Skip to main content

2018 | OriginalPaper | Buchkapitel

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries

verfasst von : Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, Ariel Nof

Erschienen in: Advances in Cryptology – CRYPTO 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protocols for secure multiparty computation enable a set of parties to compute a function of their inputs without revealing anything but the output. The security properties of the protocol must be preserved in the presence of adversarial behavior. The two classic adversary models considered are semi-honest (where the adversary follows the protocol specification but tries to learn more than allowed by examining the protocol transcript) and malicious (where the adversary may follow any arbitrary attack strategy). Protocols for semi-honest adversaries are often far more efficient, but in many cases the security guarantees are not strong enough.
In this paper, we present new protocols for securely computing any functionality represented by an arithmetic circuit. We utilize a new method for verifying that the adversary does not cheat, that yields a cost of just twice that of semi-honest protocols in some settings. Our protocols are information-theoretically secure in the presence of a malicious adversaries, assuming an honest majority. We present protocol variants for small and large fields, and show how to efficiently instantiate them based on replicated secret sharing and Shamir sharing. As with previous works in this area aiming to achieve high efficiency, our protocol is secure with abort and does not achieve fairness, meaning that the adversary may receive output while the honest parties do not.
We implemented our protocol and ran experiments for different numbers of parties, different network configurations and different circuit depths. Our protocol significantly outperforms the previous best for this setting (Lindell and Nof, CCS 2017); for a large number of parties, our implementation runs almost an order of magnitude faster than theirs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that this is not as immediate as it seems since the adversary has the seed/key as well, and so at this point the pseudorandom property is actually lost. However, the checks work by generating the randomness after everything else is finished and then verifying that some equality holds, or that the results are correct. These properties are actually determined before the key is revealed, and thus security is maintained even after the key is revealed.
 
2
If \(\beta _{m_0,i}\) were to be revealed, as in Protocol 4.1 for large fields, then the question of whether the equation holds is something that the distinguisher could determine (since it knows all of the \(y_k\) values from the input, and it can receive all of the \(d_k,e_{k,i},f_{k,i},g_{m,i}\) values from the adversary). Thus, it would not suffice to set \(T_i=0\) with the correct probability but as a function of the actual values. However, \(\mathcal{S}\) does not know the \(y_k\) values and so could not determine this.
 
Literatur
1.
Zurück zum Zitat Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K., Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: The IEEE S&P (2017) Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K., Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: The IEEE S&P (2017)
2.
Zurück zum Zitat Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: The 23rd ACM CCS, pp. 805–817 (2016) Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: The 23rd ACM CCS, pp. 805–817 (2016)
5.
Zurück zum Zitat Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th STOC (1988) Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th STOC (1988)
6.
Zurück zum Zitat Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E., Scholl, P., Smart, N.P.: High performance multi-party computation for binary circuits based on oblivious transfer. ePrint Cryptology Archive, 2015/472 (2015) Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E., Scholl, P., Smart, N.P.: High performance multi-party computation for binary circuits based on oblivious transfer. ePrint Cryptology Archive, 2015/472 (2015)
7.
Zurück zum Zitat Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRef Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRef
8.
Zurück zum Zitat Chaum, D., Crépeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988) Chaum, D., Crépeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)
9.
Zurück zum Zitat Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: 18th STOC, pp. 364–369 (1986) Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: 18th STOC, pp. 364–369 (1986)
11.
Zurück zum Zitat Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1CrossRef Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-40203-6_​1CrossRef
14.
Zurück zum Zitat Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC 2014 (2014) Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC 2014 (2014)
16.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th STOC, pp. 218–229 (1987) Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th STOC, pp. 218–229 (1987)
18.
Zurück zum Zitat Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: 17th PODC (1998) Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: 17th PODC (1998)
19.
Zurück zum Zitat Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2 (2004) Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2 (2004)
20.
Zurück zum Zitat Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: 23rd ACM CCS, pp. 830–842 (2016) Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: 23rd ACM CCS, pp. 830–842 (2016)
22.
Zurück zum Zitat Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: ACM CCS (2017) Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)
23.
Zurück zum Zitat Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: ACM CCS, pp. 591–602 (2015) Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: ACM CCS, pp. 591–602 (2015)
24.
Zurück zum Zitat Rabin, T., Ben-Or, M.: Verifiable secret sharing and multi-party protocols with honest majority. In: 21st STOC, pp. 73–85 (1989) Rabin, T., Ben-Or, M.: Verifiable secret sharing and multi-party protocols with honest majority. In: 21st STOC, pp. 73–85 (1989)
26.
Zurück zum Zitat Yao, A.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986) Yao, A.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986)
Metadaten
Titel
Fast Large-Scale Honest-Majority MPC for Malicious Adversaries
verfasst von
Koji Chida
Daniel Genkin
Koki Hamada
Dai Ikarashi
Ryo Kikuchi
Yehuda Lindell
Ariel Nof
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96878-0_2

Premium Partner