Skip to main content

2010 | OriginalPaper | Buchkapitel

7. Field Emission Properties of ZnO, ZnS, and GaN Nanostructures

verfasst von : Y. Mo, J.J. Schwartz, M.H. Lynch, P.A. Ecton, Arup Neogi, J.M. Perez, Y. Fujita, H.W. Seo, Q.Y. Chen, L.W. Tu, N.J. Ho

Erschienen in: Nanoscale Photonics and Optoelectronics

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review the growth and field emission (FE) properties of ZnO, ZnS, and GaN nanostructures. For ZnO nanostructures, we discuss in detail solution-based growth techniques and the effects of residual gas exposure on the FE properties. We present new results showing that O2 and CO2 exposures do not have a significant effect on the FE properties of ZnO nanorods, but N2 exposure significantly degrades them. We also present new results showing that Cs deposition significantly improves the FE properties of GaN nanorods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J.: Field emission from well-aligned zinc-oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002) Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J.: Field emission from well-aligned zinc-oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002)
2.
Zurück zum Zitat Dong, L.F., Jiao, J, Tuggle, D.W., Petty, J.M., Ellis, S.A., Coulter, M.: ZnO nanowires formed on tungsten substrates and their electron field emission properties. Appl. Phys. Lett. 82, 1096 (2003) Dong, L.F., Jiao, J, Tuggle, D.W., Petty, J.M., Ellis, S.A., Coulter, M.: ZnO nanowires formed on tungsten substrates and their electron field emission properties. Appl. Phys. Lett. 82, 1096 (2003)
3.
Zurück zum Zitat Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M., Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003) Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M., Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003)
4.
Zurück zum Zitat Li, Y.B., Bando, Y., Goldberg, D.: ZnO nanoneedles with tip surface perturbations: excellent field emitters. Appl. Phys. Lett. 84, 3603 (2004) Li, Y.B., Bando, Y., Goldberg, D.: ZnO nanoneedles with tip surface perturbations: excellent field emitters. Appl. Phys. Lett. 84, 3603 (2004)
5.
Zurück zum Zitat Tseng, Y.K., Huang, C.J., Cheng, H.M., Lin, I.N., Liu, K.S., Chen, I.C.: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater. 13, 811–814 (2003) Tseng, Y.K., Huang, C.J., Cheng, H.M., Lin, I.N., Liu, K.S., Chen, I.C.: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater. 13, 811–814 (2003)
6.
Zurück zum Zitat Xu, C.X., Sun, X.W.: Field emission from zinc oxide nanopins. Appl. Phys. Lett. 83, 3806 (2003) Xu, C.X., Sun, X.W.: Field emission from zinc oxide nanopins. Appl. Phys. Lett. 83, 3806 (2003)
7.
Zurück zum Zitat Li, S.Y., Lin, P., Lee, C.Y., Tseng, T.Y.: Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 95, 3711 (2004) Li, S.Y., Lin, P., Lee, C.Y., Tseng, T.Y.: Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 95, 3711 (2004)
8.
Zurück zum Zitat Jo, S.H., Lao, J.Y., Ren, Z.F., Farrer, R.A., Baldacchini, T., Fourkas, J.T.: Field emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 83, 4821–4823 (2003) Jo, S.H., Lao, J.Y., Ren, Z.F., Farrer, R.A., Baldacchini, T., Fourkas, J.T.: Field emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 83, 4821–4823 (2003)
9.
Zurück zum Zitat Wan, Q., Yu, K., Wang, T.H., Lin, C.L.: Low field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl. Phys. Lett. 83, 2253–2255 (2003) Wan, Q., Yu, K., Wang, T.H., Lin, C.L.: Low field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl. Phys. Lett. 83, 2253–2255 (2003)
10.
Zurück zum Zitat Zhao, Q., Zhang, H.Z., Zhu, Y.W., Feng, S.Q., Sun, X.C., Xu, J., Yu, D.P.: Morphological effects on the field emission of ZnO nanorod arrays. Appl. Phys. Lett. 86, 203115 (2005) Zhao, Q., Zhang, H.Z., Zhu, Y.W., Feng, S.Q., Sun, X.C., Xu, J., Yu, D.P.: Morphological effects on the field emission of ZnO nanorod arrays. Appl. Phys. Lett. 86, 203115 (2005)
11.
Zurück zum Zitat Ye, Z.Z., Yang, F., Lu, Y.F., Zhi, M.J., Tang, H.P., Zhu, L.P.: ZnO nanorods with different morphologies and their field emission properties. Solid State Commun. 142, 425 (2007) Ye, Z.Z., Yang, F., Lu, Y.F., Zhi, M.J., Tang, H.P., Zhu, L.P.: ZnO nanorods with different morphologies and their field emission properties. Solid State Commun. 142, 425 (2007)
12.
Zurück zum Zitat Xu, C.X., Sun, X.W., Chen, B.J.: Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 84, 1540 (2004) Xu, C.X., Sun, X.W., Chen, B.J.: Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 84, 1540 (2004)
13.
Zurück zum Zitat Kim, D.H., Jang, H.S., Lee, S.Y., Lee, H.R.: Effects of gas exposure on the field-emission properties of ZnO nanorods. Nanotechnology 15, 1433–1436 (2004) Kim, D.H., Jang, H.S., Lee, S.Y., Lee, H.R.: Effects of gas exposure on the field-emission properties of ZnO nanorods. Nanotechnology 15, 1433–1436 (2004)
14.
Zurück zum Zitat Jang, H.S., Kang, S.O., Nahm, S.H., Kim, D.H., Lee, H.R., Kim, Y.I.: Enhanced field emission from the ZnO nanowires by hydrogen gas exposure. Mater. Lett. 61, 1679–1682 (2007) Jang, H.S., Kang, S.O., Nahm, S.H., Kim, D.H., Lee, H.R., Kim, Y.I.: Enhanced field emission from the ZnO nanowires by hydrogen gas exposure. Mater. Lett. 61, 1679–1682 (2007)
15.
Zurück zum Zitat Yeong, K.S., Meung, K.H., Thong, J.T.L.: The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology 18, 185608–185611 (2007) Yeong, K.S., Meung, K.H., Thong, J.T.L.: The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology 18, 185608–185611 (2007)
16.
Zurück zum Zitat Temple, D.:Recent progress in field emitter array development for high performance applications. Mater. Sci. Eng. R 24, 185 (1999) Temple, D.:Recent progress in field emitter array development for high performance applications. Mater. Sci. Eng. R 24, 185 (1999)
17.
Zurück zum Zitat Schwoebel, P.R., Brodie, I.: Surface-science aspects of vacuum microelectronics. J. Vac. Sci. Technol. B 13, 13911410 (1995) Schwoebel, P.R., Brodie, I.: Surface-science aspects of vacuum microelectronics. J. Vac. Sci. Technol. B 13, 13911410 (1995)
18.
Zurück zum Zitat Chalamala, B.R., Wallace, R.M., Gnade, B.E.: Surface conditioning of active field emission cathode arrays with H2 and helium. J. Vac. Sci. Technol. B 16, 2855–2858 (1998) Chalamala, B.R., Wallace, R.M., Gnade, B.E.: Surface conditioning of active field emission cathode arrays with H2 and helium. J. Vac. Sci. Technol. B 16, 2855–2858 (1998)
19.
Zurück zum Zitat de Heer, W.A., Chatelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179 (1995) de Heer, W.A., Chatelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179 (1995)
20.
Zurück zum Zitat Gulyaev, Y.V., Chernozatonskii, L.A., Kosakovskaja, J.Z., Sinitsyn, N.I., Torgashov, G.V., Zakharchenko, Y.F.: Field emitter arrays on nanotube carbon structure films. J. Vac. Sci. Technol. B 13, 435 (1995) Gulyaev, Y.V., Chernozatonskii, L.A., Kosakovskaja, J.Z., Sinitsyn, N.I., Torgashov, G.V., Zakharchenko, Y.F.: Field emitter arrays on nanotube carbon structure films. J. Vac. Sci. Technol. B 13, 435 (1995)
21.
Zurück zum Zitat Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.P.H.: A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912 (1998) Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.P.H.: A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912 (1998)
22.
Zurück zum Zitat Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999) Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)
23.
Zurück zum Zitat Dean, K.A., Chalamala, B.R.: The environmental stability of field emission from single walled carbon nanotubes. Appl. Phys. Lett. 75, 3017–3019 (1999) Dean, K.A., Chalamala, B.R.: The environmental stability of field emission from single walled carbon nanotubes. Appl. Phys. Lett. 75, 3017–3019 (1999)
24.
Zurück zum Zitat Lim, S.C., Choi, Y.C., Jeong, H.J., Shin, Y.M., An K.H., Bae, B.J., Lee, Y.H., Lee, N.S., Kim, J.M.: Effect of gas exposure on field emission properties of carbon nanotube arrays. Adv. Mater. 20, 1563–1567 (2001) Lim, S.C., Choi, Y.C., Jeong, H.J., Shin, Y.M., An K.H., Bae, B.J., Lee, Y.H., Lee, N.S., Kim, J.M.: Effect of gas exposure on field emission properties of carbon nanotube arrays. Adv. Mater. 20, 1563–1567 (2001)
25.
Zurück zum Zitat Wadhawan, A., Stallcup, R.E., Stephens, K.F., Perez, J.M., Akwani, I.A.: Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett. 79, 1867–1869 (2001) Wadhawan, A., Stallcup, R.E., Stephens, K.F., Perez, J.M., Akwani, I.A.: Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett. 79, 1867–1869 (2001)
26.
Zurück zum Zitat Sheng, L.M., Liu, P., Liu, Y.M., Qian, L., Huang, Y.S., Liu, L., Fan, S.S.: Effects of carbon-containing gases on the field-emission current of multiwalled carbon-nanotube arrays. J. Vac. Sci. Technol. A 21, 1202 (2003) Sheng, L.M., Liu, P., Liu, Y.M., Qian, L., Huang, Y.S., Liu, L., Fan, S.S.: Effects of carbon-containing gases on the field-emission current of multiwalled carbon-nanotube arrays. J. Vac. Sci. Technol. A 21, 1202 (2003)
27.
Zurück zum Zitat Yi, G.C., Wang, C., Park, W.I.: ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20, 22–34 (2005) Yi, G.C., Wang, C., Park, W.I.: ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20, 22–34 (2005)
28.
Zurück zum Zitat Wei, A., Sun, X.W., Xu, C.X., Dong, Z.L., Yu, M.B., Huang, W.: Stable field emission from hydrothermally grown ZnO nanotubes. Appl. Phys. Lett. 88, 213102 (2006) Wei, A., Sun, X.W., Xu, C.X., Dong, Z.L., Yu, M.B., Huang, W.: Stable field emission from hydrothermally grown ZnO nanotubes. Appl. Phys. Lett. 88, 213102 (2006)
29.
Zurück zum Zitat Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964) Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)
30.
Zurück zum Zitat Huang, M.H., Wu, Y.Y., Feick, H., Tran N., Weber E., Yang, P.D.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001) Huang, M.H., Wu, Y.Y., Feick, H., Tran N., Weber E., Yang, P.D.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001)
31.
Zurück zum Zitat Li, S.Y., Lee, C.Y., Tseng, T.Y.: Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J. Cryst. Growth 247, 357 (2003) Li, S.Y., Lee, C.Y., Tseng, T.Y.: Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J. Cryst. Growth 247, 357 (2003)
32.
Zurück zum Zitat Ding Y., Gao, P.X., Wang, Z.L.: Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066 (2004) Ding Y., Gao, P.X., Wang, Z.L.: Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066 (2004)
33.
Zurück zum Zitat Konenkamp, R., Boedecker, K., Lux-Steiner, M.C., Poschenrieder, M., Zenia, F., Clement, C.L., Wagner, S.: Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 77, 2575 (2000) Konenkamp, R., Boedecker, K., Lux-Steiner, M.C., Poschenrieder, M., Zenia, F., Clement, C.L., Wagner, S.: Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 77, 2575 (2000)
34.
Zurück zum Zitat Liu, X., Wu, X., Cao, H., Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004) Liu, X., Wu, X., Cao, H., Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004)
35.
Zurück zum Zitat Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232 (2002) Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232 (2002)
36.
Zurück zum Zitat Park, W.I., Yi, G.C., Kim, M.Y, Pennycook, S.J.: ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841 (2002) Park, W.I., Yi, G.C., Kim, M.Y, Pennycook, S.J.: ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841 (2002)
37.
Zurück zum Zitat Kim, K.S., Kim, H.W.: Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B 328, 368 (2003) Kim, K.S., Kim, H.W.: Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B 328, 368 (2003)
38.
Zurück zum Zitat Maejima, K., Ueda, M., Fujita, S., Fujita, S.: Growth of ZnO nanorods on a-plane (120) sapphire by metal-organic vapor phase epitaxy. Japan. J. Appl. Phys. 42, 2600 (2003) Maejima, K., Ueda, M., Fujita, S., Fujita, S.: Growth of ZnO nanorods on a-plane (120) sapphire by metal-organic vapor phase epitaxy. Japan. J. Appl. Phys. 42, 2600 (2003)
39.
Zurück zum Zitat Park, J.Y., Oh, H., Kim, J.J., Kim, S.S.: Growth of ZnO nanorods via metalorganic chemical vapor deposition and their electrical properties. J. Cryst. Growth 287, 145–148 (2006) Park, J.Y., Oh, H., Kim, J.J., Kim, S.S.: Growth of ZnO nanorods via metalorganic chemical vapor deposition and their electrical properties. J. Cryst. Growth 287, 145–148 (2006)
40.
Zurück zum Zitat Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232 (2002) Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232 (2002)
41.
Zurück zum Zitat An, S.J., Park, W.I., Yi, G.C., Kim, Y.J., Kang, H.B., Kim, M.: Heteroepitaxial fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. Appl. Phys. Lett. 84, 3612 (2004) An, S.J., Park, W.I., Yi, G.C., Kim, Y.J., Kang, H.B., Kim, M.: Heteroepitaxial fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. Appl. Phys. Lett. 84, 3612 (2004)
42.
Zurück zum Zitat Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., Fleming, P.H.: Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046–3048 (2002) Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., Fleming, P.H.: Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046–3048 (2002)
43.
Zurück zum Zitat Pearton, S.J., Tien, L.C., Norton, D.P., Hung-Ta, W., Ren, F.: Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl. Surf. Sci. 253, 4620–4625 (2007) Pearton, S.J., Tien, L.C., Norton, D.P., Hung-Ta, W., Ren, F.: Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl. Surf. Sci. 253, 4620–4625 (2007)
44.
Zurück zum Zitat Li, Y., Meng, G.W., Zhang, L.D., Phillip, F.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000) Li, Y., Meng, G.W., Zhang, L.D., Phillip, F.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000)
45.
Zurück zum Zitat Park, W.I., Yi, G.C., Kim, M., Pennycook, S.J.: Quantum confinement observed in Zn)/ZnMgO quantum structures. Adv. Mater. 15, 526 (2003) Park, W.I., Yi, G.C., Kim, M., Pennycook, S.J.: Quantum confinement observed in Zn)/ZnMgO quantum structures. Adv. Mater. 15, 526 (2003)
46.
Zurück zum Zitat Geng, B.Y., Wang, G.Z., Jiang, Z., Xie, T., Sun, S.H., Meng, G.W., Zhang, L.D.: Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 82, 4791 Geng, B.Y., Wang, G.Z., Jiang, Z., Xie, T., Sun, S.H., Meng, G.W., Zhang, L.D.: Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 82, 4791
47.
Zurück zum Zitat Bae, S.Y., Seo, H.W., Park, J.: Vertically-aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B 108, 5206 (2004) Bae, S.Y., Seo, H.W., Park, J.: Vertically-aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B 108, 5206 (2004)
48.
Zurück zum Zitat Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Gao, X.G., Li, J.P.: Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84, 3085 (2004) Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Gao, X.G., Li, J.P.: Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84, 3085 (2004)
49.
Zurück zum Zitat Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003) Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)
50.
Zurück zum Zitat Wang, Z., Qian, X., Yin, J., Zhu, Z.: Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency. J. Solid State Chem. 177, 2144–2149 (2004) Wang, Z., Qian, X., Yin, J., Zhu, Z.: Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency. J. Solid State Chem. 177, 2144–2149 (2004)
51.
Zurück zum Zitat Lee, J.H., Leu, I.C., Hon, M.H.: Substrate effect on the growth of well-aligned ZnO nanorod arrays from aqueous solution. J. Cryst. Growth 275, e2069–e2075 (2005) Lee, J.H., Leu, I.C., Hon, M.H.: Substrate effect on the growth of well-aligned ZnO nanorod arrays from aqueous solution. J. Cryst. Growth 275, e2069–e2075 (2005)
52.
Zurück zum Zitat Lin, C.C., Chen H.P., Chen, S.Y.: Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO films/Si wafer in aqueous solutions. Chem. Phys. Lett. 404, 30–34 (2005) Lin, C.C., Chen H.P., Chen, S.Y.: Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO films/Si wafer in aqueous solutions. Chem. Phys. Lett. 404, 30–34 (2005)
53.
Zurück zum Zitat Tak, Y, Yong, K.: Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263–19269 (2005) Tak, Y, Yong, K.: Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263–19269 (2005)
54.
Zurück zum Zitat Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khag, G., Shin, H.S.: Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42, 1640–1648 (2006) Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khag, G., Shin, H.S.: Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42, 1640–1648 (2006)
55.
Zurück zum Zitat Yu, K., Jin, Z., Liu, X., Liu, Z., Fu, Y.: Synthesis of size-tunable ZnO nanorod arrays from NH3∙H2O/ZnNO3 solutions. Mater. Lett. 61, 2775–2778 (2007) Yu, K., Jin, Z., Liu, X., Liu, Z., Fu, Y.: Synthesis of size-tunable ZnO nanorod arrays from NH3∙H2O/ZnNO3 solutions. Mater. Lett. 61, 2775–2778 (2007)
56.
Zurück zum Zitat Liu, B., Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003) Liu, B., Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003)
57.
Zurück zum Zitat Li, Z.Q., Xiong, Y.J., Xie, Y.: Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg. Chem. 42, 8105 (2003) Li, Z.Q., Xiong, Y.J., Xie, Y.: Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg. Chem. 42, 8105 (2003)
58.
Zurück zum Zitat Choy, J.H., Jang, E.S., Won, J.H., Chung, J.H., Jang, D.J., Kim, Y.W.: Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl. Phys. Lett. 84, 287 (2004) Choy, J.H., Jang, E.S., Won, J.H., Chung, J.H., Jang, D.J., Kim, Y.W.: Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl. Phys. Lett. 84, 287 (2004)
59.
Zurück zum Zitat Wang, J.M., Gao, L.: Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13, 2551 (2003) Wang, J.M., Gao, L.: Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13, 2551 (2003)
60.
Zurück zum Zitat Marathe, S.K., Koinkar, P.M., Ashtaputre, S.S., More, M.A., Gosavi, S.W., Joag, D.S., Kulkarni, S.K.: Efficient field emission from chemically grown inexpensive ZnO nanoparticles of different morphologies. Nanotechnology 17, 1932–1936 (2006) Marathe, S.K., Koinkar, P.M., Ashtaputre, S.S., More, M.A., Gosavi, S.W., Joag, D.S., Kulkarni, S.K.: Efficient field emission from chemically grown inexpensive ZnO nanoparticles of different morphologies. Nanotechnology 17, 1932–1936 (2006)
61.
Zurück zum Zitat Ahsanulhaq, Q., Kim, J.H., Hahn, Y.B.: Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology 18, 485307–485313 (2007) Ahsanulhaq, Q., Kim, J.H., Hahn, Y.B.: Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology 18, 485307–485313 (2007)
62.
Zurück zum Zitat Chen, J.C., Chai, W., Zhang, Z., Li, C., Zhang, X.: High field emission enhancement of ZnO-nanorods via hydrothermal synthesis. Solid State Electron. 52, 294–298 (2008) Chen, J.C., Chai, W., Zhang, Z., Li, C., Zhang, X.: High field emission enhancement of ZnO-nanorods via hydrothermal synthesis. Solid State Electron. 52, 294–298 (2008)
63.
Zurück zum Zitat Gudiksen, M.S., Lauhon, L.J., Wang, J., Smoth, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002) Gudiksen, M.S., Lauhon, L.J., Wang, J., Smoth, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)
64.
Zurück zum Zitat Dai, Y., Zhang, Y., Li, Q.K., Nan C.W.: Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 358, 83 (2002) Dai, Y., Zhang, Y., Li, Q.K., Nan C.W.: Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 358, 83 (2002)
65.
Zurück zum Zitat Lyu, S.C., Zhang, Y., Lee, C.J., Ruh, H., Lee, H.J.: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 (2003) Lyu, S.C., Zhang, Y., Lee, C.J., Ruh, H., Lee, H.J.: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 (2003)
66.
Zurück zum Zitat Zhang, Y., Wang, N., Gao, S., He, R., Miao, S., Liu, J., Zhu, J., Zhang, Z.: A simple method to synthesize nanowires. Chem. Mater. 14, 3564 (2002) Zhang, Y., Wang, N., Gao, S., He, R., Miao, S., Liu, J., Zhu, J., Zhang, Z.: A simple method to synthesize nanowires. Chem. Mater. 14, 3564 (2002)
67.
Zurück zum Zitat Yao, B.D., Chan, Y.F., Wang, N.: Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002) Yao, B.D., Chan, Y.F., Wang, N.: Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002)
68.
Zurück zum Zitat Gao, P.X., Wang, Z.L.: Self-assembled nanowire-nano-ribbon junctions arrays of ZO. J. Phys. Chem. B 106, 12653 (2002) Gao, P.X., Wang, Z.L.: Self-assembled nanowire-nano-ribbon junctions arrays of ZO. J. Phys. Chem. B 106, 12653 (2002)
69.
Zurück zum Zitat Lao, J.Y., Wen, J.G., Ren, Z.F.: Hierarchical ZnO nanostructures. Nano Lett. 2, 1287 (2002) Lao, J.Y., Wen, J.G., Ren, Z.F.: Hierarchical ZnO nanostructures. Nano Lett. 2, 1287 (2002)
70.
Zurück zum Zitat Gundiah, G., Deepak, F.L., Govindaraj, A., Rao, C.N.R.: Carbothermal synthesis of the nanostructures of AlO3 and ZnO. Top. Catal. 24, 137 (2003) Gundiah, G., Deepak, F.L., Govindaraj, A., Rao, C.N.R.: Carbothermal synthesis of the nanostructures of AlO3 and ZnO. Top. Catal. 24, 137 (2003)
71.
Zurück zum Zitat Choi, J.H., Tabata, H., Kawai, T.: J. Cryst. Growth 226, 493 (2001) Choi, J.H., Tabata, H., Kawai, T.: J. Cryst. Growth 226, 493 (2001)
72.
Zurück zum Zitat Obuliraj, S.K., Yamauchi, K., Hanada, Y., Miyamoto, M., Ohba, T., Morito, S., Fujita, Y.: Nitrogen doped ZnO nanomaterials for UV-LED applications. Proceedings of the 2nd IEEE International Conference. NanoMicro Engineered and Molecular Systems, Bangkok, Thailand, 159–162 (2007) Obuliraj, S.K., Yamauchi, K., Hanada, Y., Miyamoto, M., Ohba, T., Morito, S., Fujita, Y.: Nitrogen doped ZnO nanomaterials for UV-LED applications. Proceedings of the 2nd IEEE International Conference. NanoMicro Engineered and Molecular Systems, Bangkok, Thailand, 159–162 (2007)
73.
Zurück zum Zitat Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. London, Ser. A 119, 173–181 (1928) Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. London, Ser. A 119, 173–181 (1928)
74.
Zurück zum Zitat Boscolo, I., Cialdi, S., Fiori, A., Orlanducci, S., Sessa, V., Terranova, M.L., Ciorba, A., Rossi, M.: Capacitive and analytical approaches for the analysis of field emission from carbon nanotubes in a sphere-to-plane diode. J. Vac. Sci. Technol. B 25, 1253–1260 (2007). Boscolo, I., Cialdi, S., Fiori, A., Orlanducci, S., Sessa, V., Terranova, M.L., Ciorba, A., Rossi, M.: Capacitive and analytical approaches for the analysis of field emission from carbon nanotubes in a sphere-to-plane diode. J. Vac. Sci. Technol. B 25, 1253–1260 (2007).
75.
Zurück zum Zitat Mo, Y., Neogi, A., Perez, J.M., Fujita, Y.: Effects of residual gases on the field emission properties of ZnO nanorods. Poster presented at the Japan Society for the Promotion of Sciences – University of North Texas Winterschool on Nanophotonics, University of North Texas, Denton, TX, February 14–15, 2008 Mo, Y., Neogi, A., Perez, J.M., Fujita, Y.: Effects of residual gases on the field emission properties of ZnO nanorods. Poster presented at the Japan Society for the Promotion of Sciences – University of North Texas Winterschool on Nanophotonics, University of North Texas, Denton, TX, February 14–15, 2008
77.
Zurück zum Zitat Ito, F., Tomihari, Y., Okada, Y., Konuma, K., Okamoto, A.: Carbon-nanotube-based triode-field-emission displays using gated emitter structure. IEEE Electron Dev. Lett. 22, 426 (2001) Ito, F., Tomihari, Y., Okada, Y., Konuma, K., Okamoto, A.: Carbon-nanotube-based triode-field-emission displays using gated emitter structure. IEEE Electron Dev. Lett. 22, 426 (2001)
78.
Zurück zum Zitat Liu, J., Zhirnov, V.V., Choi, W.B., Wojak, G.J., Myers, A.F., Cuomo, J.J., Hren, J.J.: Electron emission from a hydrogenated diamond surface. Appl. Phys. Lett. 69, 4038–4040 (1996) Liu, J., Zhirnov, V.V., Choi, W.B., Wojak, G.J., Myers, A.F., Cuomo, J.J., Hren, J.J.: Electron emission from a hydrogenated diamond surface. Appl. Phys. Lett. 69, 4038–4040 (1996)
79.
Zurück zum Zitat Lim, S.C., Stallcup II, R.E., Akwani, I.A., Perez, J.M.: Effects of O2, H2, and N2 gases on the field emission properties of diamond-coated microtips. Appl. Phys. Lett. 75, 1179–1181 (1999) Lim, S.C., Stallcup II, R.E., Akwani, I.A., Perez, J.M.: Effects of O2, H2, and N2 gases on the field emission properties of diamond-coated microtips. Appl. Phys. Lett. 75, 1179–1181 (1999)
80.
Zurück zum Zitat Liu, M., Kim, H.K.: Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 84, 173–175 (2004) Liu, M., Kim, H.K.: Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl. Phys. Lett. 84, 173–175 (2004)
81.
Zurück zum Zitat Losurdo, M, Giangregorio, M.M., Capezzuto, P., Bruno, G., Malandrino, G., Blandino, M., Fragala, I.L.: Reactivity of ZnO: impact of polarity and nanostructure. Superlattices Microstruct. 38, 291–299 (2005) Losurdo, M, Giangregorio, M.M., Capezzuto, P., Bruno, G., Malandrino, G., Blandino, M., Fragala, I.L.: Reactivity of ZnO: impact of polarity and nanostructure. Superlattices Microstruct. 38, 291–299 (2005)
82.
Zurück zum Zitat Maki, H., Ichinose, N., Sakaguchi, I., Ohashi, N., Haneda, H., Tanaka, J.: The effect of the nitrogen plasma irradiation on ZnO single crystals. Key Eng. Mater. 216, 61 (2002) Maki, H., Ichinose, N., Sakaguchi, I., Ohashi, N., Haneda, H., Tanaka, J.: The effect of the nitrogen plasma irradiation on ZnO single crystals. Key Eng. Mater. 216, 61 (2002)
83.
Zurück zum Zitat Yamaga, S., Yoshikawa, A., Kasa, H.: Electrical and optical properties of donor doped ZnS films grown by low-pressure MOCVD. J. Cryst. Growth 86, 252–256 (1988) Yamaga, S., Yoshikawa, A., Kasa, H.: Electrical and optical properties of donor doped ZnS films grown by low-pressure MOCVD. J. Cryst. Growth 86, 252–256 (1988)
84.
Zurück zum Zitat Ye, C., Fang, X., Li, G., Zhang, L.: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004) Ye, C., Fang, X., Li, G., Zhang, L.: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004)
85.
Zurück zum Zitat Vacassy, R., Scholz, S.M., Dutta, J., Plummer, C.J.G., Houriet, R., Hofmann, H.: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions. J. Am. Ceramic Soc. 81, 2699–2705 (1998) Vacassy, R., Scholz, S.M., Dutta, J., Plummer, C.J.G., Houriet, R., Hofmann, H.: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions. J. Am. Ceramic Soc. 81, 2699–2705 (1998)
86.
Zurück zum Zitat Liu, X., Caia, X., Maob, J., Jinc, C.: ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application. Appl. Surf. Sci. 183, 103–110 (2001) Liu, X., Caia, X., Maob, J., Jinc, C.: ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application. Appl. Surf. Sci. 183, 103–110 (2001)
87.
Zurück zum Zitat Shao, L.X., Chang, K.H., Hwang, H.L.: Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl. Surf. Sci. 212–213, 305–310 (2003) Shao, L.X., Chang, K.H., Hwang, H.L.: Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl. Surf. Sci. 212–213, 305–310 (2003)
88.
Zurück zum Zitat Johnstona, D.A., Carlettoa, M.H., Reddyb, K.T.R., Forbesa, I., Miles, R.W.: Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials. Thin Solid Films 403–404, 102–106 (2002) Johnstona, D.A., Carlettoa, M.H., Reddyb, K.T.R., Forbesa, I., Miles, R.W.: Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials. Thin Solid Films 403–404, 102–106 (2002)
89.
Zurück zum Zitat Meng, X.M., Liu, J., Jiang, Y., Chen, W.W., Lee, C.S., Bello, I., Lee, S.T.: Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 382, 434–438 (2003) Meng, X.M., Liu, J., Jiang, Y., Chen, W.W., Lee, C.S., Bello, I., Lee, S.T.: Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 382, 434–438 (2003)
90.
Zurück zum Zitat Zhu, Y.C., Bando, Y., Xue, D.F.: Spontaneous growth and luminescence of zinc sulfide nanobelts. Appl. Phys. Lett. 82, 1769–1771 (2003) Zhu, Y.C., Bando, Y., Xue, D.F.: Spontaneous growth and luminescence of zinc sulfide nanobelts. Appl. Phys. Lett. 82, 1769–1771 (2003)
91.
Zurück zum Zitat Lu, F., Cai, W., Zhang, Y., Li, Y., Sun, F., Heo, S.H., Cho, S.O.: Appl. Phys. Lett. 89, 231928 (2006) Lu, F., Cai, W., Zhang, Y., Li, Y., Sun, F., Heo, S.H., Cho, S.O.: Appl. Phys. Lett. 89, 231928 (2006)
92.
Zurück zum Zitat Khosravi, A.A., Kundu, M., Jatwa, L., Deshpande, S.K., Bhagwat, U.A., Sastry, M., Kulkarni, S.K.: Green luminescence from copper doped zinc sulphide quantum particles. Appl. Phys. Lett. 67, 2702–2704 (1995) Khosravi, A.A., Kundu, M., Jatwa, L., Deshpande, S.K., Bhagwat, U.A., Sastry, M., Kulkarni, S.K.: Green luminescence from copper doped zinc sulphide quantum particles. Appl. Phys. Lett. 67, 2702–2704 (1995)
93.
Zurück zum Zitat Zhang, D., Qi, L., Cheng, H., Ma, J.: Preparation of ZnS nanorods by a liquid crystal template. J. Colloid Interface Sci. 246, 413–416 (2002) Zhang, D., Qi, L., Cheng, H., Ma, J.: Preparation of ZnS nanorods by a liquid crystal template. J. Colloid Interface Sci. 246, 413–416 (2002)
94.
Zurück zum Zitat Lu, F., Cai, W., Zhang, Y., Li, Y., Sun, F., Heo, S.H., Cho, S.O.: Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C 111, 13385–13392 (2007) Lu, F., Cai, W., Zhang, Y., Li, Y., Sun, F., Heo, S.H., Cho, S.O.: Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C 111, 13385–13392 (2007)
95.
Zurück zum Zitat Ha, B., Seo, S.H., Cho, J.H., Yoon, C.S., Yoo, G-C.Y., Park, C.Y., Lee, C.J.: Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B 109, 11095–11099 (2005) Ha, B., Seo, S.H., Cho, J.H., Yoon, C.S., Yoo, G-C.Y., Park, C.Y., Lee, C.J.: Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B 109, 11095–11099 (2005)
96.
Zurück zum Zitat Yilmazoglu, O., Pavlidis, D., Litvin, Yu, M., Hubbard, S., Tiginyanu, I.M., Mutamba, K., Hartnagel, H.L., Litovchenko, V.G., Evtukh, A.: Field emission from quantum size GaN structures. Appl. Surf. Sci. 220, 46–50 (2003) Yilmazoglu, O., Pavlidis, D., Litvin, Yu, M., Hubbard, S., Tiginyanu, I.M., Mutamba, K., Hartnagel, H.L., Litovchenko, V.G., Evtukh, A.: Field emission from quantum size GaN structures. Appl. Surf. Sci. 220, 46–50 (2003)
97.
Zurück zum Zitat Komirenko, S.M., Kim, K.W., Kochelop, V.A., Stroscio, M.A.: High-field electron transport controlled by optical photon emission in nitrides. Int. J. High Speed Electron. Syst. 12, 1057–1081 (2002) Komirenko, S.M., Kim, K.W., Kochelop, V.A., Stroscio, M.A.: High-field electron transport controlled by optical photon emission in nitrides. Int. J. High Speed Electron. Syst. 12, 1057–1081 (2002)
98.
Zurück zum Zitat Goodman, S.A., Auret, F.D., Koschnick, F.K., Spaeth, J.-M., Beaumont, B., Gilbart, P.: Field-enhanced emission rate and electronic properties of a defect introduced in n-GaN by 5.4 mev He-ion irradiation. Appl. Phys. Lett. 74, 809–811 (1999) Goodman, S.A., Auret, F.D., Koschnick, F.K., Spaeth, J.-M., Beaumont, B., Gilbart, P.: Field-enhanced emission rate and electronic properties of a defect introduced in n-GaN by 5.4 mev He-ion irradiation. Appl. Phys. Lett. 74, 809–811 (1999)
99.
Zurück zum Zitat Tong, X.L., Jiang, D.S., Li, Y., Liu, Z.M., Luo, M.Z.: Folding field emission from GaN onto polymer microtip array by femtosecond pulsed laser deposition. Appl. Phys. Lett. 89, 061108-1–061108-3 (2006) Tong, X.L., Jiang, D.S., Li, Y., Liu, Z.M., Luo, M.Z.: Folding field emission from GaN onto polymer microtip array by femtosecond pulsed laser deposition. Appl. Phys. Lett. 89, 061108-1–061108-3 (2006)
100.
Zurück zum Zitat Ng, D.K.T., Hong, M.H., Tan, L.S., Zhu, Y.W., Sow, C.H.: Field emission enhancement from patterned gallium nitride nanowires. Nanotechnology 18, 375707–375711 (2007) Ng, D.K.T., Hong, M.H., Tan, L.S., Zhu, Y.W., Sow, C.H.: Field emission enhancement from patterned gallium nitride nanowires. Nanotechnology 18, 375707–375711 (2007)
101.
Zurück zum Zitat Ye, F., Xie, E.Q., Pan, X.J., Li, H., Duan, H.G., Jia, C.W.: Field emission from amorphous GaN deposited on Si by dc sputtering. J. Vac. Sci. Technol. B 24, 1358– 1361 (2006) Ye, F., Xie, E.Q., Pan, X.J., Li, H., Duan, H.G., Jia, C.W.: Field emission from amorphous GaN deposited on Si by dc sputtering. J. Vac. Sci. Technol. B 24, 1358– 1361 (2006)
102.
Zurück zum Zitat Berishev, I., Bensaoula, A., Rusakova, I., Karabutov, A., Ugarov, M., Ageev, V.P.: Field emission properties of GaN films on Si(111). Appl. Phys. Lett. 73, 1808–1810 (1998) Berishev, I., Bensaoula, A., Rusakova, I., Karabutov, A., Ugarov, M., Ageev, V.P.: Field emission properties of GaN films on Si(111). Appl. Phys. Lett. 73, 1808–1810 (1998)
103.
Zurück zum Zitat Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., Hu, J.Q., Golberg, D.: Needlelike bricrystalline GaN nanowires with excellent field emission properties. J. Phys. Chem. B 109, 17082–17085 (2005) Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., Hu, J.Q., Golberg, D.: Needlelike bricrystalline GaN nanowires with excellent field emission properties. J. Phys. Chem. B 109, 17082–17085 (2005)
104.
Zurück zum Zitat Levitt, Albert P.: Whisker Technology. Wiley, New York, NY (1970) Levitt, Albert P.: Whisker Technology. Wiley, New York, NY (1970)
105.
Zurück zum Zitat Seo, H.W., Chen, Q.Y., Tu, L.W., Hsiao, C.L., Iliev, M. N., Chu, W.K.: Catalytic nanocapillary condensation and epitaxial GaN nanorod growth. Phys. Rev. B 71, 235314 (2005) Seo, H.W., Chen, Q.Y., Tu, L.W., Hsiao, C.L., Iliev, M. N., Chu, W.K.: Catalytic nanocapillary condensation and epitaxial GaN nanorod growth. Phys. Rev. B 71, 235314 (2005)
106.
Zurück zum Zitat Seo, H.W., Chen, Q.Y., Iliev, M.N., Tu, L.W., Hsiao, C.L., Meen, J.K., Chu, W.K.: Epitaxial GaN nanorods free from strain and luminescent defects. Appl. Phys. Lett. 88, 153124 (2006) Seo, H.W., Chen, Q.Y., Iliev, M.N., Tu, L.W., Hsiao, C.L., Meen, J.K., Chu, W.K.: Epitaxial GaN nanorods free from strain and luminescent defects. Appl. Phys. Lett. 88, 153124 (2006)
107.
Zurück zum Zitat Seo, H.W., Chen, Q.Y., Tu, L.W., Chen, M., Wang, X.M., Tu, Y.J., Shao, L., Lozano O., Chu, W.K.: GaN nanorod assemblies on self-implanted (111) Si substrates. Microelectron. Eng. 83, 1714 (2006) Seo, H.W., Chen, Q.Y., Tu, L.W., Chen, M., Wang, X.M., Tu, Y.J., Shao, L., Lozano O., Chu, W.K.: GaN nanorod assemblies on self-implanted (111) Si substrates. Microelectron. Eng. 83, 1714 (2006)
108.
Zurück zum Zitat Chu, W.K., Seo, H.W., Chen, Q.Y., Wang, X.M., Tu, L.W., Hsaio, C.L., Chen, M., Tu, Y.J.: US Patent Pending, 60/696,020 Chu, W.K., Seo, H.W., Chen, Q.Y., Wang, X.M., Tu, L.W., Hsaio, C.L., Chen, M., Tu, Y.J.: US Patent Pending, 60/696,020
109.
Zurück zum Zitat Tsai, M.-H., Jhang, Z.-F., Jiang, J.-Y., Tang, Y.-H., Tu, L.W.: Electrostatic and structural properties of GaN nanorods/nanowires from first principles. Appl. Phys. Lett. 89, 203101 (2006) Tsai, M.-H., Jhang, Z.-F., Jiang, J.-Y., Tang, Y.-H., Tu, L.W.: Electrostatic and structural properties of GaN nanorods/nanowires from first principles. Appl. Phys. Lett. 89, 203101 (2006)
110.
Zurück zum Zitat Tu, L.W., Hsiao, C.L., Chi, T.W.: Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1601 (2003) Tu, L.W., Hsiao, C.L., Chi, T.W.: Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1601 (2003)
112.
Zurück zum Zitat Sommer, A.H.: Photoemissive Materials. Wiley, New York, NY (1968) Sommer, A.H.: Photoemissive Materials. Wiley, New York, NY (1968)
113.
Zurück zum Zitat Bell, R.L.: Negative Electron Affinity Devices. Clarendon Press, Oxford (1973) Bell, R.L.: Negative Electron Affinity Devices. Clarendon Press, Oxford (1973)
114.
Zurück zum Zitat Zhu, Wei (ed.): Vacuum Microelectronics. Wiley, New York, NY (2001) Zhu, Wei (ed.): Vacuum Microelectronics. Wiley, New York, NY (2001)
115.
Zurück zum Zitat Modinos, A.: Field, Thermionics, and Secondary Electron Emission Spectroscopy. Plenum Press, New York, NY (1984) Modinos, A.: Field, Thermionics, and Secondary Electron Emission Spectroscopy. Plenum Press, New York, NY (1984)
116.
Zurück zum Zitat Martinelli, R.U., Pankove, J.I.: Secondary electron emission from the GaN:Cs-O surface. Appl. Phys. Lett. 25, 549–551 (1974) Martinelli, R.U., Pankove, J.I.: Secondary electron emission from the GaN:Cs-O surface. Appl. Phys. Lett. 25, 549–551 (1974)
117.
Zurück zum Zitat Monch, W., Kampen, T.U., Dimitrov, R., Ambacher, O., Stutzmann, M.: Negative electron affinity of cesiated p-GaN(0001) surfaces. J. Vac. Sci. Technol. B 16, 2224–2228 (1998) Monch, W., Kampen, T.U., Dimitrov, R., Ambacher, O., Stutzmann, M.: Negative electron affinity of cesiated p-GaN(0001) surfaces. J. Vac. Sci. Technol. B 16, 2224–2228 (1998)
118.
Zurück zum Zitat Machuca, F., Zhi, L., Sun, Y., Pianetta, P., Spicer, W.E., Pease, R.F.W.: Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. J. Vac. Sci. Technol. B 21, 1863–1869 (2003) Machuca, F., Zhi, L., Sun, Y., Pianetta, P., Spicer, W.E., Pease, R.F.W.: Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. J. Vac. Sci. Technol. B 21, 1863–1869 (2003)
119.
Zurück zum Zitat Wang, K.R., Lin, S.J., Tu, L.W., Chen, M., Chen, Q.Y., Chen, T.H., Chen, M.L., Seo, H.W., Tai, N.H., Chang, S.C., Lo, I.K., Wang, D.P., Chu, W.K.: InN nanotips as excellent field emitters. Appl. Phys. Lett. 92, 123105 (2008) Wang, K.R., Lin, S.J., Tu, L.W., Chen, M., Chen, Q.Y., Chen, T.H., Chen, M.L., Seo, H.W., Tai, N.H., Chang, S.C., Lo, I.K., Wang, D.P., Chu, W.K.: InN nanotips as excellent field emitters. Appl. Phys. Lett. 92, 123105 (2008)
Metadaten
Titel
Field Emission Properties of ZnO, ZnS, and GaN Nanostructures
verfasst von
Y. Mo
J.J. Schwartz
M.H. Lynch
P.A. Ecton
Arup Neogi
J.M. Perez
Y. Fujita
H.W. Seo
Q.Y. Chen
L.W. Tu
N.J. Ho
Copyright-Jahr
2010
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7587-4_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.