Skip to main content
Erschienen in: Journal of Nanoparticle Research 12/2012

01.12.2012 | Research Paper

Exploring the electronic structure of graphene quantum dots

verfasst von: Bikash Mandal, Sunandan Sarkar, Pranab Sarkar

Erschienen in: Journal of Nanoparticle Research | Ausgabe 12/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present results of our theoretical investigation on the electronic structure of graphene quantum dots (QDs). We show how the HOMO–LUMO gap can be engineered by changing their size and/or shape. We also explore the possibility of tuning the gap by functionalization with different organic groups. We find that the covalent functionalization shifts both the HOMO and LUMO energies without significantly changing the HOMO–LUMO gap. This has been explained by analysing the density of states of different functionalized graphene QDs. Our theoretical results agree well with those of the experiment on recently synthesized graphene QDs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31): 13226–13239CrossRef Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31): 13226–13239CrossRef
Zurück zum Zitat Aradi B, Hourahine B, Fraunheim Th (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26): 5678–5684CrossRef Aradi B, Hourahine B, Fraunheim Th (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26): 5678–5684CrossRef
Zurück zum Zitat Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8(12):4373–4379CrossRef Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8(12):4373–4379CrossRef
Zurück zum Zitat Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21: 344205CrossRef Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21: 344205CrossRef
Zurück zum Zitat Brus LE (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53: 465–474CrossRef Brus LE (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53: 465–474CrossRef
Zurück zum Zitat Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30: 475–521CrossRef Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30: 475–521CrossRef
Zurück zum Zitat El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5): 326–333CrossRef El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5): 326–333CrossRef
Zurück zum Zitat Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Fraunheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58: 7260–7268CrossRef Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Fraunheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58: 7260–7268CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191CrossRef
Zurück zum Zitat Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46: 1766CrossRef Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46: 1766CrossRef
Zurück zum Zitat Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7): 2834–2860CrossRef Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7): 2834–2860CrossRef
Zurück zum Zitat Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2: 620–625CrossRef Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2: 620–625CrossRef
Zurück zum Zitat Li L-S, Yan X (2010) Colloidal graphene quantum dots. J Phys Chem Letts 1(17): 2572–2576CrossRef Li L-S, Yan X (2010) Colloidal graphene quantum dots. J Phys Chem Letts 1(17): 2572–2576CrossRef
Zurück zum Zitat Liu L-H, Yan M (2011) Functionalization of pristine graphene with perfluorophenyl azides. J Mater Chem 21: 3273-3276CrossRef Liu L-H, Yan M (2011) Functionalization of pristine graphene with perfluorophenyl azides. J Mater Chem 21: 3273-3276CrossRef
Zurück zum Zitat Niehaus Th, Suhai S, DellaSala F, Lugli P, Elstner M, Seifert G, Frauenheim Th (2001) Tight-binding approach to time-dependent density-functional response theory. Phys Rev B 63: 085108CrossRef Niehaus Th, Suhai S, DellaSala F, Lugli P, Elstner M, Seifert G, Frauenheim Th (2001) Tight-binding approach to time-dependent density-functional response theory. Phys Rev B 63: 085108CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666–669
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci. 102(30): 10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci. 102(30): 10451–10453CrossRef
Zurück zum Zitat Porezag D, Frauenheim Th, KÖhler Th, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51: 12947–12957CrossRef Porezag D, Frauenheim Th, KÖhler Th, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51: 12947–12957CrossRef
Zurück zum Zitat Schumacher S (2011) Photophysics of graphene quantum dots: insights from electronic structure calculations. Phys Rev B 83: 081417(R) Schumacher S (2011) Photophysics of graphene quantum dots: insights from electronic structure calculations. Phys Rev B 83: 081417(R)
Zurück zum Zitat Seifert G, (2007) Tight-binding density functional theory: an approximate Kohn–Sham DFT scheme. J Phys Chem A 111: 5609CrossRef Seifert G, (2007) Tight-binding density functional theory: an approximate Kohn–Sham DFT scheme. J Phys Chem A 111: 5609CrossRef
Zurück zum Zitat Singh AK, Penev ES, Yakobson BI (2010) Vacancy clusters in graphane as quantum dots. ACS Nano 4: 3510–3514CrossRef Singh AK, Penev ES, Yakobson BI (2010) Vacancy clusters in graphane as quantum dots. ACS Nano 4: 3510–3514CrossRef
Zurück zum Zitat Voznyy O, Güclü AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417CrossRef Voznyy O, Güclü AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417CrossRef
Zurück zum Zitat Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17): 5944–5945CrossRef Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17): 5944–5945CrossRef
Zurück zum Zitat Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letts 10(5): 1869–1873CrossRef Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letts 10(5): 1869–1873CrossRef
Zurück zum Zitat Yan X, Li L-S (2011) Solution-chemistry approach to graphene nanostructures. J Mater Chem 21: 3295–3300CrossRef Yan X, Li L-S (2011) Solution-chemistry approach to graphene nanostructures. J Mater Chem 21: 3295–3300CrossRef
Zurück zum Zitat Yan X, Li B, Cui X, Wei Q, Tajima K, Li L-S (2011) Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Letts 2(10): 1119–1124CrossRef Yan X, Li B, Cui X, Wei Q, Tajima K, Li L-S (2011) Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Letts 2(10): 1119–1124CrossRef
Zurück zum Zitat Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nat Lond 438:201–204CrossRef Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nat Lond 438:201–204CrossRef
Zurück zum Zitat Zhang ZZ, Chang K, Peeters FM (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 77: 235411–235415CrossRef Zhang ZZ, Chang K, Peeters FM (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 77: 235411–235415CrossRef
Zurück zum Zitat Zhong X, Jin J, Li S, Niu Z, Hu W, Li R, Ma J, (2010) Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Commun 46: 7340–7342CrossRef Zhong X, Jin J, Li S, Niu Z, Hu W, Li R, Ma J, (2010) Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Commun 46: 7340–7342CrossRef
Metadaten
Titel
Exploring the electronic structure of graphene quantum dots
verfasst von
Bikash Mandal
Sunandan Sarkar
Pranab Sarkar
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 12/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1317-3

Weitere Artikel der Ausgabe 12/2012

Journal of Nanoparticle Research 12/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.