Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Fabrication of Graphene-Based Transparent Conducting Thin Films

verfasst von : Qingbin Zheng, Jang-Kyo Kim

Erschienen in: Graphene for Transparent Conductors

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical vapor deposition (CVD)-grown graphene and graphene oxide (GO) have been the main starting materials to produce graphene-based transparent conductors (TCs). For the CVD-grown graphene, the underlying substrates need to be removed so that the graphene sheets can be transferred onto the device substrates. Several strategies have been developed to transfer graphene sheets, and they include the etching and stamping method, thermal release method, photoresist method, roll-to-roll transfer method, and general method. Another low-cost route to produce graphene-based TCs on a large scale is to synthesize GO thin films and then reduce them. The ease of solution process of GO sheets due to their high solubility in aqueous solutions has made it a more viable and favorable approach. Once a GO dispersion is produced, GO films can be formed on a substrate using different deposition techniques, including electrophoretic deposition (EPD), spin coating, spray coating, dip coating, transfer printing, Langmuir–Blodgett (L–B) assembly, rod coating, and inkjet coating.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247.CrossRef Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247.CrossRef
2.
Zurück zum Zitat Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13, 52–59.CrossRef Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13, 52–59.CrossRef
3.
Zurück zum Zitat Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.CrossRef Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.CrossRef
4.
Zurück zum Zitat Kang, S. J., Kim, B., Kim, K. S., Zhao, Y., Chen, Z. Y., Lee, G. H., Hone, J., Kim, P., & Nuckolls, C. (2011). Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Advanced Materials, 23, 3531–3535.CrossRef Kang, S. J., Kim, B., Kim, K. S., Zhao, Y., Chen, Z. Y., Lee, G. H., Hone, J., Kim, P., & Nuckolls, C. (2011). Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Advanced Materials, 23, 3531–3535.CrossRef
5.
Zurück zum Zitat Song, L., Ci, L. J., Gao, W., & Ajayan, P. M. (2009). Transfer printing of graphene using gold film. ACS Nano, 3, 1353–1356.CrossRef Song, L., Ci, L. J., Gao, W., & Ajayan, P. M. (2009). Transfer printing of graphene using gold film. ACS Nano, 3, 1353–1356.CrossRef
6.
Zurück zum Zitat Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S., & Park, J. (2009). Transfer-free batch fabrication of single layer graphene transistors. Nano Letters, 9, 4479–4483.CrossRef Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S., & Park, J. (2009). Transfer-free batch fabrication of single layer graphene transistors. Nano Letters, 9, 4479–4483.CrossRef
7.
Zurück zum Zitat Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.CrossRef Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.CrossRef
8.
Zurück zum Zitat Song, J., Kam, F. Y., Png, R. Q., Seah, W. L., Zhuo, J. M., Lim, G. K., Ho, P. K. H., & Chua, L. L. (2013). A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 8, 356–362.CrossRef Song, J., Kam, F. Y., Png, R. Q., Seah, W. L., Zhuo, J. M., Lim, G. K., Ho, P. K. H., & Chua, L. L. (2013). A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 8, 356–362.CrossRef
9.
Zurück zum Zitat Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., Song, Y. I., Hong, B. H., & Ahn, J. H. (2010). Wafer-scale synthesis and transfer of graphene films. Nano Letters, 10, 490–493.CrossRef Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., Song, Y. I., Hong, B. H., & Ahn, J. H. (2010). Wafer-scale synthesis and transfer of graphene films. Nano Letters, 10, 490–493.CrossRef
10.
Zurück zum Zitat Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9, 4359–4363.CrossRef Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9, 4359–4363.CrossRef
11.
Zurück zum Zitat Cai, W. W., Zhu, Y. W., Li, X. S., Piner, R. D., & Ruoff, R. S. (2009). Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 95, 123115.CrossRef Cai, W. W., Zhu, Y. W., Li, X. S., Piner, R. D., & Ruoff, R. S. (2009). Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 95, 123115.CrossRef
12.
Zurück zum Zitat Chen, X. D., Liu, Z. B., Zheng, C. Y., Xing, F., Yan, X. Q., Chen, Y. S., & Tian, J. G. (2013). High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 56, 271–278.CrossRef Chen, X. D., Liu, Z. B., Zheng, C. Y., Xing, F., Yan, X. Q., Chen, Y. S., & Tian, J. G. (2013). High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 56, 271–278.CrossRef
13.
Zurück zum Zitat Lee, Y. H., & Lee, J. H. (2010). Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO2/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 96, 083101.CrossRef Lee, Y. H., & Lee, J. H. (2010). Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO2/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 96, 083101.CrossRef
14.
Zurück zum Zitat Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.CrossRef Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.CrossRef
15.
Zurück zum Zitat Kim, H., Yoon, B., Sung, J., Choi, D. G., & Park, C. (2008). Micropatterning of thin P3HT films via plasma enhanced polymer transfer printing. Journal of Materials Chemistry, 18, 3489–3495.CrossRef Kim, H., Yoon, B., Sung, J., Choi, D. G., & Park, C. (2008). Micropatterning of thin P3HT films via plasma enhanced polymer transfer printing. Journal of Materials Chemistry, 18, 3489–3495.CrossRef
16.
Zurück zum Zitat Wang, C., Ryu, K. M., Badmaev, A., Patil, N., Lin, A., Mitra, S., Wong, H. S. P., & Zhou, C. (2008). Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes. Applied Physics Letters, 93, 033101.CrossRef Wang, C., Ryu, K. M., Badmaev, A., Patil, N., Lin, A., Mitra, S., Wong, H. S. P., & Zhou, C. (2008). Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes. Applied Physics Letters, 93, 033101.CrossRef
17.
Zurück zum Zitat Ryu, K., Badmaev, A., Wang, C., Lin, A., Patil, N., Gomez, L., Kumar, A., Mitra, S., Wong, H. S. P., & Zhou, C. W. (2009). CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Letters, 9, 189–197.CrossRef Ryu, K., Badmaev, A., Wang, C., Lin, A., Patil, N., Gomez, L., Kumar, A., Mitra, S., Wong, H. S. P., & Zhou, C. W. (2009). CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Letters, 9, 189–197.CrossRef
18.
Zurück zum Zitat Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324–3334.CrossRef Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324–3334.CrossRef
19.
Zurück zum Zitat Ahn, S. H., & Guo, L. J. (2008). High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 20, 2044–2049.CrossRef Ahn, S. H., & Guo, L. J. (2008). High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 20, 2044–2049.CrossRef
20.
Zurück zum Zitat Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46, 2329–2339.CrossRef Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46, 2329–2339.CrossRef
21.
Zurück zum Zitat Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22, 2392–2415.CrossRef Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22, 2392–2415.CrossRef
22.
Zurück zum Zitat Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.CrossRef Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.CrossRef
23.
Zurück zum Zitat An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., & Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1, 1259–1263.CrossRef An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., & Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1, 1259–1263.CrossRef
24.
Zurück zum Zitat Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38.CrossRef Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38.CrossRef
25.
Zurück zum Zitat Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano, 2, 463–470.CrossRef Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano, 2, 463–470.CrossRef
26.
Zurück zum Zitat Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., & Kim, E. J. (2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48, 1945–1951.CrossRef Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., & Kim, E. J. (2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48, 1945–1951.CrossRef
27.
Zurück zum Zitat Lee, D. W., Hong, T. K., Kang, D., Lee, J., Heo, M., Kim, J. Y., Kim, B. S., & Shin, H. S. (2011). Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 21, 3438–3442.CrossRef Lee, D. W., Hong, T. K., Kang, D., Lee, J., Heo, M., Kim, J. Y., Kim, B. S., & Shin, H. S. (2011). Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 21, 3438–3442.CrossRef
28.
Zurück zum Zitat Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12, 2164–2169.CrossRef Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12, 2164–2169.CrossRef
29.
Zurück zum Zitat Wang, X., Zhi, L., & Muellen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.CrossRef Wang, X., Zhi, L., & Muellen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.CrossRef
30.
Zurück zum Zitat Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916.CrossRef Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916.CrossRef
31.
Zurück zum Zitat Yamaguchi, H., Eda, G., Mattevi, C., Kim, H., & Chhowalla, M. (2010). Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. Acs Nano, 4, 524–528.CrossRef Yamaguchi, H., Eda, G., Mattevi, C., Kim, H., & Chhowalla, M. (2010). Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. Acs Nano, 4, 524–528.CrossRef
32.
Zurück zum Zitat Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.CrossRef Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.CrossRef
33.
Zurück zum Zitat Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.CrossRef Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.CrossRef
34.
Zurück zum Zitat Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049.CrossRef Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049.CrossRef
35.
Zurück zum Zitat Kim, F., Cote, L. J., & Huang, J. X. (2010). Graphene oxide: Durface activity and two-dimensional assembly. Advanced Materials, 22, 1954–1958.CrossRef Kim, F., Cote, L. J., & Huang, J. X. (2010). Graphene oxide: Durface activity and two-dimensional assembly. Advanced Materials, 22, 1954–1958.CrossRef
36.
Zurück zum Zitat Wang, J., Liang, M. H., Fang, Y., Qiu, T. F., Zhang, J., & Zhi, L. J. (2012). Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 24, 2874–2878.CrossRef Wang, J., Liang, M. H., Fang, Y., Qiu, T. F., Zhang, J., & Zhi, L. J. (2012). Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 24, 2874–2878.CrossRef
37.
Zurück zum Zitat Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z. P., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15, 564–589.CrossRef Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z. P., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15, 564–589.CrossRef
38.
Zurück zum Zitat Torrisi, F., Hasan, T., Wu, W. P., Sun, Z. P., Lombardo, A., Kulmala, T. S., Hsieh, G. W., Jung, S. J., Bonaccorso, F., Paul, P. J., Chu, D. P., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. Acs Nano, 6, 2992–3006.CrossRef Torrisi, F., Hasan, T., Wu, W. P., Sun, Z. P., Lombardo, A., Kulmala, T. S., Hsieh, G. W., Jung, S. J., Bonaccorso, F., Paul, P. J., Chu, D. P., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. Acs Nano, 6, 2992–3006.CrossRef
39.
Zurück zum Zitat Chavez-Valdez, A., Shaffer, M. S. P., & Boccaccini, A. R. (2013). Applications of graphene electrophoretic deposition. A review. Journal of Physical Chemistry B, 117, 1502–1515.CrossRef Chavez-Valdez, A., Shaffer, M. S. P., & Boccaccini, A. R. (2013). Applications of graphene electrophoretic deposition. A review. Journal of Physical Chemistry B, 117, 1502–1515.CrossRef
40.
Zurück zum Zitat Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52, 1–61.CrossRef Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52, 1–61.CrossRef
41.
Zurück zum Zitat Boccaccini, A. R., Keim, S., Ma, R., Li, Y., & Zhitomirsky, I. (2010). Electrophoretic deposition of biomaterials. Journal of The Royal Society Interface, 7, S581–S613.CrossRef Boccaccini, A. R., Keim, S., Ma, R., Li, Y., & Zhitomirsky, I. (2010). Electrophoretic deposition of biomaterials. Journal of The Royal Society Interface, 7, S581–S613.CrossRef
42.
Zurück zum Zitat Lee, V., Whittaker, L., Jaye, C., Baroudi, K. M., Fischer, D. A., & Banerjee, S. (2009). Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chemistry of Materials, 21, 3905–3916.CrossRef Lee, V., Whittaker, L., Jaye, C., Baroudi, K. M., Fischer, D. A., & Banerjee, S. (2009). Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chemistry of Materials, 21, 3905–3916.CrossRef
43.
Zurück zum Zitat Chen, Y., Zhang, X., Yu, P., & Ma, Y. W. (2009). Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chemical Communications, 30, 4527–4529.CrossRef Chen, Y., Zhang, X., Yu, P., & Ma, Y. W. (2009). Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chemical Communications, 30, 4527–4529.CrossRef
44.
Zurück zum Zitat Ishikawa, R., Ko, P. J., Kurokawa, Y., Konagai, M., & Sandhu, A. (2012). Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates. Asia-Pacific Interdisciplinary Research Conference 2011 (Ap-Irc 2011), 352. Ishikawa, R., Ko, P. J., Kurokawa, Y., Konagai, M., & Sandhu, A. (2012). Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates. Asia-Pacific Interdisciplinary Research Conference 2011 (Ap-Irc 2011), 352.
45.
Zurück zum Zitat Park, S., An, J. H., Piner, R. D., Jung, I., Yang, D. X., Velamakanni, A., Nguyen, S. T., & Ruoff, R. S. (2008). Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20, 6592–6594.CrossRef Park, S., An, J. H., Piner, R. D., Jung, I., Yang, D. X., Velamakanni, A., Nguyen, S. T., & Ruoff, R. S. (2008). Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20, 6592–6594.CrossRef
46.
Zurück zum Zitat Wu, J. B., Becerril, H. A., Bao, Z. N., Liu, Z. F., Chen, Y. S., & Peumans, P. (2008). Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 92, 263302.CrossRef Wu, J. B., Becerril, H. A., Bao, Z. N., Liu, Z. F., Chen, Y. S., & Peumans, P. (2008). Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 92, 263302.CrossRef
47.
Zurück zum Zitat Robinson, J. T., Zalalutdinov, M., Baldwin, J. W., Snow, E. S., Wei, Z. Q., Sheehan, P., & Houston, B. H. (2008). Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Letters, 8, 3441–3445.CrossRef Robinson, J. T., Zalalutdinov, M., Baldwin, J. W., Snow, E. S., Wei, Z. Q., Sheehan, P., & Houston, B. H. (2008). Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Letters, 8, 3441–3445.CrossRef
48.
Zurück zum Zitat Min, K., Han, T. H., Kim, J., Jung, J., Jung, C., Hong, S. M., & Koo, C. M. (2012). A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. Journal of Colloid and Interface Science, 383, 36–42.CrossRef Min, K., Han, T. H., Kim, J., Jung, J., Jung, C., Hong, S. M., & Koo, C. M. (2012). A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. Journal of Colloid and Interface Science, 383, 36–42.CrossRef
49.
Zurück zum Zitat Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.CrossRef Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.CrossRef
50.
Zurück zum Zitat Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.CrossRef Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.CrossRef
51.
Zurück zum Zitat Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680.CrossRef Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680.CrossRef
52.
Zurück zum Zitat Allen, M. J., Tung, V. C., Gomez, L., Xu, Z., Chen, L. M., Nelson, K. S., Zhou, C. W., Kaner, R. B., & Yang, Y. (2009). Soft transfer printing of chemically converted graphene. Advanced Materials, 21, 2098–2102.CrossRef Allen, M. J., Tung, V. C., Gomez, L., Xu, Z., Chen, L. M., Nelson, K. S., Zhou, C. W., Kaner, R. B., & Yang, Y. (2009). Soft transfer printing of chemically converted graphene. Advanced Materials, 21, 2098–2102.CrossRef
53.
Zurück zum Zitat Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.CrossRef Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.CrossRef
54.
Zurück zum Zitat Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542.CrossRef Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542.CrossRef
55.
Zurück zum Zitat Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.CrossRef Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.CrossRef
56.
Zurück zum Zitat Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano, 4, 2955–2963.CrossRef Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano, 4, 2955–2963.CrossRef
57.
Zurück zum Zitat Li, J. T., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Ostling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials, 25, 3985–3992.CrossRef Li, J. T., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Ostling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials, 25, 3985–3992.CrossRef
58.
Zurück zum Zitat Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28, 13467–13472.CrossRef Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28, 13467–13472.CrossRef
59.
Zurück zum Zitat Dua, V., Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., & Manohar, S. K. (2010). All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angewandte Chemie-International Edition, 49, 2154–2157.CrossRef Dua, V., Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., & Manohar, S. K. (2010). All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angewandte Chemie-International Edition, 49, 2154–2157.CrossRef
Metadaten
Titel
Fabrication of Graphene-Based Transparent Conducting Thin Films
verfasst von
Qingbin Zheng
Jang-Kyo Kim
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2769-2_3

Neuer Inhalt