193.CrossRef Jamil, M., Sheikh, M., & Li, L. (2011). A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism. Optics & Laser Technology, 43, 183–193.CrossRef
Zurück zum Zitat Kannatey-Asibu, E. (2009). Principles of laser materials processing. Hoboken, New Jersey: Wiley.CrossRef Kannatey-Asibu, E. (2009). Principles of laser materials processing. Hoboken, New Jersey: Wiley.CrossRef
Zurück zum Zitat Kant, R., & Joshi, S. N. (2013). Finite element simulation of laser assisted bending with moving mechanical load. International Journal of Mechatronics and Manufacturing Systems, 6, 351–366.CrossRef Kant, R., & Joshi, S. N. (2013). Finite element simulation of laser assisted bending with moving mechanical load. International Journal of Mechatronics and Manufacturing Systems, 6, 351–366.CrossRef
Zurück zum Zitat Kant, R., & Joshi, S. N. (2014). Numerical modeling and experimental validation of curvilinear laser bending of magnesium alloy sheets. Proceedings of The Institute of Mechanical Engineering Part B: Journal of Engineering Manufacture, 228, 1036–1047.CrossRef Kant, R., & Joshi, S. N. (2014). Numerical modeling and experimental validation of curvilinear laser bending of magnesium alloy sheets. Proceedings of The Institute of Mechanical Engineering Part B: Journal of Engineering Manufacture, 228, 1036–1047.CrossRef
Zurück zum Zitat Lawrence, J., Schmidt, M. J. J., & Li, L. (2001). The forming of mild steel plates with a 2.5 kW high power diode laser. International Journal of Machine Tools and Manufacture, 41, 967–977.CrossRef Lawrence, J., Schmidt, M. J. J., & Li, L. (2001). The forming of mild steel plates with a 2.5 kW high power diode laser. International Journal of Machine Tools and Manufacture, 41, 967–977.CrossRef
Zurück zum Zitat Li, W., & Yao, Y. (2000). Numerical and experimental study of strain rate effects in laser forming. Journal of Manufacturing Science and Engineering, 122, 445–451.CrossRef Li, W., & Yao, Y. (2000). Numerical and experimental study of strain rate effects in laser forming. Journal of Manufacturing Science and Engineering, 122, 445–451.CrossRef
Zurück zum Zitat Li, W., & Yao, Y. (2001). Numerical and experimental investigation of convex laser forming process. Journal of Manufacturing Processes, 3, 73–81.CrossRef Li, W., & Yao, Y. (2001). Numerical and experimental investigation of convex laser forming process. Journal of Manufacturing Processes, 3, 73–81.CrossRef
Zurück zum Zitat Ocana, J., Morales, M., Molpeceres, C., Garcia, O., Porro, J., & Garcia-Ballesteros, J. (2007). Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Applied Surface Science, 254, 997–1001.CrossRef Ocana, J., Morales, M., Molpeceres, C., Garcia, O., Porro, J., & Garcia-Ballesteros, J. (2007). Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Applied Surface Science, 254, 997–1001.CrossRef
Zurück zum Zitat Shen, H., Hu, J., & Yao, Z. (2010). Analysis and control of edge effects in laser bending. Optics and Lasers in Engineering, 48, 305–315.CrossRef Shen, H., Hu, J., & Yao, Z. (2010). Analysis and control of edge effects in laser bending. Optics and Lasers in Engineering, 48, 305–315.CrossRef
Zurück zum Zitat Shen, H., & Vollertsen, F. (2009). Modelling of laser forming—an review. Computational Materials Science, 46, 834–840.CrossRef Shen, H., & Vollertsen, F. (2009). Modelling of laser forming—an review. Computational Materials Science, 46, 834–840.CrossRef
Zurück zum Zitat Shi, Y., Liu, Y., Yao, Z., & Shen, H. (2008). A study on bending direction of sheet metal in laser forming. Journal of Applied Physics, 103, 053101.CrossRef Shi, Y., Liu, Y., Yao, Z., & Shen, H. (2008). A study on bending direction of sheet metal in laser forming. Journal of Applied Physics, 103, 053101.CrossRef
Zurück zum Zitat Shi, Y., Liu, Y., Yi, P., & Hu, J. (2012). Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming. Optics & Laser Technology, 44, 486–491.CrossRef Shi, Y., Liu, Y., Yi, P., & Hu, J. (2012). Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming. Optics & Laser Technology, 44, 486–491.CrossRef
Zurück zum Zitat Shi, Y., Yao, Z., Shen, H., & Hu, J. (2006). Research on the mechanisms of laser forming for the metal plate. International Journal of Machine Tools and Manufacture, 46, 1689–1697.CrossRef Shi, Y., Yao, Z., Shen, H., & Hu, J. (2006). Research on the mechanisms of laser forming for the metal plate. International Journal of Machine Tools and Manufacture, 46, 1689–1697.CrossRef
Zurück zum Zitat Singh, K. (2013). Effect of lime coating on laser bending process. M.Tech. thesis, IIT Guwahati. Singh, K. (2013). Effect of lime coating on laser bending process. M.Tech. thesis, IIT Guwahati.
Zurück zum Zitat Venkadeshwaran, K., Das, S., & Misra, D. (2010). Finite element simulation of 3-D laser forming by discrete section circle line heating. International Journal of Engineering Science and Technology, 2, 163–175.CrossRef Venkadeshwaran, K., Das, S., & Misra, D. (2010). Finite element simulation of 3-D laser forming by discrete section circle line heating. International Journal of Engineering Science and Technology, 2, 163–175.CrossRef
Zurück zum Zitat Walczyk, D., & Vittal, S. (2000). Bending of titanium sheet using laser forming. Journal of Manufacturing Processes, 2, 258–269.CrossRef Walczyk, D., & Vittal, S. (2000). Bending of titanium sheet using laser forming. Journal of Manufacturing Processes, 2, 258–269.CrossRef
Zurück zum Zitat Wu, D., Zhang, Q., Ma, G., Guo, Y., & Guo, D. (2010). Laser bending of brittle materials. Optics and Lasers in Engineering, 48, 405–410.CrossRef Wu, D., Zhang, Q., Ma, G., Guo, Y., & Guo, D. (2010). Laser bending of brittle materials. Optics and Lasers in Engineering, 48, 405–410.CrossRef
Zurück zum Zitat Yanjin, G., Sheng, S., Guoqun, Z., & Yiguo, L. (2003). Finite element modeling of laser bending of pre-loaded sheet metals. Journal of Materials Processing Technology, 142, 400–407.CrossRef Yanjin, G., Sheng, S., Guoqun, Z., & Yiguo, L. (2003). Finite element modeling of laser bending of pre-loaded sheet metals. Journal of Materials Processing Technology, 142, 400–407.CrossRef
Zurück zum Zitat Zahrani, E. G., & Marasi, A. (2013). Experimental investigation of edge effect and longitudinal distortion in laser bending process. Optics & Laser Technology, 45, 301–307.CrossRef Zahrani, E. G., & Marasi, A. (2013). Experimental investigation of edge effect and longitudinal distortion in laser bending process. Optics & Laser Technology, 45, 301–307.CrossRef
Zurück zum Zitat Zhang, P., Guo, B., Shan, D., & Ji, Z. (2007). FE simulation of laser curve bending of sheet metals. Journal of Materials Processing Technology, 184, 157–162.CrossRef Zhang, P., Guo, B., Shan, D., & Ji, Z. (2007). FE simulation of laser curve bending of sheet metals. Journal of Materials Processing Technology, 184, 157–162.CrossRef
Metadaten
Titel
Experimental Studies on TGM and BM Dominated Curvilinear Laser Bending of Aluminum Alloy Sheets
verfasst von
Ravi Kant
Parag M. Bhuyan
S. N. Joshi
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2352-8_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.