Skip to main content
Erschienen in: Journal of Electronic Materials 1/2023

02.11.2022 | Topical Collection: Advanced Metal Ion Batteries

Fe3O4 Hollow Nanospheres Grown In Situ in Three-Dimensional Honeycomb Macroporous Carbon Boost Long-Life and High-Rate Lithium Ion Storage

verfasst von: Lixia Wang, Hao Zheng, Xin Jin, Yongfeng Yuan

Erschienen in: Journal of Electronic Materials | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A composite of Fe3O4 and carbon is constructed by a one-step calcination method with polystyrene spheres as template, polyvinyl pyrrolidone as assembling agent, and Fe(NO3)3 as Fe source. Material characterization demonstrates that Fe3O4 hollow nanospheres 10–16 nm in diameter are closely grown in situ inside three-dimensional honeycomb macroporous carbon with a pore diameter of about 200 nm. The composite material exhibits high specific capacity, delivering an average discharge capacity of 1618 mA h g−1 at 0.1 A g−1. The long-term cycling performance is excellent, achieving discharge capacity of 770 mA h g−1 at 1 A g−1 after 1000 cycles and 429 mA h g−1 at 5 A g−1 after 200 cycles. Even at 10 A g−1, the rate capability is outstanding. Kinetics analyses reveal predominant capacitive behavior and low reaction impedance in electrochemical reaction. The excellent performance mainly benefits from the beneficial structural effects of Fe3O4 hollow nanospheres and honeycomb macroporous carbon. Fe3O4 hollow nanospheres@three-dimensional honeycomb macroporous carbon is a superior anode material for lithium-ion batteries.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Z.J. Yao, C. Cai, C.W. Li, J.C. Hou, J.Y. Zhang, L.X. He, Y.F. Yang, X.H. Xia, and J. Xiong, Novel construction of heterostructured FeTiO3/Fe2.75Ti0.25O4 mesoporous nanodisks with both high capacity and stable cycling life for lithium-ion storage. ACS Appl. Energ. Mater. 4, 10380–10390 (2021).CrossRef Z.J. Yao, C. Cai, C.W. Li, J.C. Hou, J.Y. Zhang, L.X. He, Y.F. Yang, X.H. Xia, and J. Xiong, Novel construction of heterostructured FeTiO3/Fe2.75Ti0.25O4 mesoporous nanodisks with both high capacity and stable cycling life for lithium-ion storage. ACS Appl. Energ. Mater. 4, 10380–10390 (2021).CrossRef
2.
Zurück zum Zitat L. Chen, Y.F. Yuan, M. Zhu, S.M. Yin, P.F. Du, and C.L. Mo, Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage. J. Colloid Interf. Sci. 627, 449–458 (2022).CrossRef L. Chen, Y.F. Yuan, M. Zhu, S.M. Yin, P.F. Du, and C.L. Mo, Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage. J. Colloid Interf. Sci. 627, 449–458 (2022).CrossRef
3.
Zurück zum Zitat Q. Zhao, X. Chen, W. Hou, B.R. Ye, Y.Q. Zhang, X.H. Xia, and J.S. Wang, A facile, scalable, high stability lithium metal anode. SusMat. 2, 104–112 (2022).CrossRef Q. Zhao, X. Chen, W. Hou, B.R. Ye, Y.Q. Zhang, X.H. Xia, and J.S. Wang, A facile, scalable, high stability lithium metal anode. SusMat. 2, 104–112 (2022).CrossRef
4.
Zurück zum Zitat Z.F. Zhao, X.J. Teng, Q.Q. Xiong, H.Z. Chi, Y.J. Yuan, H.Y. Qin, and Z.G. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021). Z.F. Zhao, X.J. Teng, Q.Q. Xiong, H.Z. Chi, Y.J. Yuan, H.Y. Qin, and Z.G. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021).
5.
Zurück zum Zitat L. Chen, L.L. Qiu, L.X. Song, Y.F. Yuan, J. Xiong, and P.F. Du, CuGaO2 nanosheets and CuCrO2 nanoparticles mixed with spiro-OMeTAD as the hole-transport layer in perovskite solar cells. ACS Appl. Nano Mater. 5, 7312–7320 (2022).CrossRef L. Chen, L.L. Qiu, L.X. Song, Y.F. Yuan, J. Xiong, and P.F. Du, CuGaO2 nanosheets and CuCrO2 nanoparticles mixed with spiro-OMeTAD as the hole-transport layer in perovskite solar cells. ACS Appl. Nano Mater. 5, 7312–7320 (2022).CrossRef
6.
Zurück zum Zitat C.H. Wang, Y.H. Li, F. Cao, Y.Q. Zhang, X.H. Xia, and L.J. Zhang, Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries. ACS Appl. Mater. Inter. 14, 10457–10466 (2022).CrossRef C.H. Wang, Y.H. Li, F. Cao, Y.Q. Zhang, X.H. Xia, and L.J. Zhang, Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries. ACS Appl. Mater. Inter. 14, 10457–10466 (2022).CrossRef
7.
Zurück zum Zitat Y.F. Yuan, J.P. Tu, S.Y. Guo, J.B. Wu, M. Ma, J.L. Yang, and X.L. Wang, Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process. Appl. Surf. Sci. 254, 5080–5084 (2008).CrossRef Y.F. Yuan, J.P. Tu, S.Y. Guo, J.B. Wu, M. Ma, J.L. Yang, and X.L. Wang, Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process. Appl. Surf. Sci. 254, 5080–5084 (2008).CrossRef
8.
Zurück zum Zitat B.Q. Wang, S.H. Gong, Q.S. Sun, F. Liu, X.C. Wang, and J.P. Cheng, Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high-performance supercapacitors. Electrochim. Acta 402, 139575 (2021).CrossRef B.Q. Wang, S.H. Gong, Q.S. Sun, F. Liu, X.C. Wang, and J.P. Cheng, Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high-performance supercapacitors. Electrochim. Acta 402, 139575 (2021).CrossRef
9.
Zurück zum Zitat X.Y. Shan, Y. Zhong, L.J. Zhang, Y.Q. Zhang, X.H. Xia, X.L. Wang, and J.P. Tu, A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C. 125, 19060–19080 (2021).CrossRef X.Y. Shan, Y. Zhong, L.J. Zhang, Y.Q. Zhang, X.H. Xia, X.L. Wang, and J.P. Tu, A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C. 125, 19060–19080 (2021).CrossRef
10.
Zurück zum Zitat L. Mei, Z.L. Cao, T. Ying, R.J. Yang, H.R. Peng, G. Wang, L. Zheng, Y. Chen, C.Y. Tang, D. Voiry, H.H. Wang, A.B. Farimani, and Z.Y. Zeng, Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, 2201416 (2022).CrossRef L. Mei, Z.L. Cao, T. Ying, R.J. Yang, H.R. Peng, G. Wang, L. Zheng, Y. Chen, C.Y. Tang, D. Voiry, H.H. Wang, A.B. Farimani, and Z.Y. Zeng, Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, 2201416 (2022).CrossRef
11.
Zurück zum Zitat L. Huang, S.H. Shen, Y. Zhong, Y.Q. Zhang, L.J. Zhang, X.L. Wang, X.H. Xia, X.L. Tong, J.C. Zhou, and J.P. Tu, Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 34, 2107415 (2022).CrossRef L. Huang, S.H. Shen, Y. Zhong, Y.Q. Zhang, L.J. Zhang, X.L. Wang, X.H. Xia, X.L. Tong, J.C. Zhou, and J.P. Tu, Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 34, 2107415 (2022).CrossRef
12.
Zurück zum Zitat S.Y. Zhu, Y.F. Yuan, P.F. Du, C.L. Mo, G.C. Cai, B.X. Wang, and S.Y. Guo, Ultrasmall Mn3O4 nanocrystalline@three-dimensional macroporous honeycomb-like hollow carbon matrix for high-rate and long-lifetime zinc-ion storage. Electrochim. Acta 419, 140396 (2022).CrossRef S.Y. Zhu, Y.F. Yuan, P.F. Du, C.L. Mo, G.C. Cai, B.X. Wang, and S.Y. Guo, Ultrasmall Mn3O4 nanocrystalline@three-dimensional macroporous honeycomb-like hollow carbon matrix for high-rate and long-lifetime zinc-ion storage. Electrochim. Acta 419, 140396 (2022).CrossRef
13.
Zurück zum Zitat W.D. Wang, X.F. Li, P.P. Zhang, B.Q. Wang, S.H. Gong, X.C. Wang, F. Liu, and J.P. Cheng, Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. J. Electroanal. Chem. 891, 115257 (2021).CrossRef W.D. Wang, X.F. Li, P.P. Zhang, B.Q. Wang, S.H. Gong, X.C. Wang, F. Liu, and J.P. Cheng, Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. J. Electroanal. Chem. 891, 115257 (2021).CrossRef
14.
Zurück zum Zitat R.J. Yang, L. Mei, Q.Y. Zhang, Y.Y. Fan, H.S. Shin, D. Voiry, and Z.Y. Zeng, High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).CrossRef R.J. Yang, L. Mei, Q.Y. Zhang, Y.Y. Fan, H.S. Shin, D. Voiry, and Z.Y. Zeng, High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).CrossRef
15.
Zurück zum Zitat T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).CrossRef T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).CrossRef
16.
Zurück zum Zitat B. Bai, L.L. Qiu, D.Q. Mei, Z.F. Jin, L.X. Song, and P.F. Du, Firmly-Supported Porous fabric fiber photocatalysts: TiO2/porous carbon fiber cloth composites and their photocatalytic activity. Mater. Res. Bull. 148, 111672 (2022).CrossRef B. Bai, L.L. Qiu, D.Q. Mei, Z.F. Jin, L.X. Song, and P.F. Du, Firmly-Supported Porous fabric fiber photocatalysts: TiO2/porous carbon fiber cloth composites and their photocatalytic activity. Mater. Res. Bull. 148, 111672 (2022).CrossRef
17.
Zurück zum Zitat A.L. Yan, W.D. Wang, B.Q. Wang, X.C. Wang, and J.P. Cheng, Core-shell structured Co3O4@NiCo2O4 nanowires on nickel foam for supercapacitors. J. Electroanal. Chem. 907, 116061 (2022).CrossRef A.L. Yan, W.D. Wang, B.Q. Wang, X.C. Wang, and J.P. Cheng, Core-shell structured Co3O4@NiCo2O4 nanowires on nickel foam for supercapacitors. J. Electroanal. Chem. 907, 116061 (2022).CrossRef
18.
Zurück zum Zitat Q.W. Chen, W. Zhong, J.N. Zhang, C.L. Gao, W.L. Liu, G.D. Li, and M.M. Ren, Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries. J. Alloy. Compd. 772, 557–564 (2019).CrossRef Q.W. Chen, W. Zhong, J.N. Zhang, C.L. Gao, W.L. Liu, G.D. Li, and M.M. Ren, Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries. J. Alloy. Compd. 772, 557–564 (2019).CrossRef
19.
Zurück zum Zitat X.S. Tao, Y. Li, H.G. Wang, X.L. Lv, Y.H. Li, D. Xu, Y. Jiang, and Y. Meng, Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J. Colloid Interf. Sci. 565, 494–502 (2020).CrossRef X.S. Tao, Y. Li, H.G. Wang, X.L. Lv, Y.H. Li, D. Xu, Y. Jiang, and Y. Meng, Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J. Colloid Interf. Sci. 565, 494–502 (2020).CrossRef
20.
Zurück zum Zitat J.L. Xu, X. Zhang, Y.X. Miao, M.X. Wen, W.J. Yan, P. Lu, Z.R. Wang, and Q. Sun, In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 546, 149163 (2021).CrossRef J.L. Xu, X. Zhang, Y.X. Miao, M.X. Wen, W.J. Yan, P. Lu, Z.R. Wang, and Q. Sun, In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 546, 149163 (2021).CrossRef
21.
Zurück zum Zitat D. Liu, C.F. Wang, K.J. Jeong, and J. Lee, Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. J. Alloy. Compd. 832, 152824 (2020).CrossRef D. Liu, C.F. Wang, K.J. Jeong, and J. Lee, Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. J. Alloy. Compd. 832, 152824 (2020).CrossRef
22.
Zurück zum Zitat Z.J. Cao, and X.B. Ma, Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. J. Alloy. Compd. 815, 152542 (2020).CrossRef Z.J. Cao, and X.B. Ma, Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. J. Alloy. Compd. 815, 152542 (2020).CrossRef
23.
Zurück zum Zitat R.R. Gao, S.Q. Wang, Z.X. Xu, H.B. Li, S.L. Chen, H.Q. Hou, and J.L. Wang, Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 864, 158796 (2021).CrossRef R.R. Gao, S.Q. Wang, Z.X. Xu, H.B. Li, S.L. Chen, H.Q. Hou, and J.L. Wang, Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 864, 158796 (2021).CrossRef
24.
Zurück zum Zitat Y.F. Yan, X.M. Lu, Y.X. Li, J. Song, Q.H. Tian, L. Yang, and Z.Y. Sui, Dispersive Fe3O4 encapsulated in porous carbon for high capacity and long life anode of lithium-ion batteries. J. Alloy. Compd. 899, 163342 (2022).CrossRef Y.F. Yan, X.M. Lu, Y.X. Li, J. Song, Q.H. Tian, L. Yang, and Z.Y. Sui, Dispersive Fe3O4 encapsulated in porous carbon for high capacity and long life anode of lithium-ion batteries. J. Alloy. Compd. 899, 163342 (2022).CrossRef
25.
Zurück zum Zitat Q.C. Wu, R.L. Jiang, and H.W. Liu, Carbon layer encapsulated Fe3O4@reduced graphene oxide lithium battery anodes with long cycle performance. Ceram. Int. 46, 12732–12739 (2020).CrossRef Q.C. Wu, R.L. Jiang, and H.W. Liu, Carbon layer encapsulated Fe3O4@reduced graphene oxide lithium battery anodes with long cycle performance. Ceram. Int. 46, 12732–12739 (2020).CrossRef
26.
Zurück zum Zitat H.H. Duan, S.K. Zhang, Z.W. Chen, A.D. Xu, S.Z. Zhan, and S.P. Wu, Self-Formed channel boosts ultrafast lithium ion storage in Fe3O4@nitrogen-doped carbon nanocapsule. ACS Appl. Mater. Interfaces 12, 527–537 (2020).CrossRef H.H. Duan, S.K. Zhang, Z.W. Chen, A.D. Xu, S.Z. Zhan, and S.P. Wu, Self-Formed channel boosts ultrafast lithium ion storage in Fe3O4@nitrogen-doped carbon nanocapsule. ACS Appl. Mater. Interfaces 12, 527–537 (2020).CrossRef
27.
Zurück zum Zitat X.F. Chen, X.Y. Zhu, G.P. Cao, S.T. Zhang, Y. Mu, H. Ming, and J.Y. Qiu, Fe3O4-based anodes with high conductivity and fast ion diffusivity designed for high-energy lithium-ion batteries. Energ. Fuel. 35, 1810–1819 (2021).CrossRef X.F. Chen, X.Y. Zhu, G.P. Cao, S.T. Zhang, Y. Mu, H. Ming, and J.Y. Qiu, Fe3O4-based anodes with high conductivity and fast ion diffusivity designed for high-energy lithium-ion batteries. Energ. Fuel. 35, 1810–1819 (2021).CrossRef
28.
Zurück zum Zitat D.F. He, M.F. Sun, D. Cao, G.Y. He, and H.Q. Chen, Rational design of nano-Fe3O4 encapsulated in 3D honeycomb biochar for enhanced lithium storage performance. Nanotechnology 33, 035401 (2021).CrossRef D.F. He, M.F. Sun, D. Cao, G.Y. He, and H.Q. Chen, Rational design of nano-Fe3O4 encapsulated in 3D honeycomb biochar for enhanced lithium storage performance. Nanotechnology 33, 035401 (2021).CrossRef
29.
Zurück zum Zitat J.R. Huang, Q.S. Dai, C.J. Cui, H.B. Ren, X.J. Lu, Y. Hong, and S.W. Joo, Cake-like porous Fe3O4@C nanocomposite as high-performance anode for li-ion battery. J. Electroanal. Chem. 918, 116508 (2022).CrossRef J.R. Huang, Q.S. Dai, C.J. Cui, H.B. Ren, X.J. Lu, Y. Hong, and S.W. Joo, Cake-like porous Fe3O4@C nanocomposite as high-performance anode for li-ion battery. J. Electroanal. Chem. 918, 116508 (2022).CrossRef
30.
Zurück zum Zitat S.L. Gu, and A.P. Zhu, Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. J. Alloy. Compd. 813, 152160 (2020).CrossRef S.L. Gu, and A.P. Zhu, Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. J. Alloy. Compd. 813, 152160 (2020).CrossRef
31.
Zurück zum Zitat Y.H. Hou, H. Yuan, H. Chen, J. Shen, and L.C. Li, The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite. Ceram. Int. 43, 11505–11510 (2017).CrossRef Y.H. Hou, H. Yuan, H. Chen, J. Shen, and L.C. Li, The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite. Ceram. Int. 43, 11505–11510 (2017).CrossRef
32.
Zurück zum Zitat L. Zhao, M.M. Gao, W.B. Yue, Y. Jiang, Y. Wang, Y. Ren, and F.Q. Hu, Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Inter. 7, 9709–9715 (2015).CrossRef L. Zhao, M.M. Gao, W.B. Yue, Y. Jiang, Y. Wang, Y. Ren, and F.Q. Hu, Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Inter. 7, 9709–9715 (2015).CrossRef
33.
Zurück zum Zitat S. Chauque, A.H. Braga, R.V. Goncalves, L.M. Rossi, and R.M. Torresi, Enhanced energy storage of Fe3O4 nanoparticles embedded in N-doped graphene. ChemElectroChem 7, 1456–1464 (2020).CrossRef S. Chauque, A.H. Braga, R.V. Goncalves, L.M. Rossi, and R.M. Torresi, Enhanced energy storage of Fe3O4 nanoparticles embedded in N-doped graphene. ChemElectroChem 7, 1456–1464 (2020).CrossRef
34.
Zurück zum Zitat L.L. Xu, R.R. Jiao, X.Q. Tao, X.J. Yi, and D.H. Wei, One-step thermal decomposition of C4H4FeO6 to Fe3O4@Carbon nano-composite for high-performance lithium-ion batteries. Mater. Chem. Phys. 239, 122024 (2020).CrossRef L.L. Xu, R.R. Jiao, X.Q. Tao, X.J. Yi, and D.H. Wei, One-step thermal decomposition of C4H4FeO6 to Fe3O4@Carbon nano-composite for high-performance lithium-ion batteries. Mater. Chem. Phys. 239, 122024 (2020).CrossRef
35.
Zurück zum Zitat Q.C. Wu, R. Yu, Z.H. Zhou, H.W. Liu, and R.L. Jiang, Encapsulation of a core-shell porous Fe3O4@carbon material with reduced graphene oxide for Li+ battery anodes with long cyclability. Langmuir 37, 785–792 (2021).CrossRef Q.C. Wu, R. Yu, Z.H. Zhou, H.W. Liu, and R.L. Jiang, Encapsulation of a core-shell porous Fe3O4@carbon material with reduced graphene oxide for Li+ battery anodes with long cyclability. Langmuir 37, 785–792 (2021).CrossRef
36.
Zurück zum Zitat W.H. Han, Y. Xiao, J.P. Yin, Y.M. Gong, X.H. Tuo, and J.C. Cao, Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery. Langmuir 36, 11237–11244 (2020).CrossRef W.H. Han, Y. Xiao, J.P. Yin, Y.M. Gong, X.H. Tuo, and J.C. Cao, Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery. Langmuir 36, 11237–11244 (2020).CrossRef
37.
Zurück zum Zitat J. Song, Y.L. Ji, Y.X. Li, X.M. Lu, W.C. Ren, Q.H. Tian, J.Z. Chen, and L. Yang, Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceram. Int. 47, 26092–26099 (2021).CrossRef J. Song, Y.L. Ji, Y.X. Li, X.M. Lu, W.C. Ren, Q.H. Tian, J.Z. Chen, and L. Yang, Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceram. Int. 47, 26092–26099 (2021).CrossRef
38.
Zurück zum Zitat Q.X. Yu, S. Ma, H.H. Zhou, J.W. Li, Z.Q. Wang, Z. Tan, L. Chen, Z.Y. Huang, C.P. Fu, and Y.F. Kuang, Partial self-sacrificing templates synthesis of sandwich-like mesoporous C-N@Fe3O4@C-N hollow spheres for high-performance Li-ion batteries. Int. J. Hydrog. Energ. 44, 1816–1826 (2019).CrossRef Q.X. Yu, S. Ma, H.H. Zhou, J.W. Li, Z.Q. Wang, Z. Tan, L. Chen, Z.Y. Huang, C.P. Fu, and Y.F. Kuang, Partial self-sacrificing templates synthesis of sandwich-like mesoporous C-N@Fe3O4@C-N hollow spheres for high-performance Li-ion batteries. Int. J. Hydrog. Energ. 44, 1816–1826 (2019).CrossRef
39.
Zurück zum Zitat S.P. Chen, Q.N. Wu, M. Wen, Q.S. Wu, J.Q. Li, Y. Cui, N. Pinna, Y.F. Fan, and T. Wu, Sea-sponge-like structure of nano-Fe3O4 on Skeleton-C with long cycle life under high rate for li-ion batteries. ACS Appl. Mater. Inter. 10, 19656–19663 (2018).CrossRef S.P. Chen, Q.N. Wu, M. Wen, Q.S. Wu, J.Q. Li, Y. Cui, N. Pinna, Y.F. Fan, and T. Wu, Sea-sponge-like structure of nano-Fe3O4 on Skeleton-C with long cycle life under high rate for li-ion batteries. ACS Appl. Mater. Inter. 10, 19656–19663 (2018).CrossRef
40.
Zurück zum Zitat Y. Liu, Y. Dai, X.B. Jiang, X.C. Li, Z.J. Yan, and G.H. He, Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries. Mater. Today Energy 12, 269–276 (2019).CrossRef Y. Liu, Y. Dai, X.B. Jiang, X.C. Li, Z.J. Yan, and G.H. He, Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries. Mater. Today Energy 12, 269–276 (2019).CrossRef
41.
Zurück zum Zitat A.L. Bahadur, S.H. Iqbal, M.H. Shoaib, and A. Saeed, Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalton T. 47, 15031–15037 (2018).CrossRef A.L. Bahadur, S.H. Iqbal, M.H. Shoaib, and A. Saeed, Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalton T. 47, 15031–15037 (2018).CrossRef
Metadaten
Titel
Fe3O4 Hollow Nanospheres Grown In Situ in Three-Dimensional Honeycomb Macroporous Carbon Boost Long-Life and High-Rate Lithium Ion Storage
verfasst von
Lixia Wang
Hao Zheng
Xin Jin
Yongfeng Yuan
Publikationsdatum
02.11.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 1/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10026-w

Weitere Artikel der Ausgabe 1/2023

Journal of Electronic Materials 1/2023 Zur Ausgabe

Neuer Inhalt