Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2016

01.03.2016 | Original Paper

Facile synthesis of high-performance Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals by a resorcinol formaldehyde gel route as lithium ion battery cathodes

verfasst von: Qingliang Xie, Chenhao Zhao, Zhibiao Hu, Yunlong Zhou, Fang He, Kaiyu Liu

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the paper, we report synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals by a facile resorcinol formaldehyde gel route. The initial polymerization of precursor solution and subsequent high-temperature calcination results in the formation of Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals. The XRD, SEM, and electrochemical tests show the influence of calcination temperatures on the structures and electrochemical performances of obtained products. The XRD results reveal that the elevated temperature helps to improve the layered structure of the Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals, and the SEM results demonstrated that the elevated temperature helps to enlargement particle size. For lithium ion battery cathodes, the electrochemical performances can be well determined by corresponding structures. Among them, the 850 °C sample shows an initial discharge capacity of 259.9 mAh g−1 with Coulombic efficiency of 80.1 % at a current density of 40 mA g−1. After 50 cycles, the sample also can retain a capacity of 204.8 mAh g−1 at 200 mA g−1, which is 87.6 % of initial value. Even at a higher rate of 1000 mA g−1, the sample shows a stable discharge capacity of 130 mAh g−1. Maybe, the resorcinol formaldehyde gel route is suitable to prepare lithium ion battery cathode Li1.2Ni0.13Co0.13Mn0.54O2.

Graphical Abstract

The lithium rich layered oxides Li1.2Ni0.13Co0.13Mn0.54O2 have been prepared by a facile resorcinol formaldehyde gel route. The optimal sample with the size of 200–300 nm shows high discharge capacity, good cycling stability and rate capability as lithium ion battery cathode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen J-M, Hsu C-H, Lin Y-R, Hsiao M-H, Fey GT-K (2008) High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J Power Sources 184(2):498–502CrossRef Chen J-M, Hsu C-H, Lin Y-R, Hsiao M-H, Fey GT-K (2008) High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J Power Sources 184(2):498–502CrossRef
2.
Zurück zum Zitat Huang B, Shi P, Liang Z, Chen M, Guan Y (2005) Effects of sintering on the performance of hydrogen storage alloy electrode for high-power Ni/MH batteries. J Alloys Compd 394(1–2):303–307CrossRef Huang B, Shi P, Liang Z, Chen M, Guan Y (2005) Effects of sintering on the performance of hydrogen storage alloy electrode for high-power Ni/MH batteries. J Alloys Compd 394(1–2):303–307CrossRef
3.
Zurück zum Zitat Zhao S, Chang Q, Jiang K, Bai Y, Yang Y, Zhang W (2013) Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ionics 253:1–7CrossRef Zhao S, Chang Q, Jiang K, Bai Y, Yang Y, Zhang W (2013) Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ionics 253:1–7CrossRef
4.
Zurück zum Zitat Lee D-J, Lee K-S, Myung S-T, Yashiro H, Sun Y-K (2011) Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. J Power Sources 196(3):1353–1357CrossRef Lee D-J, Lee K-S, Myung S-T, Yashiro H, Sun Y-K (2011) Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. J Power Sources 196(3):1353–1357CrossRef
5.
Zurück zum Zitat Lee D-J, Scrosati B, Sun Y-K (2011) Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C. J Power Sources 196(18):7742–7746CrossRef Lee D-J, Scrosati B, Sun Y-K (2011) Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C. J Power Sources 196(18):7742–7746CrossRef
6.
Zurück zum Zitat Kang S-H, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3·(1 − x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun 11(4):748–751CrossRef Kang S-H, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3·(1 − x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun 11(4):748–751CrossRef
7.
Zurück zum Zitat Bareno J, Lei CH, Wen JG, Kang SH, Petrov I, Abraham DP (2010) Local structure of layered oxide electrode materials for lithium-ion batteries. Adv Mater 22(10):1122–1127CrossRef Bareno J, Lei CH, Wen JG, Kang SH, Petrov I, Abraham DP (2010) Local structure of layered oxide electrode materials for lithium-ion batteries. Adv Mater 22(10):1122–1127CrossRef
8.
Zurück zum Zitat Arunkumar TA, Alvarez E, Manthiram A (2008) Chemical and structural instability of the chemically delithiated (1 – z) Li[Li1/3Mn2/3]O2·(z) Li[Co1–yNiy]O2(0 ≤ y ≤ 1 and 0 ≤ z ≤ 1) solid solution cathodes. J Mater Chem 18(2):190–198CrossRef Arunkumar TA, Alvarez E, Manthiram A (2008) Chemical and structural instability of the chemically delithiated (1 – z) Li[Li1/3Mn2/3]O2·(z) Li[Co1–yNiy]O2(0 ≤ y ≤ 1 and 0 ≤ z ≤ 1) solid solution cathodes. J Mater Chem 18(2):190–198CrossRef
9.
Zurück zum Zitat Kubota K, Kaneko T, Hirayama M et al (2012) Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes. J Power Sources 216:249–255CrossRef Kubota K, Kaneko T, Hirayama M et al (2012) Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes. J Power Sources 216:249–255CrossRef
10.
Zurück zum Zitat Francis Amalraj S, Markovsky B, Sharon D et al (2012) Study of the electrochemical behavior of the “inactive” Li2MnO3. Electrochim Acta 78:32–39CrossRef Francis Amalraj S, Markovsky B, Sharon D et al (2012) Study of the electrochemical behavior of the “inactive” Li2MnO3. Electrochim Acta 78:32–39CrossRef
11.
Zurück zum Zitat Yu C, Li G, Guan X, Zheng J, Luo D, Li L (2012) The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3Li2MnO3.0.7LiMn1/3Ni1/3Co1/3O2. Phys Chem Chem Phys 14(35):12368–12377CrossRef Yu C, Li G, Guan X, Zheng J, Luo D, Li L (2012) The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3Li2MnO3.0.7LiMn1/3Ni1/3Co1/3O2. Phys Chem Chem Phys 14(35):12368–12377CrossRef
12.
Zurück zum Zitat Mohanty D, Kalnaus S, Meisner RA et al (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248CrossRef Mohanty D, Kalnaus S, Meisner RA et al (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248CrossRef
13.
Zurück zum Zitat Simonin L, Colin J-F, Ranieri V et al (2012) In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J Mater Chem 22(22):113–116CrossRef Simonin L, Colin J-F, Ranieri V et al (2012) In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J Mater Chem 22(22):113–116CrossRef
14.
Zurück zum Zitat Ohnishi T, Mitsuishi K, Nishio K, Takada K (2015) Epitaxy of Li3xLa2/3–xTiO3 films and the influence of La ordering on Li-ion conduction. Chem Mater 27(4):1233–1241CrossRef Ohnishi T, Mitsuishi K, Nishio K, Takada K (2015) Epitaxy of Li3xLa2/3–xTiO3 films and the influence of La ordering on Li-ion conduction. Chem Mater 27(4):1233–1241CrossRef
15.
Zurück zum Zitat Lu C, Wu H, Zhang Y et al (2014) Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691CrossRef Lu C, Wu H, Zhang Y et al (2014) Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691CrossRef
16.
Zurück zum Zitat Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58CrossRef Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58CrossRef
17.
Zurück zum Zitat Kim JW, Kim DH, Oh DY et al (2015) Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J Power Sources 274:1254–1262CrossRef Kim JW, Kim DH, Oh DY et al (2015) Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J Power Sources 274:1254–1262CrossRef
18.
Zurück zum Zitat Wen J-W, Zhang D-W, Zang Y et al (2014) One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochim Acta 133:515–521CrossRef Wen J-W, Zhang D-W, Zang Y et al (2014) One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochim Acta 133:515–521CrossRef
19.
Zurück zum Zitat Shi SJ, Tu JP, Tang YY et al (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRef Shi SJ, Tu JP, Tang YY et al (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRef
20.
Zurück zum Zitat Yu C, Wang H, Guan X, Zheng J, Li L (2013) Conductivity and electrochemical performance of cathode xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J Alloys Compd 546:239–245CrossRef Yu C, Wang H, Guan X, Zheng J, Li L (2013) Conductivity and electrochemical performance of cathode xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J Alloys Compd 546:239–245CrossRef
21.
Zurück zum Zitat Zhong Z, Ye N, Wang H, Ma Z (2011) Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3–LiNi0.5Mn0.5O2 cathode material for Li-ion batteries. Chem Eng J 175:579–584CrossRef Zhong Z, Ye N, Wang H, Ma Z (2011) Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3–LiNi0.5Mn0.5O2 cathode material for Li-ion batteries. Chem Eng J 175:579–584CrossRef
22.
Zurück zum Zitat Luo D, Li G, Guan X et al (2013) Novel synthesis of Li1.2Mn0.4Co0.4O2with an excellent electrochemical performance from −10.4 to 45.4°C. J Mater Chem A 1(4):1220–1227CrossRef Luo D, Li G, Guan X et al (2013) Novel synthesis of Li1.2Mn0.4Co0.4O2with an excellent electrochemical performance from −10.4 to 45.4°C. J Mater Chem A 1(4):1220–1227CrossRef
23.
Zurück zum Zitat Li J, Wang L, Wang L et al (2013) Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries. J Power Sources 244:652–657CrossRef Li J, Wang L, Wang L et al (2013) Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries. J Power Sources 244:652–657CrossRef
24.
Zurück zum Zitat Toprakci O, Toprakci HAK, Li Y et al (2013) Synthesis and characterization of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J Power Sources 241:522–528CrossRef Toprakci O, Toprakci HAK, Li Y et al (2013) Synthesis and characterization of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J Power Sources 241:522–528CrossRef
25.
Zurück zum Zitat Wang J, Yao X, Zhou X, Liu Z (2011) Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem 21(8):2544–2549CrossRef Wang J, Yao X, Zhou X, Liu Z (2011) Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem 21(8):2544–2549CrossRef
26.
Zurück zum Zitat Wen J-W, Zhang D-W, Teng Y-C, Chen C-H, Xiong Y (2010) One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 by a modified radiated polymer gel method. Electrochim Acta 55(7):2306–2310CrossRef Wen J-W, Zhang D-W, Teng Y-C, Chen C-H, Xiong Y (2010) One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 by a modified radiated polymer gel method. Electrochim Acta 55(7):2306–2310CrossRef
27.
Zurück zum Zitat Chen Y, Xie K, Pan Y, Zheng C (2010) Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol–formaldehyde route. Solid State Ionics 181(31–32):1445–1450CrossRef Chen Y, Xie K, Pan Y, Zheng C (2010) Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol–formaldehyde route. Solid State Ionics 181(31–32):1445–1450CrossRef
28.
Zurück zum Zitat Wang J, Yuan G, Zhang M, Qiu B, Xia Y, Liu Z (2012) The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x≤0.7) cathode materials. Electrochim Acta 66:61–66CrossRef Wang J, Yuan G, Zhang M, Qiu B, Xia Y, Liu Z (2012) The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x≤0.7) cathode materials. Electrochim Acta 66:61–66CrossRef
29.
Zurück zum Zitat Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 133(12):4404–4419CrossRef Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo(1/3)Ni(1/3)Mn(1/3)O2. J Am Chem Soc 133(12):4404–4419CrossRef
Metadaten
Titel
Facile synthesis of high-performance Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals by a resorcinol formaldehyde gel route as lithium ion battery cathodes
verfasst von
Qingliang Xie
Chenhao Zhao
Zhibiao Hu
Yunlong Zhou
Fang He
Kaiyu Liu
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3901-3

Weitere Artikel der Ausgabe 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.