Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.03.2019

Feature Selection and Evolutionary Rule Learning for Big Data in Smart Building Energy Management

Zeitschrift:
Cognitive Computation
Autoren:
Pablo Rodriguez-Mier, Manuel Mucientes, Alberto Bugarín
Wichtige Hinweise

Informed Consent

Informed consent was not required as no human or animals were involved.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Since buildings are one of the largest sources of energy consumption in most cities of the world, energy management is one of the major concerns in their design. To ameliorate this problem, buildings are becoming smarter by the incorporation of intelligent supervision and control systems. Data captured by the sensors can be interpreted and processed by rule-based computation methods of biological inspiration (such as genetic fuzzy systems, GFS) for predicting the future behavior of the building in a knowledge-based interpretable human-like manner. GFS are computational models inspired in human cognition which use evolutionary computation (inspired in the natural evolution) to automatically learn fuzzy rules which contain explicit imprecise knowledge about a system or process. This knowledge, represented using fuzzy rules that involve fuzzy linguistic variables and values, is used to perform approximate reasoning on the input values for obtaining inferred values for the output variables. In energy management of buildings, these rules allow a smart control of the system actuators to reduce the building average energy consumption. However, the large amount of data produced on a per second basis complicates the generation of accurate and interpretable models by means of traditional methods. In this paper, we present an evolutionary computation-based approach, namely a genetic fuzzy system, to build scalable and interpretable knowledge bases for predicting energy consumption in smart buildings. For accomplishing this task, we propose a cognitive computation system for multi-step prediction based on S-FRULER, a state-of-the-art scalable distributed GFS, coupled with a feature subset selection method to automatically select the most relevant features for different time steps. S-FRULER is able to learn a fuzzy rule-based system made up of Takagi-Sugeno-Kang (TSK) rules that are able to predict the output values using both linguistic imprecise knowledge (represented by fuzzy sets) and fuzzy inference. Experiments with real data on two different problems related with the energy management revealed an average improvement of 6% on accuracy with respect to S-FRULER without feature selection, and with knowledge bases with a lower number of variables.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise