Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Feedstock Characterization for Pyrolysis and Gasification

verfasst von : B. Rajasekhar Reddy, R. Vinu

Erschienen in: Coal and Biomass Gasification

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gasification and pyrolysis are promising thermochemical processing technologies for the conversion of complex feedstocks like coal, lignocellulosic biomass and refuse-derived fuels (RDF) into energy and fuels. The quality of the products such as syngas and liquid oil and the process efficiencies depend greatly on the operating parameters of the process, which in turn depend on feedstock characteristics. Hence, it is imperative to map the salient properties of the feedstock to the process characteristics. This review highlights the techniques adopted for characterizing different varieties of coal, biomass and RDF. The various physicochemical and thermal properties discussed in this chapter include density, porosity, specific surface area, thermal conductivity, specific heat, calorific value, thermal stability, pyrolysate composition, proximate and elemental composition, and ash composition. A compendium of proximate analysis (moisture, volatile matter, fixed carbon, ash), ultimate analysis (elemental C, H, N, S, O) and higher heating value data for a large number of solid fuels is provided. The implications of these on the process and product characteristics are addressed. As ash is known to act as a catalyst in the pyrolysis process and cause issues like corrosion and deposition in gasifier systems, the effect of its composition on relevant process parameters is discussed. Finally, the existing challenges and requirements in fuel characterization are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Higman C, Tam S (2014) Advances in coal gasification, hydrogenation, and gas treating for the production of chemical and fuels. Chem Rev 114:1673–1708CrossRef Higman C, Tam S (2014) Advances in coal gasification, hydrogenation, and gas treating for the production of chemical and fuels. Chem Rev 114:1673–1708CrossRef
4.
Zurück zum Zitat Higman C, Burgt MV (2003) Gasification. Gulf Professional Publishing, Elsevier. ISBN 0-7506-7707-4 Higman C, Burgt MV (2003) Gasification. Gulf Professional Publishing, Elsevier. ISBN 0-7506-7707-4
5.
Zurück zum Zitat Speight JG (1983) The chemistry and technology of coal. Marcel Dekker, New York Speight JG (1983) The chemistry and technology of coal. Marcel Dekker, New York
6.
Zurück zum Zitat Suriapparao DV, Pradeep N, Vinu R (2015) Bio-oil production from Prosopis juliflora via microwave pyrolysis. Energy Fuels 29:2571–2581CrossRef Suriapparao DV, Pradeep N, Vinu R (2015) Bio-oil production from Prosopis juliflora via microwave pyrolysis. Energy Fuels 29:2571–2581CrossRef
7.
Zurück zum Zitat Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef
8.
Zurück zum Zitat Sansaniwal SK, Rosen MA, Tyagi SK (2017) Global challenges in the sustainable development of biomass gasification: an overview. Renew Sustain Energy Rev 80:23–43CrossRef Sansaniwal SK, Rosen MA, Tyagi SK (2017) Global challenges in the sustainable development of biomass gasification: an overview. Renew Sustain Energy Rev 80:23–43CrossRef
9.
Zurück zum Zitat Miller BG (2005) Coal energy systems. Elsevier Academic Press, U.S.A Miller BG (2005) Coal energy systems. Elsevier Academic Press, U.S.A
10.
Zurück zum Zitat Heredy LA, Wender I (1980) Model structure for a bituminous coal. Rockwell International Corporation, Washington Heredy LA, Wender I (1980) Model structure for a bituminous coal. Rockwell International Corporation, Washington
11.
Zurück zum Zitat Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889CrossRef Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889CrossRef
12.
Zurück zum Zitat Lasa H, Salaices E, Mazumder J, Lucky R (2011) Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev 111:5404–5433CrossRef Lasa H, Salaices E, Mazumder J, Lucky R (2011) Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev 111:5404–5433CrossRef
13.
Zurück zum Zitat Zhou X, Broadbelt LJ, Vinu R (2016) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem K (ed) Advances in chemical engineering: thermochemical process engineering, vol 49. Elsevier, U.K., pp 95–198CrossRef Zhou X, Broadbelt LJ, Vinu R (2016) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem K (ed) Advances in chemical engineering: thermochemical process engineering, vol 49. Elsevier, U.K., pp 95–198CrossRef
14.
Zurück zum Zitat Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuels 22:4292–4300CrossRef Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuels 22:4292–4300CrossRef
15.
Zurück zum Zitat Prakash P, Sheeba KN (2016) Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties. Energy Sources Part A: Recover Util Environ Eff 38:1530–1536CrossRef Prakash P, Sheeba KN (2016) Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties. Energy Sources Part A: Recover Util Environ Eff 38:1530–1536CrossRef
16.
Zurück zum Zitat Speight JG (2005) Handbook of coal analysis. Wiley Interscience, New JerseyCrossRef Speight JG (2005) Handbook of coal analysis. Wiley Interscience, New JerseyCrossRef
17.
Zurück zum Zitat Feng Y, Xiao B, Goerner K, Cheng G, Wang J (2011) Influence of particle size and temperature on gasification performance in externally heated gasifier. Smart Grid Renew Energy 2:158–164CrossRef Feng Y, Xiao B, Goerner K, Cheng G, Wang J (2011) Influence of particle size and temperature on gasification performance in externally heated gasifier. Smart Grid Renew Energy 2:158–164CrossRef
18.
Zurück zum Zitat Bhavya B, Singh R, Bhaskar T (2015) Preparation of feedstocks for gasification for synthetic fuel production, Chapter 3, Gasification for synthetic fuel production. Elsevier Bhavya B, Singh R, Bhaskar T (2015) Preparation of feedstocks for gasification for synthetic fuel production, Chapter 3, Gasification for synthetic fuel production. Elsevier
19.
Zurück zum Zitat Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762 Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762
20.
Zurück zum Zitat Berkowitz N (1979) An introduction to coal technology. Academic Press, SanDiego, CA Berkowitz N (1979) An introduction to coal technology. Academic Press, SanDiego, CA
21.
Zurück zum Zitat Floess JK, Longwell JP, Sarofim AF (1988) Intrinsic reaction kinetics of micro porous carbons. 1: noncatalyzed chars. Energy Fuels 2:18–26CrossRef Floess JK, Longwell JP, Sarofim AF (1988) Intrinsic reaction kinetics of micro porous carbons. 1: noncatalyzed chars. Energy Fuels 2:18–26CrossRef
22.
Zurück zum Zitat Walker PL, Verma SK, Rivera-Utrilla J, Davis A (1988) Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel 67:1615–1623CrossRef Walker PL, Verma SK, Rivera-Utrilla J, Davis A (1988) Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel 67:1615–1623CrossRef
23.
Zurück zum Zitat Mason PE, Darvell LI, Jones JM, Williams A (2016) Comparative study of the thermal conductivity of solid biomass fuels. Energy Fuels 30:2158–2163CrossRef Mason PE, Darvell LI, Jones JM, Williams A (2016) Comparative study of the thermal conductivity of solid biomass fuels. Energy Fuels 30:2158–2163CrossRef
24.
Zurück zum Zitat Golachowska MK, Gajewski W, Musial T (2014) Determination of the effective thermal conductivity of solid fuels by the lase flash method. Arch Thermodyn 35:3–16 Golachowska MK, Gajewski W, Musial T (2014) Determination of the effective thermal conductivity of solid fuels by the lase flash method. Arch Thermodyn 35:3–16
25.
Zurück zum Zitat Mahajan OP, Walker PL (1978) In: Analytical methods for coal and coal products. Academic Press, San Diego, CA, Chap, p 4CrossRef Mahajan OP, Walker PL (1978) In: Analytical methods for coal and coal products. Academic Press, San Diego, CA, Chap, p 4CrossRef
26.
Zurück zum Zitat Hurt RH, Dudek DR, Longwell JP, Sarofim AF (1988) The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution. Carbon 26:433–449CrossRef Hurt RH, Dudek DR, Longwell JP, Sarofim AF (1988) The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution. Carbon 26:433–449CrossRef
27.
Zurück zum Zitat Kang S-W, Sarofim AF, Beér JM (1989) Particle rotation in coal combustion: Statistical, experimental and theoretical studies. Symp (Int) Combust 22:145–153CrossRef Kang S-W, Sarofim AF, Beér JM (1989) Particle rotation in coal combustion: Statistical, experimental and theoretical studies. Symp (Int) Combust 22:145–153CrossRef
28.
Zurück zum Zitat Lowell SS (2004) Characterization of porous solids and powders: Surface area, pore size and density. Springer, DordrechtCrossRef Lowell SS (2004) Characterization of porous solids and powders: Surface area, pore size and density. Springer, DordrechtCrossRef
29.
Zurück zum Zitat Linge HG (1988) The surface area of coal particles. Fuel 68:111–113CrossRef Linge HG (1988) The surface area of coal particles. Fuel 68:111–113CrossRef
30.
Zurück zum Zitat Luan J, Wu X, Wu G, Shao D (2013) Analysis of char specific surface area and porosity from the fast pyrolysis of biomass and pulverized coal. Adv Mater Res 608:383–387 Luan J, Wu X, Wu G, Shao D (2013) Analysis of char specific surface area and porosity from the fast pyrolysis of biomass and pulverized coal. Adv Mater Res 608:383–387
31.
Zurück zum Zitat Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W, Huhuke RL (2013) Effects of Biomass feedstocks and gasification and gasification conditions on the physciochemical properties of char. Energies 6:3972–3986CrossRef Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W, Huhuke RL (2013) Effects of Biomass feedstocks and gasification and gasification conditions on the physciochemical properties of char. Energies 6:3972–3986CrossRef
32.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordMATH Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordMATH
33.
Zurück zum Zitat Naidu VS, Aghalayam P, Jayanti S (2016) Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim 123:467–478CrossRef Naidu VS, Aghalayam P, Jayanti S (2016) Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim 123:467–478CrossRef
34.
Zurück zum Zitat Oyedun AO, Tee CZ, Hanson S, Hui CW (2014) Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol 128:471–481CrossRef Oyedun AO, Tee CZ, Hanson S, Hui CW (2014) Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol 128:471–481CrossRef
35.
Zurück zum Zitat Muller A, Hauestein HD, Stoesser P, Kreitzberg T, Kneer R, Kolb T (2015) Gasification kinetics of biomass and fossil based fuels: comparison study using fluidized bed and thermogravimetric analysis. Energy Fuels 29:6717–6723CrossRef Muller A, Hauestein HD, Stoesser P, Kreitzberg T, Kneer R, Kolb T (2015) Gasification kinetics of biomass and fossil based fuels: comparison study using fluidized bed and thermogravimetric analysis. Energy Fuels 29:6717–6723CrossRef
36.
Zurück zum Zitat Varhegyi G, Bobaly B, Jakab E, Chen H (2011) ‘Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32CrossRef Varhegyi G, Bobaly B, Jakab E, Chen H (2011) ‘Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32CrossRef
37.
Zurück zum Zitat Singh S, Wu C, Williams PT (2012) Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques. J Anal Appl Pyrol 94:99–107CrossRef Singh S, Wu C, Williams PT (2012) Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques. J Anal Appl Pyrol 94:99–107CrossRef
38.
Zurück zum Zitat Tsuge S, Ohrani H, Watanabe C (2011) Pyrolysis-GC/MS handbook of synthetic polymers. Elsevier, Oxford, UK Tsuge S, Ohrani H, Watanabe C (2011) Pyrolysis-GC/MS handbook of synthetic polymers. Elsevier, Oxford, UK
40.
Zurück zum Zitat Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230CrossRef Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230CrossRef
41.
Zurück zum Zitat Khalil RA, Meszaros E, Gronli MG, Varhegyi G, Mohai I, Marosvolgyi B, Hustad JE (2008) Thermal analysis of energy crops Part I: the applicability of a macro-thermo balance for biomass studies. J Anal Appl Pyrol 8:52–59CrossRef Khalil RA, Meszaros E, Gronli MG, Varhegyi G, Mohai I, Marosvolgyi B, Hustad JE (2008) Thermal analysis of energy crops Part I: the applicability of a macro-thermo balance for biomass studies. J Anal Appl Pyrol 8:52–59CrossRef
42.
Zurück zum Zitat Reddy BR, Vinu R (2016) Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization. Fuel Process Technol 154:96–103CrossRef Reddy BR, Vinu R (2016) Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization. Fuel Process Technol 154:96–103CrossRef
43.
Zurück zum Zitat Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822CrossRef Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822CrossRef
44.
Zurück zum Zitat Barraza J, Coley-Silva E, Pineres J (2016) Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction. Fuel 172:153–159CrossRef Barraza J, Coley-Silva E, Pineres J (2016) Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction. Fuel 172:153–159CrossRef
45.
Zurück zum Zitat Singh K, Zondlo J (2017) Co-processing coal and torrefied biomass during direct liquefaction. J Energy Inst 90:497–504CrossRef Singh K, Zondlo J (2017) Co-processing coal and torrefied biomass during direct liquefaction. J Energy Inst 90:497–504CrossRef
46.
Zurück zum Zitat Lu KM, Lee WH, Chen WH, Lin TC (2013) Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Energy 105:57–65 Lu KM, Lee WH, Chen WH, Lin TC (2013) Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Energy 105:57–65
47.
Zurück zum Zitat Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D (2013) Thermochemical and combustion behaviours of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng 54:111–119CrossRef Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D (2013) Thermochemical and combustion behaviours of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng 54:111–119CrossRef
48.
Zurück zum Zitat Ferrara F, Orsini A, Plaisant A, Pettinau A (2014) Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Biores Technol 171:433–441CrossRef Ferrara F, Orsini A, Plaisant A, Pettinau A (2014) Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Biores Technol 171:433–441CrossRef
49.
Zurück zum Zitat Naidu VS, Aghalayam P, Jayanti S (2016) Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin. Biores Technol 209:157–165CrossRef Naidu VS, Aghalayam P, Jayanti S (2016) Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin. Biores Technol 209:157–165CrossRef
50.
Zurück zum Zitat Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekhar T, Premalatha M, Subramanian R (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186CrossRef Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekhar T, Premalatha M, Subramanian R (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186CrossRef
52.
Zurück zum Zitat Nyakumal B, Oladokunl O, Dodo Y, Wong S, Uthman H, Halim M (2016) Fuel characterization and thermogravimetric analysis of melon (Citrullus Colocynthis L.) seed husk. Chem Chem Technol 10:493–497CrossRef Nyakumal B, Oladokunl O, Dodo Y, Wong S, Uthman H, Halim M (2016) Fuel characterization and thermogravimetric analysis of melon (Citrullus Colocynthis L.) seed husk. Chem Chem Technol 10:493–497CrossRef
53.
Zurück zum Zitat Werle S (2014) Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Manag Res 32:954–960CrossRef Werle S (2014) Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Manag Res 32:954–960CrossRef
54.
Zurück zum Zitat Lina KS, Wanga HP, Liua SH, Changa NB, Huanga YJ, Wangb HC (1999) Pyrolysis kinetics of refuse-derived fuel. Fuel Proc Technol 60:103–110CrossRef Lina KS, Wanga HP, Liua SH, Changa NB, Huanga YJ, Wangb HC (1999) Pyrolysis kinetics of refuse-derived fuel. Fuel Proc Technol 60:103–110CrossRef
55.
Zurück zum Zitat Suriapparao DV, Vinu R (2015) Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Advances 5:57619–57631CrossRef Suriapparao DV, Vinu R (2015) Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Advances 5:57619–57631CrossRef
56.
Zurück zum Zitat Menendez JA, Dominguez A, Inguanzo M, Pis, JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrolysis 71:657–667 Menendez JA, Dominguez A, Inguanzo M, Pis, JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrolysis 71:657–667
57.
Zurück zum Zitat Channiwala SA, Parikh A (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef Channiwala SA, Parikh A (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef
58.
Zurück zum Zitat Vargas-Moreno JM, Callejon-Ferre AJ, Perez Alonso J, Velazquez-Marti B (2012) A review of the mathematical models for predicting the heating value of biomass material. Renew Sustain Energy Rev 16:3065–3083CrossRef Vargas-Moreno JM, Callejon-Ferre AJ, Perez Alonso J, Velazquez-Marti B (2012) A review of the mathematical models for predicting the heating value of biomass material. Renew Sustain Energy Rev 16:3065–3083CrossRef
59.
Zurück zum Zitat Hartley ID, Wood LJ (2008) Hygroscopic properties of densified softwood pellets. Biomass Bioenergy 32:90–98CrossRef Hartley ID, Wood LJ (2008) Hygroscopic properties of densified softwood pellets. Biomass Bioenergy 32:90–98CrossRef
60.
Zurück zum Zitat Singh RN (2004) Equilibrium moisture content of biomass briquettes. Biomass Bioenerg 26:251–253CrossRef Singh RN (2004) Equilibrium moisture content of biomass briquettes. Biomass Bioenerg 26:251–253CrossRef
61.
Zurück zum Zitat Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRef Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRef
62.
Zurück zum Zitat Baxter D, Andersen LK, Vassilev G, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33CrossRef Baxter D, Andersen LK, Vassilev G, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33CrossRef
63.
Zurück zum Zitat Deng C, Zhang C, Tan P, Fang Q, Chen G (2015) The melting and transformation characteristics of minerals during co-combustion of coal with different sludges. Energy Fuels 29:6758–6767CrossRef Deng C, Zhang C, Tan P, Fang Q, Chen G (2015) The melting and transformation characteristics of minerals during co-combustion of coal with different sludges. Energy Fuels 29:6758–6767CrossRef
64.
Zurück zum Zitat Krishnamoorthy V, Pisupati SV (2015) A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers. Energies 8:10430–10463CrossRef Krishnamoorthy V, Pisupati SV (2015) A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers. Energies 8:10430–10463CrossRef
65.
Zurück zum Zitat Song WJ, Tang LH, Zhu XD, Wu YQ, Zhu ZB, Koyama S (2010) Effect of coal ash composition on ash fusion temperatures. Energy Fuels 24:182–189CrossRef Song WJ, Tang LH, Zhu XD, Wu YQ, Zhu ZB, Koyama S (2010) Effect of coal ash composition on ash fusion temperatures. Energy Fuels 24:182–189CrossRef
66.
Zurück zum Zitat Ranzi R, Corbetta M, Manenti F, Pierucci S (2014) Kinetic modelling of the thermal degradation and combustion of biomass. Chem Eng Sci 110:2–12CrossRef Ranzi R, Corbetta M, Manenti F, Pierucci S (2014) Kinetic modelling of the thermal degradation and combustion of biomass. Chem Eng Sci 110:2–12CrossRef
67.
Zurück zum Zitat Ranzi E, Faravelli T, Manenti F (2016) Pyrolysis, gasification and combustion of solid fuels. In: Van Geem K (ed) Advances in chemical engineering: thermochemical process engineering, vol 49. Elsevier, UK, pp 1–94CrossRef Ranzi E, Faravelli T, Manenti F (2016) Pyrolysis, gasification and combustion of solid fuels. In: Van Geem K (ed) Advances in chemical engineering: thermochemical process engineering, vol 49. Elsevier, UK, pp 1–94CrossRef
Metadaten
Titel
Feedstock Characterization for Pyrolysis and Gasification
verfasst von
B. Rajasekhar Reddy
R. Vinu
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7335-9_1