Skip to main content
Erschienen in: Measurement Techniques 10/2020

06.02.2020 | STATE STANDARDS

Features of Measuring the Electrical Conductivity of Distilled Water in Contact with Air

verfasst von: I. M. Ageev, Yu. M. Rybin

Erschienen in: Measurement Techniques | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper describes the results of experiments on measuring the electrical conductivity (specific conductance) of distilled water during prolonged contact with air. To carry out the experiments, a hardware-software complex was developed and manufactured that made it possible to measure the electrical conductivity of water with a relative error of the order of ±0.1% with a change in its temperature within 2–50°C, and a temperature error of ±0.06°C. It is shown that the time of diffusion and dissolution of carbon dioxide in water significantly affects the time dependence of the specific conductance of water when its temperature changes. The peculiarity of measuring the electrical conductivity of distilled water for open and closed systems is shown in the results of experiments with partially and completely filled conductometric cells. Thus, in a filled cell in the absence of gas exchange between water and air, the temperature coefficient of electrical conductivity of water is close to the known table value. In this case, in an empty cell, the gas exchange process significantly reduces the value of this coefficient, and the degree of decrease is proportional to the exposure time between the temperature setting and the moment of conductivity measurement. The experimental results are supplemented by theoretical dependences of the specific conductance of water on temperature for various gas exchange conditions between water and air. It is also shown that when measuring the temperature coefficient of electrical conductivity of distilled water in contact with air, it is necessary to take into account not only the time of dissolution of carbon dioxide in it, but also the design features of the electrolytic cell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Chen, G. A. Voth, and N. Agmon, J. Phys. Chem. B, Nо. 114, 333–339 (2010).CrossRef H. Chen, G. A. Voth, and N. Agmon, J. Phys. Chem. B, Nо. 114, 333–339 (2010).CrossRef
2.
Zurück zum Zitat S. D. Zakharov and I. V. Mosyagina, Cluster Structure of Water (review), FIAN, Moscow (2011). S. D. Zakharov and I. V. Mosyagina, Cluster Structure of Water (review), FIAN, Moscow (2011).
3.
Zurück zum Zitat N. Agmon, Chem. Phys. Lett., No. 319, 247–252 (2000). N. Agmon, Chem. Phys. Lett., No. 319, 247–252 (2000).
5.
Zurück zum Zitat E. N. Bushuev, “Calculation of the temperature dependence of the ionic product, the specifi c conductance of water and extremely dilute solutions of electrolytes,” Vest. IGEU, No. 2, 1–4 (2007). E. N. Bushuev, “Calculation of the temperature dependence of the ionic product, the specifi c conductance of water and extremely dilute solutions of electrolytes,” Vest. IGEU, No. 2, 1–4 (2007).
6.
Zurück zum Zitat T. S. Light, E. A. Kingman, and A. C. Bevilacqua, 209th Amer. Chem. Soc. Nat. Meeting, Anaheim, CA, USA (1995). T. S. Light, E. A. Kingman, and A. C. Bevilacqua, 209th Amer. Chem. Soc. Nat. Meeting, Anaheim, CA, USA (1995).
7.
Zurück zum Zitat K. P. Mishchenko and A.A. Ravdel (eds.), Quick Reference to Physicochemical Quantities, Khimiya, Moscow (1967), 5th ed. K. P. Mishchenko and A.A. Ravdel (eds.), Quick Reference to Physicochemical Quantities, Khimiya, Moscow (1967), 5th ed.
8.
Zurück zum Zitat I. M. Ageev, Yu. M. Rybin, and G. G. Shishkin, “Slow variations in the electrical conductivity of distilled water,” Vest. MGU. Ser. 3. Fiz. Astron., No. 6, 54–59 (2016), DOI: 10.3103/S0027134916050027.ADSCrossRef I. M. Ageev, Yu. M. Rybin, and G. G. Shishkin, “Slow variations in the electrical conductivity of distilled water,” Vest. MGU. Ser. 3. Fiz. Astron., No. 6, 54–59 (2016), DOI: 10.3103/S0027134916050027.ADSCrossRef
9.
Zurück zum Zitat I. M. Ageev, Yu. M. Rybin, and G. G. Shishkin, “Manifestation of solar-terrestrial rhythms in variations of the electrical conductivity of water,” Biofizika, 63, No. 2, 382–391 (2018).CrossRef I. M. Ageev, Yu. M. Rybin, and G. G. Shishkin, “Manifestation of solar-terrestrial rhythms in variations of the electrical conductivity of water,” Biofizika, 63, No. 2, 382–391 (2018).CrossRef
Metadaten
Titel
Features of Measuring the Electrical Conductivity of Distilled Water in Contact with Air
verfasst von
I. M. Ageev
Yu. M. Rybin
Publikationsdatum
06.02.2020
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 10/2020
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01714-2

Weitere Artikel der Ausgabe 10/2020

Measurement Techniques 10/2020 Zur Ausgabe