Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.04.2021

Finite Element Method for Fractional Parabolic Integro-Differential Equations with Smooth and Nonsmooth Initial Data

verfasst von: Shantiram Mahata, Rajen Kumar Sinha

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the space-time finite element discretizations for time fractional parabolic integro-differential equations in a bounded convex polygonal domain in \({\mathbb {R}}^d (d=1,2,3)\). Both spatially semidiscrete and fully discrete finite element approximations are considered and analyzed. We use piecewise linear and continuous finite elements to approximate the space variable whereas the time discretization uses two fully discrete schemes based on the convolution quadrature, namely the backward Euler and the second-order backward difference. For the spatially discrete scheme, optimal order a priori error estimates are derived for smooth initial data, i.e., when \(u_0\in H_0^1(\varOmega )\cap H^2(\varOmega )\). Moreover, for the homogeneous problem, almost optimal error estimates for positive time are established for nonsmooth initial data, i.e., when the initial function \(u_0\) is only in \( L^2(\varOmega )\). The error estimates for the fully discrete methods are shown to be optimal in time for both smooth and nonsmooth initial data under the specific choice of the kernel operator in the integral. Finally, we provide some numerical illustrations to verify our theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amer, Y.A., Mahdy, A.M.S., Youssef, E.S.M.: Solving fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. CMC Comput. Mater. Continua 54(2), 161–180 (2018) Amer, Y.A., Mahdy, A.M.S., Youssef, E.S.M.: Solving fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. CMC Comput. Mater. Continua 54(2), 161–180 (2018)
2.
Zurück zum Zitat Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40(2), 521–529 (2009)MathSciNetCrossRef Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40(2), 521–529 (2009)MathSciNetCrossRef
3.
Zurück zum Zitat Bakaev, N.Y., Larsson, S., Thomée, V.: Euler, backward, type methods for parabolic integro-differential equations in Banach space. RAIRO Modél. Math. Anal. Numér. 32(1), 85–99 (1998)MathSciNetCrossRef Bakaev, N.Y., Larsson, S., Thomée, V.: Euler, backward, type methods for parabolic integro-differential equations in Banach space. RAIRO Modél. Math. Anal. Numér. 32(1), 85–99 (1998)MathSciNetCrossRef
4.
Zurück zum Zitat Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72(12), 4587–4593 (2010)MathSciNetCrossRef Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72(12), 4587–4593 (2010)MathSciNetCrossRef
5.
Zurück zum Zitat Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131(1), 1–31 (2015)MathSciNetCrossRef Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131(1), 1–31 (2015)MathSciNetCrossRef
6.
Zurück zum Zitat Cannon, J.R., Lin, Y.: Nonclassical \(H^1\) projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25(3), 187–201 (1988)MathSciNetCrossRef Cannon, J.R., Lin, Y.: Nonclassical \(H^1\) projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25(3), 187–201 (1988)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, C., Shih, T.: Finite Element Methods for Integrodifferential Equations, vol. 9. World Scientific, River Edge (1998)CrossRef Chen, C., Shih, T.: Finite Element Methods for Integrodifferential Equations, vol. 9. World Scientific, River Edge (1998)CrossRef
8.
Zurück zum Zitat Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)MathSciNetCrossRef Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)MathSciNetCrossRef
9.
Zurück zum Zitat El-Borai, M.M., El-Nadi, K.E.S., Ahmed, H.M., El-Owaidy, H.M., Ghanem, A.S., Sakthivel, R.: Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 5(1), 1460030 (2018)MathSciNetCrossRef El-Borai, M.M., El-Nadi, K.E.S., Ahmed, H.M., El-Owaidy, H.M., Ghanem, A.S., Sakthivel, R.: Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 5(1), 1460030 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2004)CrossRef Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2004)CrossRef
11.
Zurück zum Zitat Fujita, H., Suzuki, T.: Evolution problems. In: Handbook of Numerical Analysis, vol. II, Handb. Numer. Anal., II, pp. 789–928. North-Holland, Amsterdam (1991) Fujita, H., Suzuki, T.: Evolution problems. In: Handbook of Numerical Analysis, vol. II, Handb. Numer. Anal., II, pp. 789–928. North-Holland, Amsterdam (1991)
12.
13.
Zurück zum Zitat Hu, L., Ren, Y., Sakthivel, R.: Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays. Semigr. Forum 79(3), 507–514 (2009)MathSciNetCrossRef Hu, L., Ren, Y., Sakthivel, R.: Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays. Semigr. Forum 79(3), 507–514 (2009)MathSciNetCrossRef
14.
Zurück zum Zitat Huang, L., Li, X.-F., Zhao, Y., Duan, X.-Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62(3), 1127–1134 (2011)MathSciNetCrossRef Huang, L., Li, X.-F., Zhao, Y., Duan, X.-Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62(3), 1127–1134 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM. J. Numer. Anal 51(1), 445–466 (2013)MathSciNetCrossRef Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM. J. Numer. Anal 51(1), 445–466 (2013)MathSciNetCrossRef
16.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM. J. Sci. Comput. 38(1), A146–A170 (2016)MathSciNetCrossRef Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM. J. Sci. Comput. 38(1), A146–A170 (2016)MathSciNetCrossRef
17.
Zurück zum Zitat Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)MathSciNetCrossRef Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat Karaa, S., Mustapha, K., Pani, A.K.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74(1), 519–535 (2018)MathSciNetCrossRef Karaa, S., Mustapha, K., Pani, A.K.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74(1), 519–535 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)CrossRef Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)CrossRef
20.
Zurück zum Zitat Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM. J. Numer. Anal. 28(4), 1047–1070 (1991)MathSciNetCrossRef Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM. J. Numer. Anal. 28(4), 1047–1070 (1991)MathSciNetCrossRef
22.
Zurück zum Zitat Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)MathSciNetCrossRef Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)MathSciNetCrossRef
24.
Zurück zum Zitat Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)MathSciNetCrossRef Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)MathSciNetCrossRef
25.
Zurück zum Zitat Ma, X., Huang, C.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219(12), 6750–6760 (2013)MathSciNetMATH Ma, X., Huang, C.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219(12), 6750–6760 (2013)MathSciNetMATH
26.
Zurück zum Zitat Mahata, S., Sinha, R.K.: On the existence, uniqueness and stability results for time-fractional parabolic integro-differential equations. J. Integral Equ. Appl. 32(4), 457–477 (2020)CrossRef Mahata, S., Sinha, R.K.: On the existence, uniqueness and stability results for time-fractional parabolic integro-differential equations. J. Integral Equ. Appl. 32(4), 457–477 (2020)CrossRef
27.
Zurück zum Zitat Maleknejad, K., Sahlan, M.N., Ostadi, A.: Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets. In: Proceedings of the World Congress on Engineering, vol. 1 (2013) Maleknejad, K., Sahlan, M.N., Ostadi, A.: Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets. In: Proceedings of the World Congress on Engineering, vol. 1 (2013)
28.
Zurück zum Zitat Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Probl. Eng. Art. ID 431965, 5 (2014) Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Probl. Eng. Art. ID 431965, 5 (2014)
29.
Zurück zum Zitat Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182(1), 754–760 (2006)MathSciNetMATH Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182(1), 754–760 (2006)MathSciNetMATH
30.
Zurück zum Zitat Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87(313), 2259–2272 (2018)MathSciNetCrossRef Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87(313), 2259–2272 (2018)MathSciNetCrossRef
31.
Zurück zum Zitat Oyedepo, T., Taiwo, O.A., Abubakar, J.U., Ogunwobi, Z.O.: Numerical studies for solving fractional integro-differential equations by using least squares method and Bernstein polynomials. Fluid Mech. Open Access 3(3), 1000142 (2016) Oyedepo, T., Taiwo, O.A., Abubakar, J.U., Ogunwobi, Z.O.: Numerical studies for solving fractional integro-differential equations by using least squares method and Bernstein polynomials. Fluid Mech. Open Access 3(3), 1000142 (2016)
32.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1999)MATH
33.
Zurück zum Zitat Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)MathSciNetCrossRef Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat Qiu, W., Xu, D., Chen, H.: A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels. Int. J. Comput. Math. 97(10), 2055–2073 (2020)MathSciNetCrossRef Qiu, W., Xu, D., Chen, H.: A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels. Int. J. Comput. Math. 97(10), 2055–2073 (2020)MathSciNetCrossRef
35.
Zurück zum Zitat Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1–6 (2006)MathSciNetMATH Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1–6 (2006)MathSciNetMATH
36.
Zurück zum Zitat Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control 17(13), 2050–2058 (2011)MathSciNetCrossRef Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control 17(13), 2050–2058 (2011)MathSciNetCrossRef
37.
Zurück zum Zitat Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319–327 (1988)MathSciNetCrossRef Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319–327 (1988)MathSciNetCrossRef
38.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2006)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2006)MATH
39.
Zurück zum Zitat Thomée, V., Zhang, N.-Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53(187), 121–139 (1989)MathSciNetCrossRef Thomée, V., Zhang, N.-Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53(187), 121–139 (1989)MathSciNetCrossRef
40.
Zurück zum Zitat Unhale, S.I., Kendre, S.D.: Numerical solution of nonlinear fractional integro-differential equation by collocation method, 2018. Malaya J. Mat. 6(1), 73–79 (2018)MathSciNetCrossRef Unhale, S.I., Kendre, S.D.: Numerical solution of nonlinear fractional integro-differential equation by collocation method, 2018. Malaya J. Mat. 6(1), 73–79 (2018)MathSciNetCrossRef
41.
Zurück zum Zitat Zaeri, S., Saeedi, H., Izadi, M.: Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel. Asian-Eur. J. Math. 10(04), 1750071 (2017)MathSciNetCrossRef Zaeri, S., Saeedi, H., Izadi, M.: Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel. Asian-Eur. J. Math. 10(04), 1750071 (2017)MathSciNetCrossRef
42.
Zurück zum Zitat Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020)MathSciNetCrossRef Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020)MathSciNetCrossRef
Metadaten
Titel
Finite Element Method for Fractional Parabolic Integro-Differential Equations with Smooth and Nonsmooth Initial Data
verfasst von
Shantiram Mahata
Rajen Kumar Sinha
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01412-3

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe

Premium Partner