Skip to main content
Erschienen in: Applied Composite Materials 4/2023

17.01.2023

Fatigue Life Evaluation of Offshore Composite Wind Turbine Blades at Zhoushan Islands of China Using Wind Site Data

verfasst von: P. F. Liu, H. Y. Chen, T. Wu, J. W. Liu, J. X. Leng, C. Z. Wang, L. Jiao

Erschienen in: Applied Composite Materials | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As fruitful clean energy, offshore wind turbine power develops rapidly at the coastal area of China that contributes to enabling carbon neutralization. However, the cyclic change of climatic conditions inevitably leads to fatigue issue of wind turbine. This paper makes a survey on the climate condition at Jintang island, Zhoushan islands, China within one year to perform fatigue analysis of in-service composite wind turbine blades. First, the wind velocity rose diagram measured at Jintang island is obtained by investigation, which is used to calculate the wind pressure under some wind velocity and the corresponding direction and frequency, by combining with the modified blade element momentum (BEM) theory. Second, finite element analysis (FEA) of the full-scale composite blade under different wind velocity is performed, where it is almost the first time to introduce the damage model of composites to predict progressive failure properties and stress distributions of composite skin for fatigue analysis. Finally, the fatigue life for blade with three kinds of composite materials for skin is evaluated comparatively by combining with the rainflow counting method, the S–N fatigue curve and the cumulative damage principle. Numerical results show that the fatigue life of blades with three kinds of materials for skin falls within 19–22 years, consistent with the design value of blade in China.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rubiella, C., Hessabi, C.A., Fallah, A.S.: State of the art in fatigue modelling of composite wind turbine blades. Inter. J. Fatigue 117, 230–245 (2018)CrossRef Rubiella, C., Hessabi, C.A., Fallah, A.S.: State of the art in fatigue modelling of composite wind turbine blades. Inter. J. Fatigue 117, 230–245 (2018)CrossRef
2.
Zurück zum Zitat Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Inter. J. Fatigue 24, 825–830 (2002)CrossRef Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Inter. J. Fatigue 24, 825–830 (2002)CrossRef
3.
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 74, 332–342 (2006)CrossRef Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 74, 332–342 (2006)CrossRef
4.
Zurück zum Zitat Kong, A., Kim, T., Han, D.: Investigation of fatigue life for a medium scale composite wind turbine blade. Inter. J. Fatigue 28, 1382–1388 (2006)CrossRef Kong, A., Kim, T., Han, D.: Investigation of fatigue life for a medium scale composite wind turbine blade. Inter. J. Fatigue 28, 1382–1388 (2006)CrossRef
5.
Zurück zum Zitat Sutherland, H.J., Mandell, J.F.: Optimized constant-life diagram for the analysis of fiberglass composites used in wind turbine blades. J. Solar. Energy Eng. 127, 563–569 (2005)CrossRef Sutherland, H.J., Mandell, J.F.: Optimized constant-life diagram for the analysis of fiberglass composites used in wind turbine blades. J. Solar. Energy Eng. 127, 563–569 (2005)CrossRef
6.
Zurück zum Zitat Fossum, P.K., Froyd, L., Dahlhaug, O.G.: Design and fatigue performance of large utility-scale wind turbine blades. J. Solar. Energy Eng. 135(3), 031019 (2013)CrossRef Fossum, P.K., Froyd, L., Dahlhaug, O.G.: Design and fatigue performance of large utility-scale wind turbine blades. J. Solar. Energy Eng. 135(3), 031019 (2013)CrossRef
7.
Zurück zum Zitat Grujicic, M., Arakere, G., Subramanian, E., Sellappan, V., Vallejo, A., Ozen, M.: Structural-response analysis, fatigue-life prediction, and material selection for 1 MW horizontal-axis wind-turbine blades. J. Mater. Eng. Perform. 19(6), 790–801 (2010)CrossRef Grujicic, M., Arakere, G., Subramanian, E., Sellappan, V., Vallejo, A., Ozen, M.: Structural-response analysis, fatigue-life prediction, and material selection for 1 MW horizontal-axis wind-turbine blades. J. Mater. Eng. Perform. 19(6), 790–801 (2010)CrossRef
8.
Zurück zum Zitat Lee, S., Churchfield, M., Moriarty, P., Jonkman, J., Michalakes, J.: Atmospheric and wake turbulence impacts on wind turbine fatigue loading technical report. NREL/CP-5000–53567, National Renewable Energy Laboratory Technical Report, USA (2012) Lee, S., Churchfield, M., Moriarty, P., Jonkman, J., Michalakes, J.: Atmospheric and wake turbulence impacts on wind turbine fatigue loading technical report. NREL/CP-5000–53567, National Renewable Energy Laboratory Technical Report, USA (2012)
9.
Zurück zum Zitat Jang, Y.J., Choi, C.W., Lee, J.H., Kang, K.W.: Development of fatigue life prediction method and effect of 10-minute mean wind speed distribution on fatigue life of small wind turbine composite blade. Renew. Energy 79, 187–198 (2015)CrossRef Jang, Y.J., Choi, C.W., Lee, J.H., Kang, K.W.: Development of fatigue life prediction method and effect of 10-minute mean wind speed distribution on fatigue life of small wind turbine composite blade. Renew. Energy 79, 187–198 (2015)CrossRef
10.
Zurück zum Zitat Tibaldi, C., Henriksen, L.C., Hansen, M.H., Bak, C.: Wind turbine fatigue damage evaluation based on a linear model and a spectral method. Wind Energy 19(7), 1289–1306 (2016)CrossRef Tibaldi, C., Henriksen, L.C., Hansen, M.H., Bak, C.: Wind turbine fatigue damage evaluation based on a linear model and a spectral method. Wind Energy 19(7), 1289–1306 (2016)CrossRef
11.
Zurück zum Zitat Castelos, P.N., Balzani, C.: On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades. The Science of Making Torque from Wind (TORQUE 2016), J. Phys. Conf. Ser. IOP Publishing 753, 062002 (2016) Castelos, P.N., Balzani, C.: On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades. The Science of Making Torque from Wind (TORQUE 2016), J. Phys. Conf. Ser. IOP Publishing 753, 062002 (2016)
12.
Zurück zum Zitat Kulkarni, P.A., Hu, W., Dhoble, A.S., Padole, P.M.: Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads. Adv. Mech. Eng. 9(9), 1–26 (2017)CrossRef Kulkarni, P.A., Hu, W., Dhoble, A.S., Padole, P.M.: Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads. Adv. Mech. Eng. 9(9), 1–26 (2017)CrossRef
13.
Zurück zum Zitat Zhang, C.Z., Chen, H.P., Huang, T.L.: Fatigue damage assessment of wind turbine composite blades using corrected blade element momentum theory. Measurement 129, 102–111 (2018)CrossRef Zhang, C.Z., Chen, H.P., Huang, T.L.: Fatigue damage assessment of wind turbine composite blades using corrected blade element momentum theory. Measurement 129, 102–111 (2018)CrossRef
14.
Zurück zum Zitat Meng, H., Lien, F.S., Glinka, G., Geiger, P.: Study on fatigue life of bend-twist coupling wind turbine blade based on anisotropic beam model and stress-based fatigue analysis method. Compos. Struct. 208, 678–701 (2019)CrossRef Meng, H., Lien, F.S., Glinka, G., Geiger, P.: Study on fatigue life of bend-twist coupling wind turbine blade based on anisotropic beam model and stress-based fatigue analysis method. Compos. Struct. 208, 678–701 (2019)CrossRef
15.
Zurück zum Zitat Liu, H.W., Zhang, Z.C., Jia, H.B., Liu, Y.J., Leng, J.S.: A modified composite fatigue damage model considering stiffness evolution for wind turbine blades. Compos. Struct. 233, 111736 (2020)CrossRef Liu, H.W., Zhang, Z.C., Jia, H.B., Liu, Y.J., Leng, J.S.: A modified composite fatigue damage model considering stiffness evolution for wind turbine blades. Compos. Struct. 233, 111736 (2020)CrossRef
16.
Zurück zum Zitat Gao, C., Sweetman, B., Tang, S.R.: Multiaxial fatigue assessment of floating offshore wind turbine blades operating on compliant floating platforms. Ocean Eng. 261, 111921 (2022)CrossRef Gao, C., Sweetman, B., Tang, S.R.: Multiaxial fatigue assessment of floating offshore wind turbine blades operating on compliant floating platforms. Ocean Eng. 261, 111921 (2022)CrossRef
17.
Zurück zum Zitat Liu, P.F., Xu, D., Li, J.G., Chen, Z.P., Wang, S.B., Leng, J.X., Zhu, R.H., Jiao, L., Liu, W.S., Li, Z.X.: Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning. Struct. Health Monitor. 19, 1092–1103 (2020)CrossRef Liu, P.F., Xu, D., Li, J.G., Chen, Z.P., Wang, S.B., Leng, J.X., Zhu, R.H., Jiao, L., Liu, W.S., Li, Z.X.: Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning. Struct. Health Monitor. 19, 1092–1103 (2020)CrossRef
18.
Zurück zum Zitat Liu, P.F., Liao, B.B., Jia, L.Y., Peng, X.Q.: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos. Struct. 149, 408–422 (2016)CrossRef Liu, P.F., Liao, B.B., Jia, L.Y., Peng, X.Q.: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos. Struct. 149, 408–422 (2016)CrossRef
19.
Zurück zum Zitat Tarfaoui, M., Shah, O.R., Nachtane, M.: Design and optimization of composite offshore wind turbine blades. J. Energ. Resour. Technol. 141(5), 051204 (2019)CrossRef Tarfaoui, M., Shah, O.R., Nachtane, M.: Design and optimization of composite offshore wind turbine blades. J. Energ. Resour. Technol. 141(5), 051204 (2019)CrossRef
20.
Zurück zum Zitat Sang, S., Wen, H., Cao, A.X., Du, X.R., Zhu, X., Shi, Q., Qiu, C.H.: Dynamic modification method for BEM of wind turbine considering the joint action of installation angle and structural pendulum motion. Ocean Eng. 215, 107528 (2020)CrossRef Sang, S., Wen, H., Cao, A.X., Du, X.R., Zhu, X., Shi, Q., Qiu, C.H.: Dynamic modification method for BEM of wind turbine considering the joint action of installation angle and structural pendulum motion. Ocean Eng. 215, 107528 (2020)CrossRef
21.
Zurück zum Zitat Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)CrossRef Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)CrossRef
22.
Zurück zum Zitat Hasen, M.O.H.: Aerodynamics of Wind Turbines (Second version). Earthscan Press, UK and USA (2008) Hasen, M.O.H.: Aerodynamics of Wind Turbines (Second version). Earthscan Press, UK and USA (2008)
23.
Zurück zum Zitat Epaarachchi, J.A., Clausen, P.D.: The development of a fatigue loading spectrum for small wind turbine blades. J. Wind Eng. Indust. Aerodyna. 94(4), 207–223 (2006)CrossRef Epaarachchi, J.A., Clausen, P.D.: The development of a fatigue loading spectrum for small wind turbine blades. J. Wind Eng. Indust. Aerodyna. 94(4), 207–223 (2006)CrossRef
24.
Zurück zum Zitat Evans, S., Dana, S., Clausen, P., Wood, D.: A simple method for modelling fatigue spectra of small wind turbine blades. Wind Energy 24(6), 549–557 (2021)CrossRef Evans, S., Dana, S., Clausen, P., Wood, D.: A simple method for modelling fatigue spectra of small wind turbine blades. Wind Energy 24(6), 549–557 (2021)CrossRef
25.
Zurück zum Zitat Arteaga-López, E., Angeles-Camacho, C.: Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy 220, 119701 (2021)CrossRef Arteaga-López, E., Angeles-Camacho, C.: Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy 220, 119701 (2021)CrossRef
26.
Zurück zum Zitat Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)CrossRef Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)CrossRef
27.
Zurück zum Zitat Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res. 6, 773–782 (1976)CrossRef Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res. 6, 773–782 (1976)CrossRef
28.
Zurück zum Zitat Liu, J.W., Liu, P.F., Leng, J.X., Wang, C.Z.: Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part I: full-scale structure. Compos. Struct. 301, 116212 (2022)CrossRef Liu, J.W., Liu, P.F., Leng, J.X., Wang, C.Z.: Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part I: full-scale structure. Compos. Struct. 301, 116212 (2022)CrossRef
29.
Zurück zum Zitat Mandell, J.F., Samborsky, D.: SNL/MSU/DOE composite material fatigue database mechanical properties of composite materials for wind turbine blades version 23.0. SAND2014–6043, Sandia National Laboratories Technical Report, USA (2014) Mandell, J.F., Samborsky, D.: SNL/MSU/DOE composite material fatigue database mechanical properties of composite materials for wind turbine blades version 23.0. SAND2014–6043, Sandia National Laboratories Technical Report, USA (2014)
30.
Zurück zum Zitat Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A 38, 2333–2341 (2007)CrossRef Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A 38, 2333–2341 (2007)CrossRef
31.
Zurück zum Zitat Bottasso, C.L., Campagnolo, F., Croce, A., Dilli, A., Gualdoni, F., Nielsen, M.B.: Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Syst. Dyn. 32, 87–116 (2014)CrossRef Bottasso, C.L., Campagnolo, F., Croce, A., Dilli, A., Gualdoni, F., Nielsen, M.B.: Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Syst. Dyn. 32, 87–116 (2014)CrossRef
32.
Zurück zum Zitat Ye, J.J., Chu, C.C., Cai, H., Hou, X.N., Shi, B.Q., Tian, S.H., Chen, X.F., Ye, J.Q.: A multi-scale model for studying failure mechanisms of composite wind turbine blades. Compos. Struct. 212, 220–229 (2019)CrossRef Ye, J.J., Chu, C.C., Cai, H., Hou, X.N., Shi, B.Q., Tian, S.H., Chen, X.F., Ye, J.Q.: A multi-scale model for studying failure mechanisms of composite wind turbine blades. Compos. Struct. 212, 220–229 (2019)CrossRef
33.
Zurück zum Zitat Chen, X., Zhao, W., Zhao, X.L., Xu, J.Z.: Preliminary failure investigation of a 52.3m glass/epoxy composite wind turbine blade. Eng. Fail. Anal. 44, 345–350 (2014)CrossRef Chen, X., Zhao, W., Zhao, X.L., Xu, J.Z.: Preliminary failure investigation of a 52.3m glass/epoxy composite wind turbine blade. Eng. Fail. Anal. 44, 345–350 (2014)CrossRef
34.
Zurück zum Zitat Tarfaoui, M., Nachtane, M., Khadimallah, H., Saifaoui, D.: Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25, 237–254 (2018)CrossRef Tarfaoui, M., Nachtane, M., Khadimallah, H., Saifaoui, D.: Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25, 237–254 (2018)CrossRef
35.
Zurück zum Zitat Liu, P.F., Liu, J.W., Wang, C.Z.: Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part II: T-shape adhesive structure. Compos. Struct. 301, 116211 (2022)CrossRef Liu, P.F., Liu, J.W., Wang, C.Z.: Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part II: T-shape adhesive structure. Compos. Struct. 301, 116211 (2022)CrossRef
36.
Zurück zum Zitat An, Z.W., Yang, X.X., Kou, H.X.: Multiaxial fatigue life prediction of 1.5 MW wind turbine blade. Acta Energiae Solaris Sinica 2020(41), 129–135 (2020) An, Z.W., Yang, X.X., Kou, H.X.: Multiaxial fatigue life prediction of 1.5 MW wind turbine blade. Acta Energiae Solaris Sinica 2020(41), 129–135 (2020)
37.
Zurück zum Zitat Cardenas, D., Elizalde, H., Marzocca, P., Gallegos, S., Probst, O.: A coupled aeroelastic damage progression model for wind turbine blades. Compos. Struct. 94, 3072–3081 (2012)CrossRef Cardenas, D., Elizalde, H., Marzocca, P., Gallegos, S., Probst, O.: A coupled aeroelastic damage progression model for wind turbine blades. Compos. Struct. 94, 3072–3081 (2012)CrossRef
Metadaten
Titel
Fatigue Life Evaluation of Offshore Composite Wind Turbine Blades at Zhoushan Islands of China Using Wind Site Data
verfasst von
P. F. Liu
H. Y. Chen
T. Wu
J. W. Liu
J. X. Leng
C. Z. Wang
L. Jiao
Publikationsdatum
17.01.2023
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 4/2023
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-022-10098-1

Weitere Artikel der Ausgabe 4/2023

Applied Composite Materials 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.