Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2019

17.10.2018

Explicit computational wave propagation in micro-heterogeneous media

verfasst von: Roland Maier, Daniel Peterseim

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Explicit time stepping schemes are popular for linear acoustic and elastic wave propagation due to their simple nature which does not require sophisticated solvers for the inversion of the stiffness matrices. However, explicit schemes are only stable if the time step size is bounded by the mesh size in space subject to the so-called CFL condition. In micro-heterogeneous media, this condition is typically prohibitively restrictive because spatial oscillations of the medium need to be resolved by the discretization in space. This paper presents a way to reduce the spatial complexity in such a setting and, hence, to enable a relaxation of the CFL condition. This is done using the Localized orthogonal decomposition method as a tool for numerical homogenization. A complete convergence analysis is presented with appropriate, weak regularity assumptions on the initial data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdulle, A., Grote, M.J.: Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011)MathSciNetCrossRefMATH Abdulle, A., Grote, M.J.: Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp. 86(304), 549–587 (2017)MathSciNetCrossRefMATH Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp. 86(304), 549–587 (2017)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Altmann, R., Chung, E., Maier, R., Peterseim, D., Pun, S.M.: Computational multiscale methods for linear heterogeneous poroelasticity. ArXiv e-prints 1801.00615 (2018) Altmann, R., Chung, E., Maier, R., Peterseim, D., Pun, S.M.: Computational multiscale methods for linear heterogeneous poroelasticity. ArXiv e-prints 1801.​00615 (2018)
4.
Zurück zum Zitat Arjmand, D., Runborg, O.: Analysis of heterogeneous multiscale methods for long time wave propagation problems. Multiscale Model. Simul. 12(3), 1135–1166 (2014)MathSciNetCrossRefMATH Arjmand, D., Runborg, O.: Analysis of heterogeneous multiscale methods for long time wave propagation problems. Multiscale Model. Simul. 12(3), 1135–1166 (2014)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180, 9–14 (1994)MathSciNetCrossRefMATH Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180, 9–14 (1994)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)MATH Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)MATH
7.
Zurück zum Zitat Brown, D., Gallistl, D.: Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints 1608.04243 (2016) Brown, D., Gallistl, D.: Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints 1608.​04243 (2016)
8.
Zurück zum Zitat Brown, D., Gallistl, D., Peterseim, D.: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree Methods for Partial Differential Equations VIII, Lecture Notes on Computer Science and Engineering, vol. 115, pp. 85–115. Springer, Cham (2017) Brown, D., Gallistl, D., Peterseim, D.: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree Methods for Partial Differential Equations VIII, Lecture Notes on Computer Science and Engineering, vol. 115, pp. 85–115. Springer, Cham (2017)
9.
Zurück zum Zitat Christiansen, S.H.: Foundations of finite element methods for wave equations of Maxwell type. Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)CrossRef Christiansen, S.H.: Foundations of finite element methods for wave equations of Maxwell type. Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)CrossRef
10.
Zurück zum Zitat Weinan, E., Björn, E.: The heterogeneous multi-scale method for homogenization problems. In: Engquist, B., Runborg, O., Lötstedt, P. (eds.) Multiscale methods in science and engineering. Lecture notes in computational science and engineering, vol. 44, pp. 89–110. Springer, Berlin, Heidelberg (2005)CrossRef Weinan, E., Björn, E.: The heterogeneous multi-scale method for homogenization problems. In: Engquist, B., Runborg, O., Lötstedt, P. (eds.) Multiscale methods in science and engineering. Lecture notes in computational science and engineering, vol. 44, pp. 89–110. Springer, Berlin, Heidelberg (2005)CrossRef
12.
Zurück zum Zitat Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media. Commun. Math. Sci. 9(1), 33–56 (2011)MathSciNetCrossRefMATH Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media. Commun. Math. Sci. 9(1), 33–56 (2011)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Engquist, B., Holst, H., Runborg, O.: Multiscale methods for wave propagation in heterogeneous media over long time. In: Numerical Analysis of Multiscale Computations, Lecture Notes on Computer Science and Engineering, vol. 82, pp. 167–186. Springer, Heidelberg (2012) Engquist, B., Holst, H., Runborg, O.: Multiscale methods for wave propagation in heterogeneous media over long time. In: Numerical Analysis of Multiscale Computations, Lecture Notes on Computer Science and Engineering, vol. 82, pp. 167–186. Springer, Heidelberg (2012)
14.
Zurück zum Zitat Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)MathSciNetMATH Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)MathSciNetMATH
15.
Zurück zum Zitat Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (2010) Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (2010)
16.
Zurück zum Zitat Gallistl, D., Peterseim, D.: Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)MathSciNetCrossRefMATH Gallistl, D., Peterseim, D.: Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013)MathSciNetCrossRefMATH Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds.) Topics in computational wave propagation. Lecture notes in computational science and engineering, vol. 31, pp. 201–264. Springer, Berlin, Heidelberg (2003)CrossRef Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds.) Topics in computational wave propagation. Lecture notes in computational science and engineering, vol. 31, pp. 201–264. Springer, Berlin, Heidelberg (2003)CrossRef
20.
Zurück zum Zitat Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp. 87, 2765–2774 (2018)MathSciNetCrossRefMATH Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp. 87, 2765–2774 (2018)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)MathSciNetCrossRefMATH Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)MathSciNetCrossRefMATH
22.
24.
Zurück zum Zitat Owhadi, H., Zhang, L.: Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Engrg. 198(3–4), 397–406 (2008)MathSciNetCrossRefMATH Owhadi, H., Zhang, L.: Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Engrg. 198(3–4), 397–406 (2008)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Owhadi, H., Zhang, L.: Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. J. Comput. Phys. 347, 99–128 (2017)MathSciNetCrossRefMATH Owhadi, H., Zhang, L.: Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. J. Comput. Phys. 347, 99–128 (2017)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)MathSciNetCrossRefMATH Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes on Computer Science and Engineering, vol. 114, pp. 341–367. Springer, Cham (2016) Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes on Computer Science and Engineering, vol. 114, pp. 341–367. Springer, Cham (2016)
28.
Zurück zum Zitat Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput. 86(305), 1005–1036 (2017)MathSciNetCrossRefMATH Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput. 86(305), 1005–1036 (2017)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72(3), 1196–1213 (2017)MathSciNetCrossRefMATH Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72(3), 1196–1213 (2017)MathSciNetCrossRefMATH
Metadaten
Titel
Explicit computational wave propagation in micro-heterogeneous media
verfasst von
Roland Maier
Daniel Peterseim
Publikationsdatum
17.10.2018
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2019
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-018-0735-8

Weitere Artikel der Ausgabe 2/2019

BIT Numerical Mathematics 2/2019 Zur Ausgabe