Skip to main content
Erschienen in: Environmental Earth Sciences 12/2017

01.06.2017 | Original Article

Experimental study of conservative solute transport in heterogeneous aquifers

verfasst von: Pingping Zhao, Xu Zhang, Chengxing Sun, Jun Wu, Yanqing Wu

Erschienen in: Environmental Earth Sciences | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aquifer heterogeneity affects the characteristics of solute breakthrough curves (BTCs). A better understanding of the relationship between aquifer heterogeneity and BTCs will help improve prediction of the fate of contaminants in an aquifer. Previous studies have shown that systematic research of aquifer heterogeneity on solute transport is limited. Therefore, this study investigates the impacts of aquifer heterogeneity on conservative solute BTCs and transport mechanism via experimental and modeling approaches. Tracer experiments are conducted in four flow-through columns exhibiting different patterns of heterogeneities. Furthermore, this study also examines the influence of hydraulic conductivity on transport mechanism. In addition, this paper analyses the correlation between hydraulic conductivity and dispersivity, which are the key parameters of conservative solute transport in an aquifer. Experimental data indicates the impacts of aquifer heterogeneity on transport of tracer. Tracer BTCs in a homogeneous aquifer have the typical sigmoid shape without tailing. In a heterogeneous aquifer, tracer BTCs display a strong and persistent tailing. In a preferential flow aquifer, tracer BTCs have pronounced tailing and early arrival time. The hydraulic conductivity of an aquifer significantly affects the transport mechanism of tracer. When the hydraulic conductivity is higher than 1.53 cm/min, transport of tracer is applicable to the ADE. When the hydraulic conductivity is lower than 1.53 cm/min, transport of tracer is applicable to the TRM. This work offers insight into the correlation between the hydraulic conductivity of an aquifer and the dispersivity of a conservative solute. A critical finding is that hydraulic conductivity K and dispersivity \(\lambda\) correspond to an exponential regression form \(\lambda = e^{{ - 0.24555 - 4.54413K + 2.27308K^{2} }}\) (R 2 = 0.957).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bear J (1972) Dynamic of fluids in porous media. Dover Publications, New York Bear J (1972) Dynamic of fluids in porous media. Dover Publications, New York
Zurück zum Zitat Berkowitz B, Klafter J, Metzler R, Scher H (2002) Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk, and fractional derivative formulations. Water Resour Res 38(10):1191. doi:10.1029/2001WR001030 CrossRef Berkowitz B, Klafter J, Metzler R, Scher H (2002) Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk, and fractional derivative formulations. Water Resour Res 38(10):1191. doi:10.​1029/​2001WR001030 CrossRef
Zurück zum Zitat Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44. doi:10.1029/2005RG000178 Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44. doi:10.​1029/​2005RG000178
Zurück zum Zitat Bradford SA, Torkzaban S (2008) Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J 7:667–681CrossRef Bradford SA, Torkzaban S (2008) Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J 7:667–681CrossRef
Zurück zum Zitat Brusseau ML, Rao PSC (1990) Modeling solute transport in structured soils: a review. Geoderma 46:169–192CrossRef Brusseau ML, Rao PSC (1990) Modeling solute transport in structured soils: a review. Geoderma 46:169–192CrossRef
Zurück zum Zitat Chotpantarat S, Ong SK, Sutthirat C, Osathaphan K (2012) Competitive modeling of sorption and transport of Pb2+, Ni2+, Mn2+ and Zn2+ under binary and multi-metal systems in lateritic soil columns. Geoderma 189:278–287CrossRef Chotpantarat S, Ong SK, Sutthirat C, Osathaphan K (2012) Competitive modeling of sorption and transport of Pb2+, Ni2+, Mn2+ and Zn2+ under binary and multi-metal systems in lateritic soil columns. Geoderma 189:278–287CrossRef
Zurück zum Zitat Comegna V, Coppola A, Sommella A (1999) Nonreactive solute transport in variously structured soil materials as determined by laboratory-based time domain reflectometry (TDR). Geoderma 92:167–184CrossRef Comegna V, Coppola A, Sommella A (1999) Nonreactive solute transport in variously structured soil materials as determined by laboratory-based time domain reflectometry (TDR). Geoderma 92:167–184CrossRef
Zurück zum Zitat Cortis A, Harter T, Hou L, Atwill ER, Packman AI, Green PG (2006) Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42:W12S13 Cortis A, Harter T, Hou L, Atwill ER, Packman AI, Green PG (2006) Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42:W12S13
Zurück zum Zitat D’Alessio M, Vasudevan D, Lichwa J, Mohanty SK, Ray C (2014) Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores. J Contam Hydrol 166:1–10CrossRef D’Alessio M, Vasudevan D, Lichwa J, Mohanty SK, Ray C (2014) Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores. J Contam Hydrol 166:1–10CrossRef
Zurück zum Zitat Dousset S, Thevenot M, Pot V, Simunek J, Andreux F (2007) Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. J Contam Hydrol 94:261–276CrossRef Dousset S, Thevenot M, Pot V, Simunek J, Andreux F (2007) Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. J Contam Hydrol 94:261–276CrossRef
Zurück zum Zitat Gamerdinger AP, Kaplan DI (2000) Application of a continuous-flow centrifugation method for solute transport in disturbed, unsaturated sediments and illustration of mobile-immobile water. Water Resour Res 36:1747–1755CrossRef Gamerdinger AP, Kaplan DI (2000) Application of a continuous-flow centrifugation method for solute transport in disturbed, unsaturated sediments and illustration of mobile-immobile water. Water Resour Res 36:1747–1755CrossRef
Zurück zum Zitat Gao GY, Fu BJ, Zhan HB, Ma Y (2013) Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions. Water Res 47:2507–2522CrossRef Gao GY, Fu BJ, Zhan HB, Ma Y (2013) Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions. Water Res 47:2507–2522CrossRef
Zurück zum Zitat Griffioen JW, Barry DA, Parlange JY (1998) Interpretation of two-region model parameters. Water Resour Res 34:373–384CrossRef Griffioen JW, Barry DA, Parlange JY (1998) Interpretation of two-region model parameters. Water Resour Res 34:373–384CrossRef
Zurück zum Zitat Haggerty R, Harvey CF, von Schwerin CF, Meigs LC (2004) What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour Res 40:W01510CrossRef Haggerty R, Harvey CF, von Schwerin CF, Meigs LC (2004) What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour Res 40:W01510CrossRef
Zurück zum Zitat Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW (1997) Particle transport in macropores of undisturbed soil columns. J Hydrol 196:185–203CrossRef Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW (1997) Particle transport in macropores of undisturbed soil columns. J Hydrol 196:185–203CrossRef
Zurück zum Zitat Jose SC, Cirpka OA (2004) Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ Sci Technol 38:2089–2096CrossRef Jose SC, Cirpka OA (2004) Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ Sci Technol 38:2089–2096CrossRef
Zurück zum Zitat Karup D, Moldrup P, Paradelo M, Katuwal S, Norgaard T, Greve MH, de Jonge LW (2016) Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. J Contam Hydrol 192:194–202CrossRef Karup D, Moldrup P, Paradelo M, Katuwal S, Norgaard T, Greve MH, de Jonge LW (2016) Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. J Contam Hydrol 192:194–202CrossRef
Zurück zum Zitat Katagi T (2013) Soil column leaching of pesticides. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 221. Springer, New York, pp 1–105. doi:10.1007/978-1-4614-4448-0_1 Katagi T (2013) Soil column leaching of pesticides. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 221. Springer, New York, pp 1–105. doi:10.​1007/​978-1-4614-4448-0_​1
Zurück zum Zitat Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute A (ed) Methods of soil analysis - part 1 - physical and mineralogical methods. American Society of Agronomy, Madison, pp 687–734 Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute A (ed) Methods of soil analysis - part 1 - physical and mineralogical methods. American Society of Agronomy, Madison, pp 687–734
Zurück zum Zitat Koestel JK, Moeys J, Jarvis NJ (2011) Evaluation of nonparametric shape measures for solute breakthrough curves. Vadose Zone J 10:1261–1275CrossRef Koestel JK, Moeys J, Jarvis NJ (2011) Evaluation of nonparametric shape measures for solute breakthrough curves. Vadose Zone J 10:1261–1275CrossRef
Zurück zum Zitat Kohne JM, Kohne S, Simunek J (2009) A review of model applications for structured soils: a) water flow and tracer transport. J Contam Hydrol 104:4–35CrossRef Kohne JM, Kohne S, Simunek J (2009) A review of model applications for structured soils: a) water flow and tracer transport. J Contam Hydrol 104:4–35CrossRef
Zurück zum Zitat Levy M, Berkowitz B (2003) Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 64:203–226CrossRef Levy M, Berkowitz B (2003) Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 64:203–226CrossRef
Zurück zum Zitat Lewis J, Sjostrom J (2010) Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J Contam Hydrol 115:1–13CrossRef Lewis J, Sjostrom J (2010) Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J Contam Hydrol 115:1–13CrossRef
Zurück zum Zitat McNeil JD, Oldenborger GA, Schincariol RA (2006) Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. J Contam Hydrol 84:36–54CrossRef McNeil JD, Oldenborger GA, Schincariol RA (2006) Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. J Contam Hydrol 84:36–54CrossRef
Zurück zum Zitat Miretzky P, Munoz C, Carrillo-Chavez A (2006) Experimental Zn(II) retention in a sandy loam soil by very small columns. Chemosphere 65:2082–2089CrossRef Miretzky P, Munoz C, Carrillo-Chavez A (2006) Experimental Zn(II) retention in a sandy loam soil by very small columns. Chemosphere 65:2082–2089CrossRef
Zurück zum Zitat Patil SB, Chore HS (2014) Contaminant transport through porous media: an overview of experimental and numerical studies. Adv Environ Res 3:45–69CrossRef Patil SB, Chore HS (2014) Contaminant transport through porous media: an overview of experimental and numerical studies. Adv Environ Res 3:45–69CrossRef
Zurück zum Zitat Reddy KR, Darnault CJG, Darko-Kagya K (2014) Transport of lactate-modified nanoscale iron particles in porous media. J Geotech Geoenviron Eng 140:04013013CrossRef Reddy KR, Darnault CJG, Darko-Kagya K (2014) Transport of lactate-modified nanoscale iron particles in porous media. J Geotech Geoenviron Eng 140:04013013CrossRef
Zurück zum Zitat Ren G-L, Izadi B, King B, Dowding E (1996) Preferential transport of bromide in undisturbed cores under different irrigation methods. Soil Sci 161:214–225CrossRef Ren G-L, Izadi B, King B, Dowding E (1996) Preferential transport of bromide in undisturbed cores under different irrigation methods. Soil Sci 161:214–225CrossRef
Zurück zum Zitat Rubin S, Dror I, Berkowitz B (2012) Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J Contam Hydrol 132:28–36CrossRef Rubin S, Dror I, Berkowitz B (2012) Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J Contam Hydrol 132:28–36CrossRef
Zurück zum Zitat Ruehle FA, Zentner N, Stumpp C (2015) Changes in water table level influence solute transport in uniform porous media. Hydrol Process 29:875–888CrossRef Ruehle FA, Zentner N, Stumpp C (2015) Changes in water table level influence solute transport in uniform porous media. Hydrol Process 29:875–888CrossRef
Zurück zum Zitat Saquing JM, Knappe DRU, Barlaz MA (2012) Fate and transport of phenol in a packed bed reactor containing simulated solid waste. Waste Manag 32:327–334CrossRef Saquing JM, Knappe DRU, Barlaz MA (2012) Fate and transport of phenol in a packed bed reactor containing simulated solid waste. Waste Manag 32:327–334CrossRef
Zurück zum Zitat Sassner M, Jensen KH, Destouni G (1994) Chloride migration in heterogeneous soil: 1. Experimental methodology and results. Water Resour Res 30:735–745CrossRef Sassner M, Jensen KH, Destouni G (1994) Chloride migration in heterogeneous soil: 1. Experimental methodology and results. Water Resour Res 30:735–745CrossRef
Zurück zum Zitat Seifert D, Engesgaard P (2007) Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media. J Contam Hydrol 93:58–71CrossRef Seifert D, Engesgaard P (2007) Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media. J Contam Hydrol 93:58–71CrossRef
Zurück zum Zitat Seyedabbasi MA, Newell CJ, Adamson DT, Sale TC (2012) Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. J Contam Hydrol 134:69–81CrossRef Seyedabbasi MA, Newell CJ, Adamson DT, Sale TC (2012) Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. J Contam Hydrol 134:69–81CrossRef
Zurück zum Zitat Simunek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7:782–797CrossRef Simunek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7:782–797CrossRef
Zurück zum Zitat Stagnitti F, Allinson G, Morita M, Nishikawa M, Il H, Hirata T (2000) Temporal moments analysis of preferential solute transport in soils. Environ Model Assess 5:229–236CrossRef Stagnitti F, Allinson G, Morita M, Nishikawa M, Il H, Hirata T (2000) Temporal moments analysis of preferential solute transport in soils. Environ Model Assess 5:229–236CrossRef
Zurück zum Zitat Totsche KU, Wilcke W, Korber M, Kobza J, Zech W (2000) Evaluation of fluoride-induced metal mobilization in soil columns. J Environ Qual 29:454–459CrossRef Totsche KU, Wilcke W, Korber M, Kobza J, Zech W (2000) Evaluation of fluoride-induced metal mobilization in soil columns. J Environ Qual 29:454–459CrossRef
Zurück zum Zitat Uyusur B, Li C, Baveye PC, Darnault CJG (2015) pH-dependent reactive transport of uranium(VI) in unsaturated sand. J Soils Sediments 15:634–647CrossRef Uyusur B, Li C, Baveye PC, Darnault CJG (2015) pH-dependent reactive transport of uranium(VI) in unsaturated sand. J Soils Sediments 15:634–647CrossRef
Zurück zum Zitat Veizaga EA, Rodriguez L, Ocampo CJ (2015) Water and chloride transport in a fine-textured soil in a feedlot pen. J Contam Hydrol 182:91–103CrossRef Veizaga EA, Rodriguez L, Ocampo CJ (2015) Water and chloride transport in a fine-textured soil in a feedlot pen. J Contam Hydrol 182:91–103CrossRef
Zurück zum Zitat Wierenga PJ (1989) Solute transport through small and large unsaturated soil columns a. Ground Water 27:35–42CrossRef Wierenga PJ (1989) Solute transport through small and large unsaturated soil columns a. Ground Water 27:35–42CrossRef
Zurück zum Zitat Woodman ND, Rees-White TC, Stringfellow AM, Beaven RP, Hudson AP (2015) Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste. Waste Manag 38:250–262CrossRef Woodman ND, Rees-White TC, Stringfellow AM, Beaven RP, Hudson AP (2015) Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste. Waste Manag 38:250–262CrossRef
Zurück zum Zitat Yang MJE, Annable MD, Jawitz JW (2015) Back diffusion from thin low permeability zones. Environ Sci Technol 49:415–422CrossRef Yang MJE, Annable MD, Jawitz JW (2015) Back diffusion from thin low permeability zones. Environ Sci Technol 49:415–422CrossRef
Zurück zum Zitat Yu Z, Dong W, Young MH, Li Y, Yang T (2014) On evaluating characteristics of the solute transport in the arid vadose zone. Groundwater 52:50–62CrossRef Yu Z, Dong W, Young MH, Li Y, Yang T (2014) On evaluating characteristics of the solute transport in the arid vadose zone. Groundwater 52:50–62CrossRef
Zurück zum Zitat Zhou B, Lv J, Wang Q (2015) Chloride transport in an aggregated clay soil column. J Hydrol Eng 20:04015032CrossRef Zhou B, Lv J, Wang Q (2015) Chloride transport in an aggregated clay soil column. J Hydrol Eng 20:04015032CrossRef
Metadaten
Titel
Experimental study of conservative solute transport in heterogeneous aquifers
verfasst von
Pingping Zhao
Xu Zhang
Chengxing Sun
Jun Wu
Yanqing Wu
Publikationsdatum
01.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 12/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6734-2

Weitere Artikel der Ausgabe 12/2017

Environmental Earth Sciences 12/2017 Zur Ausgabe