Skip to main content

2015 | OriginalPaper | Buchkapitel

3. First-Row Transition Metal Complexes for the Conversion of Light into Electricity and Electricity into Light

verfasst von : Etienne Baranoff

Erschienen in: Organometallics and Related Molecules for Energy Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ruthenium and iridium complexes have been widely used as sensitizer for dye-sensitized solar cells (conversion of light into electricity) and as highly phosphorescent emitters for organic electroluminescence (conversion of electricity into light). The high costs and limited availability of these platinoid metals have motivated the search for alternatives based on first-row transition metals. First-row transition metal complexes have also been used as alternatives to existing materials as redox mediator. This chapter provides an overview of such materials used as an active component of the aforementioned devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Veltkamp AC, de Wild-Scholten MJ (2006) In: Proceedings of renewable energy conference, 2006, Makuhari, Chiba, Japan, October 2006 Veltkamp AC, de Wild-Scholten MJ (2006) In: Proceedings of renewable energy conference, 2006, Makuhari, Chiba, Japan, October 2006
4.
Zurück zum Zitat Moser J (1887) Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung. Monatsh Chem 8:373 Moser J (1887) Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung. Monatsh Chem 8:373
5.
Zurück zum Zitat Gerischer H, Tributsch H (1968) Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen. Ber Bunsenges Phys Chem 72:437–445 Gerischer H, Tributsch H (1968) Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen. Ber Bunsenges Phys Chem 72:437–445
6.
Zurück zum Zitat Dare-Edwards MP, Goodenough JB, Hamnett A et al (1980) Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discuss Chem Soc 70:285–298 Dare-Edwards MP, Goodenough JB, Hamnett A et al (1980) Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discuss Chem Soc 70:285–298
7.
Zurück zum Zitat Tsuborama H, Matsumura M, Nomura Y et al (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403 Tsuborama H, Matsumura M, Nomura Y et al (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403
8.
Zurück zum Zitat O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740 O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740
9.
Zurück zum Zitat Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847 Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847
10.
Zurück zum Zitat Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178 Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178
11.
Zurück zum Zitat Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663 Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663
12.
Zurück zum Zitat Yella A, Lee HW, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634 Yella A, Lee HW, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634
13.
Zurück zum Zitat Snaith H (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630 Snaith H (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630
14.
Zurück zum Zitat Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107:8981–8987 Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107:8981–8987
15.
Zurück zum Zitat Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl−, Br−, I-, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390 Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I-, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390
16.
Zurück zum Zitat Nazeeruddin MK, Péchy P, Renouard T et al (2003) engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624 Nazeeruddin MK, Péchy P, Renouard T et al (2003) engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624
17.
Zurück zum Zitat Chiba Y, Islam A, Watanabe Y et al (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640 Chiba Y, Islam A, Watanabe Y et al (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640
18.
Zurück zum Zitat Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934 Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934
19.
Zurück zum Zitat Bomben PG, Robson KCD, Koivisto BD et al (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450 Bomben PG, Robson KCD, Koivisto BD et al (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450
20.
Zurück zum Zitat Bozic-Weber B, Constable EC, Housecroft CE (2013) Light harvesting with Earth abundant d-block metals: development of sensitizers in dye-sensitized solar cells (DSCs). Coord Chem Rev 257:3089–3106 Bozic-Weber B, Constable EC, Housecroft CE (2013) Light harvesting with Earth abundant d-block metals: development of sensitizers in dye-sensitized solar cells (DSCs). Coord Chem Rev 257:3089–3106
21.
Zurück zum Zitat Ragoussi ME, Ince M, Torres T (2013) Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur J Org Chem 29:6475–6489 Ragoussi ME, Ince M, Torres T (2013) Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur J Org Chem 29:6475–6489
22.
Zurück zum Zitat Li LL, Diau EWG (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304 Li LL, Diau EWG (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304
23.
Zurück zum Zitat Vrachnou E, Vlachopoulos N, Grätzel M (1987) Efficient visible light sensitization of TiO2 by surface complexation with Fe(CN)6 4−. J Chem Soc Chem Commun 12:868–870 Vrachnou E, Vlachopoulos N, Grätzel M (1987) Efficient visible light sensitization of TiO2 by surface complexation with Fe(CN)6 4−. J Chem Soc Chem Commun 12:868–870
24.
Zurück zum Zitat Yang M, Thompson DW, Meyer GJ (2000) Dual pathways for TiO2 sensitization by Na2[Fe(bpy)(CN)4]. Inorg Chem 39:3738–3739 Yang M, Thompson DW, Meyer GJ (2000) Dual pathways for TiO2 sensitization by Na2[Fe(bpy)(CN)4]. Inorg Chem 39:3738–3739
25.
Zurück zum Zitat Yang M, Thompson DW, Meyer GJ (2002) Charge-transfer studies of iron cyano compounds bound to nanocrystalline TiO2 surfaces. Inorg Chem 41:1254–1262 Yang M, Thompson DW, Meyer GJ (2002) Charge-transfer studies of iron cyano compounds bound to nanocrystalline TiO2 surfaces. Inorg Chem 41:1254–1262
26.
Zurück zum Zitat De Angelis F, Tilocca A, Selloni A (2004) Time-dependent DFT study of [Fe(CN)6]4− sensitization of TiO2 nanoparticles. J Am Chem Soc 126:15024–15025 De Angelis F, Tilocca A, Selloni A (2004) Time-dependent DFT study of [Fe(CN)6]4− sensitization of TiO2 nanoparticles. J Am Chem Soc 126:15024–15025
27.
Zurück zum Zitat Ferrere S, Gregg BA (1998) Photosensitization of TiO2 by [FeII(2,2’-bipyridine-4,4’-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J Am Chem Soc 120:843–844 Ferrere S, Gregg BA (1998) Photosensitization of TiO2 by [FeII(2,2’-bipyridine-4,4’-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J Am Chem Soc 120:843–844
28.
Zurück zum Zitat Ferrere S (2002) New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2’-bipyridine. Inorg Chim Acta 329:79–92 Ferrere S (2002) New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2’-bipyridine. Inorg Chim Acta 329:79–92
29.
Zurück zum Zitat Bowman DN, Blew JH, Tsuchiya T et al (2013) Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies. Inorg Chem 52:8621–8628 Bowman DN, Blew JH, Tsuchiya T et al (2013) Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies. Inorg Chem 52:8621–8628
30.
Zurück zum Zitat Alonso-Vante N, Ern V, Chartier P et al (1983) Spectral sensitization of semiconductors by copper(I) complexes in photoelectrochemical systems. Nouv J Chim 7:3–5 Alonso-Vante N, Ern V, Chartier P et al (1983) Spectral sensitization of semiconductors by copper(I) complexes in photoelectrochemical systems. Nouv J Chim 7:3–5
31.
Zurück zum Zitat Alonso-Vante N, Nierengarten JF, Sauvage JP (1994) Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. J Chem Soc Dalton Trans 11:1649–1654 Alonso-Vante N, Nierengarten JF, Sauvage JP (1994) Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. J Chem Soc Dalton Trans 11:1649–1654
32.
Zurück zum Zitat Sakaki S, Kuroki T, Hamada T (2002) Synthesis of a new copper(I) complex, [Cu(tmdcbpy)2] + (tmdcbpy = 4,4’,6,6’-tetramethyl-2,2’-bipyridine-5,5’-dicarboxylic acid), and its application to solar cells. J Chem Soc Dalton Trans 2:840–842 Sakaki S, Kuroki T, Hamada T (2002) Synthesis of a new copper(I) complex, [Cu(tmdcbpy)2] + (tmdcbpy = 4,4’,6,6’-tetramethyl-2,2’-bipyridine-5,5’-dicarboxylic acid), and its application to solar cells. J Chem Soc Dalton Trans 2:840–842
33.
Zurück zum Zitat Bessho T, Constable EC, Graetzel M et al (2008) An element of surprise-efficient copper-functionalized dye-sensitized solar cells. Chem Commun 32:3717–3719 Bessho T, Constable EC, Graetzel M et al (2008) An element of surprise-efficient copper-functionalized dye-sensitized solar cells. Chem Commun 32:3717–3719
34.
Zurück zum Zitat Constable EC, Hernandez Redondo A, Housecroft CE et al (2009) Copper(I) complexes of 6,6’-disubstituted 2,2’-bipyridine dicarboxylic acids: new complexes for incorporation into copper-based dye sensitized solar cells (DSCs). Dalton Trans 7:6634–6644 Constable EC, Hernandez Redondo A, Housecroft CE et al (2009) Copper(I) complexes of 6,6’-disubstituted 2,2’-bipyridine dicarboxylic acids: new complexes for incorporation into copper-based dye sensitized solar cells (DSCs). Dalton Trans 7:6634–6644
35.
Zurück zum Zitat Yuan YJ, Yu ZT, Zhang JY et al (2012) A copper(I) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Trans 41:9594–9597 Yuan YJ, Yu ZT, Zhang JY et al (2012) A copper(I) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Trans 41:9594–9597
36.
Zurück zum Zitat Linfoot CL, Richardson P, Hewat TE et al (2010) Substituted [Cu(I)(POP)(bipyridyl)] and related complexes: synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Trans 39:8945–8956 Linfoot CL, Richardson P, Hewat TE et al (2010) Substituted [Cu(I)(POP)(bipyridyl)] and related complexes: synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Trans 39:8945–8956
37.
Zurück zum Zitat Bozic-Weber B, Constable EC, Housecroft CE et al (2011) The intramolecular aryl embrace: from light emission to light absorption. Dalton Trans 40:12584–12594 Bozic-Weber B, Constable EC, Housecroft CE et al (2011) The intramolecular aryl embrace: from light emission to light absorption. Dalton Trans 40:12584–12594
38.
Zurück zum Zitat Bozic-Weber B, Chaurin V, Constable EC et al (2012) Exploring copper(I)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation. Dalton Trans 41:14157–14169 Bozic-Weber B, Chaurin V, Constable EC et al (2012) Exploring copper(I)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation. Dalton Trans 41:14157–14169
39.
Zurück zum Zitat Lu X, Wei S, Wu CML et al (2001) Can polypyridyl Cu(I)-based complexes provide promising sensitizers for dye-sensitized solar cells? a theoretical insight into Cu(I) versus Ru(II) sensitizers. J Phys Chem C 115:3753–3761 Lu X, Wei S, Wu CML et al (2001) Can polypyridyl Cu(I)-based complexes provide promising sensitizers for dye-sensitized solar cells? a theoretical insight into Cu(I) versus Ru(II) sensitizers. J Phys Chem C 115:3753–3761
40.
Zurück zum Zitat Huang J, Buyukcakir O, Mara MW et al (2012) Highly efficient ultrafast electron injection from the singlet MLCT excited state of copper(I) diimine complexes to TiO2 nanoparticles. Angew Chem Int Ed 51:12711–12715 Huang J, Buyukcakir O, Mara MW et al (2012) Highly efficient ultrafast electron injection from the singlet MLCT excited state of copper(I) diimine complexes to TiO2 nanoparticles. Angew Chem Int Ed 51:12711–12715
41.
Zurück zum Zitat Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826 Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826
42.
Zurück zum Zitat Kubo W, Kambe S, Nakade S et al (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107:4374–4381 Kubo W, Kambe S, Nakade S et al (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107:4374–4381
43.
Zurück zum Zitat Wang X, Stanbury DM (2006) Oxidation of iodide by a series of Fe(III) complexes in acetonitrile. Inorg Chem 45:3415–3423 Wang X, Stanbury DM (2006) Oxidation of iodide by a series of Fe(III) complexes in acetonitrile. Inorg Chem 45:3415–3423
44.
Zurück zum Zitat Hamann TW, Ondersma JW (2011) Dye-sensitized solar cell redox shuttles. Energy Environ Sci 4:370–381 Hamann TW, Ondersma JW (2011) Dye-sensitized solar cell redox shuttles. Energy Environ Sci 4:370–381
45.
Zurück zum Zitat Tian H, Sun L (2011) Iodine-free redox couples for dye-sensitized solar cells. J Mater Chem 21:10592–10601 Tian H, Sun L (2011) Iodine-free redox couples for dye-sensitized solar cells. J Mater Chem 21:10592–10601
46.
Zurück zum Zitat Wang M, Grätzel C, Zakeeruddin SM et al (2012) Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ Sci 5:9394–9405 Wang M, Grätzel C, Zakeeruddin SM et al (2012) Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ Sci 5:9394–9405
47.
Zurück zum Zitat Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5:9180–9194 Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5:9180–9194
48.
Zurück zum Zitat Yu Z, Vlachopoulos N, Gorlov M et al (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40:10289–10303 Yu Z, Vlachopoulos N, Gorlov M et al (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40:10289–10303
49.
Zurück zum Zitat Gregg BA, Pichot F, Ferrere S et al (2001) Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B 105:1422–1429 Gregg BA, Pichot F, Ferrere S et al (2001) Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B 105:1422–1429
50.
Zurück zum Zitat Hamann TW, Farha OK, Hupp JT (2008) Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J Phys Chem C 112:19756–19764 Hamann TW, Farha OK, Hupp JT (2008) Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J Phys Chem C 112:19756–19764
51.
Zurück zum Zitat Daeneke T, Kwon TH, Holmes AB et al (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215 Daeneke T, Kwon TH, Holmes AB et al (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215
52.
Zurück zum Zitat Daeneke T, Mozer AJ, Kwon TH et al (2012) Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ Sci 5:7090–7099 Daeneke T, Mozer AJ, Kwon TH et al (2012) Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ Sci 5:7090–7099
53.
Zurück zum Zitat Daeneke T, Mozer AJ, Uemura Y et al (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928 Daeneke T, Mozer AJ, Uemura Y et al (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928
54.
Zurück zum Zitat Nusbaumer H, Moser JE, Zakeeruddin SM et al (2001) CoII(dbbip)2 2+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464 Nusbaumer H, Moser JE, Zakeeruddin SM et al (2001) CoII(dbbip)2 2+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464
55.
Zurück zum Zitat Wang H, Sun Z, Zhang Y et al (2014) Charge transport limitations of redox mediators in dye-sensitized solar cells: investigation based on a quasi-linear model. J Phys Chem C 118:60–70 Wang H, Sun Z, Zhang Y et al (2014) Charge transport limitations of redox mediators in dye-sensitized solar cells: investigation based on a quasi-linear model. J Phys Chem C 118:60–70
56.
Zurück zum Zitat Cameron PJ, Peter LM, Zakeeruddin SM et al (2004) Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord Chem Rev 248:1447–1453 Cameron PJ, Peter LM, Zakeeruddin SM et al (2004) Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord Chem Rev 248:1447–1453
57.
Zurück zum Zitat Sapp SA, Elliott CM, Contado C et al (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 124:11215–11222 Sapp SA, Elliott CM, Contado C et al (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 124:11215–11222
58.
Zurück zum Zitat Liu Y, Jenning JR, Huang Y et al (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. J Phys Chem C 115:18847–18855 Liu Y, Jenning JR, Huang Y et al (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. J Phys Chem C 115:18847–18855
59.
Zurück zum Zitat Feldt SM, Gibson EA, Gabrielsson E et al (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714–16724 Feldt SM, Gibson EA, Gabrielsson E et al (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714–16724
60.
Zurück zum Zitat Yum JH, Baranoff E, Kessler F et al (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631 Yum JH, Baranoff E, Kessler F et al (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631
61.
Zurück zum Zitat Nakade S, Makimoto Y, Kubo W et al (2005) Roles of electrolytes on charge recombination in dye-sensitized TiO2 solar cells (2): the case of solar cells using cobalt complex redox couples. J Phys Chem B 109:3488–3493 Nakade S, Makimoto Y, Kubo W et al (2005) Roles of electrolytes on charge recombination in dye-sensitized TiO2 solar cells (2): the case of solar cells using cobalt complex redox couples. J Phys Chem B 109:3488–3493
62.
Zurück zum Zitat Xie Y, Hamann TW (2013) Fast low-spin cobalt complex redox shuttles for dye-sensitized solar cells. J Phys Chem Lett 4:328–332 Xie Y, Hamann TW (2013) Fast low-spin cobalt complex redox shuttles for dye-sensitized solar cells. J Phys Chem Lett 4:328–332
63.
Zurück zum Zitat Kashif MK, Axelson JC, Duffy NW et al (2012) A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. J Am Chem Soc 134:16646–16653 Kashif MK, Axelson JC, Duffy NW et al (2012) A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. J Am Chem Soc 134:16646–16653
64.
Zurück zum Zitat Hattori S, Wada Y, Yanagida S et al (2005) Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 127:9648–9654 Hattori S, Wada Y, Yanagida S et al (2005) Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 127:9648–9654
65.
Zurück zum Zitat Bai Y, Yu Q, Cai N et al (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376–4378 Bai Y, Yu Q, Cai N et al (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376–4378
66.
Zurück zum Zitat Li TC, Spokoyny AM, She C et al (2010) Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J Am Chem Soc 132:4580–4582 Li TC, Spokoyny AM, She C et al (2010) Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells. J Am Chem Soc 132:4580–4582
67.
Zurück zum Zitat Spokoyny AM, Li TC, Farha OK et al (2010) Electronic tuning of nickel-based Bis(dicarbollide) redox shuttles in dye-sensitized solar cells. Angew Chem Int Ed 49:5339–5343 Spokoyny AM, Li TC, Farha OK et al (2010) Electronic tuning of nickel-based Bis(dicarbollide) redox shuttles in dye-sensitized solar cells. Angew Chem Int Ed 49:5339–5343
68.
Zurück zum Zitat Perera IR, Gupta A, Xiang W et al (2014) Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys Chem Chem Phys 16:12021–12028 Perera IR, Gupta A, Xiang W et al (2014) Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys Chem Chem Phys 16:12021–12028
69.
Zurück zum Zitat Bernanose A, Comte M, Vouaux P (1953) A new method of emission of light by certain organic compounds. J Chim Phys Phys Chim Biol 50:64–68 Bernanose A, Comte M, Vouaux P (1953) A new method of emission of light by certain organic compounds. J Chim Phys Phys Chim Biol 50:64–68
70.
Zurück zum Zitat Bernanose A, Vouaux P (1953) Organic electroluminescence: type of emission. J Chim Phys Phys Chim Biol 50:261–263 Bernanose A, Vouaux P (1953) Organic electroluminescence: type of emission. J Chim Phys Phys Chim Biol 50:261–263
71.
Zurück zum Zitat Pope M, Kallmann HP, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043 Pope M, Kallmann HP, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043
72.
Zurück zum Zitat Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915 Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915
73.
Zurück zum Zitat Baldo MA, O'Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154 Baldo MA, O'Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154
74.
Zurück zum Zitat Baldo MA, Thompson ME, Forrest SR (2000) High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403:750–753 Baldo MA, Thompson ME, Forrest SR (2000) High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403:750–753
75.
Zurück zum Zitat Deaton JC, Switalski SC, Kondakov DY et al (2010) E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508 Deaton JC, Switalski SC, Kondakov DY et al (2010) E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508
76.
Zurück zum Zitat Uoyama H, Goushi K, Shizu K et al (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238 Uoyama H, Goushi K, Shizu K et al (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238
77.
Zurück zum Zitat Dias FB, Bourdakos KN, Jankus V et al (2013) Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv Mater 25:3707–3714 Dias FB, Bourdakos KN, Jankus V et al (2013) Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv Mater 25:3707–3714
78.
Zurück zum Zitat Flamigni L, Barbieri A, Sabatini C et al (2007) Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem 281:143–203 Flamigni L, Barbieri A, Sabatini C et al (2007) Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem 281:143–203
79.
Zurück zum Zitat You Y, Park SY (2009) Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control. Dalton Trans 8:1267–1282 You Y, Park SY (2009) Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control. Dalton Trans 8:1267–1282
80.
Zurück zum Zitat Lowry MS, Bernhard S (2006) Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem Eur J 12:7970–7977 Lowry MS, Bernhard S (2006) Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem Eur J 12:7970–7977
81.
Zurück zum Zitat Ulbricht C, Beyer B, Friebe C et al (2009) Recent developments in the application of phosphorescent iridium(III) complex systems. Adv Mater 21:4418–4441 Ulbricht C, Beyer B, Friebe C et al (2009) Recent developments in the application of phosphorescent iridium(III) complex systems. Adv Mater 21:4418–4441
82.
Zurück zum Zitat Baranoff E, Yum JH, Graetzel M et al (2009) Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. J Organomet Chem 694:2661–2670 Baranoff E, Yum JH, Graetzel M et al (2009) Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. J Organomet Chem 694:2661–2670
83.
Zurück zum Zitat Lo KK, Choi AW, Law WH (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047 Lo KK, Choi AW, Law WH (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047
84.
Zurück zum Zitat Sajoto T, Djurovich PI, Tamayo AB et al (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822 Sajoto T, Djurovich PI, Tamayo AB et al (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822
85.
Zurück zum Zitat Li J, Djurovich PI, Alleyne BD et al (2005) Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. Inorg Chem 44:1713–1727 Li J, Djurovich PI, Alleyne BD et al (2005) Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. Inorg Chem 44:1713–1727
86.
Zurück zum Zitat Costa RD, Ortì E, Bolink HJ et al (2012) Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew Chem Int Ed 51:8178–8211 Costa RD, Ortì E, Bolink HJ et al (2012) Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew Chem Int Ed 51:8178–8211
87.
Zurück zum Zitat Brooks J, Babayan Y, Lamanski S et al (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41:3055–3066 Brooks J, Babayan Y, Lamanski S et al (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41:3055–3066
88.
Zurück zum Zitat Cocchi M, Kalinowski J, Virgili D et al (2007) Single-dopant organic white electrophosphorescent diodes with very high efficiency and its reduced current density roll-off. Appl Phys Lett 90:163508 Cocchi M, Kalinowski J, Virgili D et al (2007) Single-dopant organic white electrophosphorescent diodes with very high efficiency and its reduced current density roll-off. Appl Phys Lett 90:163508
89.
Zurück zum Zitat Burrows PE, Sapochak LS, McCarty DM et al (1994) Metal ion dependent luminescence effects in metal tris‐quinolate organic heterojunction light emitting devices. Appl Phys Lett 64:2718–2720 Burrows PE, Sapochak LS, McCarty DM et al (1994) Metal ion dependent luminescence effects in metal tris‐quinolate organic heterojunction light emitting devices. Appl Phys Lett 64:2718–2720
90.
Zurück zum Zitat Katkova MA, Ilichev VA, Konev AN et al (2008) Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. J Appl Phys 104:053706 Katkova MA, Ilichev VA, Konev AN et al (2008) Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. J Appl Phys 104:053706
91.
Zurück zum Zitat Katkova MA, Kurskii YA, Fukin GK et al (2005) Efficient synthetic route to anhydrous mononuclear tris(8-quinolinolato)lanthanoid complexes for organic light-emitting devices. Inorg Chim Acta 358:3625–3632 Katkova MA, Kurskii YA, Fukin GK et al (2005) Efficient synthetic route to anhydrous mononuclear tris(8-quinolinolato)lanthanoid complexes for organic light-emitting devices. Inorg Chim Acta 358:3625–3632
92.
Zurück zum Zitat Chen BJ, Sun XW (2005) The role of MgF2 buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode. Semicond Sci Technol 20:801–804 Chen BJ, Sun XW (2005) The role of MgF2 buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode. Semicond Sci Technol 20:801–804
93.
Zurück zum Zitat Shestakov AF, Katkova MA, Emel’yanova NS et al (2010) Experimental and theoretical study of the effect of the substituent nature on the luminescent properties of scandium complexes with substituted 8-hydroxyquinolines. High Energy Chem 44:503–510 Shestakov AF, Katkova MA, Emel’yanova NS et al (2010) Experimental and theoretical study of the effect of the substituent nature on the luminescent properties of scandium complexes with substituted 8-hydroxyquinolines. High Energy Chem 44:503–510
94.
Zurück zum Zitat Katkova MA, Balashova TV, Lichev VA et al (2010) Synthesis, structures, and electroluminescent properties of scandium N, O-chelated complexes toward near-white organic light-emitting diodes. Inorg Chem 49:5094–5100 Katkova MA, Balashova TV, Lichev VA et al (2010) Synthesis, structures, and electroluminescent properties of scandium N, O-chelated complexes toward near-white organic light-emitting diodes. Inorg Chem 49:5094–5100
95.
Zurück zum Zitat Burin ME, Ilichev VA, Pushkarev AP et al (2012) Synthesis and luminescence properties of lithium, zinc and scandium 1-(2-pyridyl)naphtholates. Org Electron 13:3203–3210 Burin ME, Ilichev VA, Pushkarev AP et al (2012) Synthesis and luminescence properties of lithium, zinc and scandium 1-(2-pyridyl)naphtholates. Org Electron 13:3203–3210
96.
Zurück zum Zitat Ma YG, Chan WH, Zhou XM et al (1999) Light-emitting diode device from a luminescent organocopper(I) compound. New J Chem 23:263–265 Ma YG, Chan WH, Zhou XM et al (1999) Light-emitting diode device from a luminescent organocopper(I) compound. New J Chem 23:263–265
97.
Zurück zum Zitat Min J, Zhang Q, Sun W et al (2011) Neutral copper(I) phosphorescent complexes from their ionic counterparts with 2-(2’-quinolyl)benzimidazole and phosphine mixed ligand. Dalton Trans 40:686–693 Min J, Zhang Q, Sun W et al (2011) Neutral copper(I) phosphorescent complexes from their ionic counterparts with 2-(2’-quinolyl)benzimidazole and phosphine mixed ligand. Dalton Trans 40:686–693
98.
Zurück zum Zitat Babashkina MG, Safin DA, Klein A et al (2010) Synthesis, characterisation and luminescent properties of mixed-ligand copper(I) complexes incorporating N-thiophosphorylated thioureas and phosphane ligands. Eur J Inorg Chem 2010:4018–4026 Babashkina MG, Safin DA, Klein A et al (2010) Synthesis, characterisation and luminescent properties of mixed-ligand copper(I) complexes incorporating N-thiophosphorylated thioureas and phosphane ligands. Eur J Inorg Chem 2010:4018–4026
99.
Zurück zum Zitat Zhang Q, Zhou Q, Cheng Y et al (2004) Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes. Adv Mater 16:432–436 Zhang Q, Zhou Q, Cheng Y et al (2004) Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes. Adv Mater 16:432–436
100.
Zurück zum Zitat Zhang Q, Zhou Q, Cheng Y et al (2006) Highly efficient electroluminescence from green-light-emitting electrochemical cells based on CuI complexes. Adv Funct Mater 16:1203–1208 Zhang Q, Zhou Q, Cheng Y et al (2006) Highly efficient electroluminescence from green-light-emitting electrochemical cells based on CuI complexes. Adv Funct Mater 16:1203–1208
101.
Zurück zum Zitat Armaroli N, Accorsi G, Holler M et al (2006) Highly luminescent CuI complexes for light-emitting electrochemical cells. Adv Mater 18:1313–1316 Armaroli N, Accorsi G, Holler M et al (2006) Highly luminescent CuI complexes for light-emitting electrochemical cells. Adv Mater 18:1313–1316
102.
Zurück zum Zitat Che G, Su Z, Li W et al (2006) Highly efficient and color-tuning electrophosphorescent devices based on CuI complex. Appl Phys Lett 89:103511 Che G, Su Z, Li W et al (2006) Highly efficient and color-tuning electrophosphorescent devices based on CuI complex. Appl Phys Lett 89:103511
103.
Zurück zum Zitat Su Z, Li W, Che G et al (2007) Enhanced electrophosphorescence of copper complex based devices by codoping an iridium complex. Appl Phys Lett 90:143505 Su Z, Li W, Che G et al (2007) Enhanced electrophosphorescence of copper complex based devices by codoping an iridium complex. Appl Phys Lett 90:143505
104.
Zurück zum Zitat Su Z, Li W, Chu B et al (2008) Efficient white organic light-emitting diodes based on iridium complex sensitized copper complex. J Phys D Appl Phys 41:085103 Su Z, Li W, Chu B et al (2008) Efficient white organic light-emitting diodes based on iridium complex sensitized copper complex. J Phys D Appl Phys 41:085103
105.
Zurück zum Zitat Moudam O, Kaeser A, Delavaux-Nicot B et al (2007) Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem Commun 29:3077–3079 Moudam O, Kaeser A, Delavaux-Nicot B et al (2007) Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem Commun 29:3077–3079
106.
Zurück zum Zitat Jia WL, McCormick T, Tao Y et al (2005) New phosphorescent polynuclear Cu(I) compounds based on linear and star-shaped 2-(2′-pyridyl)benzimidazolyl derivatives: syntheses, structures, luminescence, and electroluminescence. Inorg Chem 44:5706–5712 Jia WL, McCormick T, Tao Y et al (2005) New phosphorescent polynuclear Cu(I) compounds based on linear and star-shaped 2-(2′-pyridyl)benzimidazolyl derivatives: syntheses, structures, luminescence, and electroluminescence. Inorg Chem 44:5706–5712
107.
Zurück zum Zitat Zhang Q, Ding J, Cheng Y et al (2007) Novel heteroleptic CuI complexes with tunable emission color for efficient phosphorescent light-emitting diodes. Adv Funct Mater 17:2983–2990 Zhang Q, Ding J, Cheng Y et al (2007) Novel heteroleptic CuI complexes with tunable emission color for efficient phosphorescent light-emitting diodes. Adv Funct Mater 17:2983–2990
108.
Zurück zum Zitat Si Z, Li J, Li B et al (2009) High light electroluminescence of novel Cu(I) complexes. J Lumin 129:181–186 Si Z, Li J, Li B et al (2009) High light electroluminescence of novel Cu(I) complexes. J Lumin 129:181–186
109.
Zurück zum Zitat Zhang L, Li B, Su Z (2009) Realization of high-energy emission from [Cu(N − N)(P − P)]+ complexes for organic light-emitting diode applications. J Phys Chem C 113:13968–13973 Zhang L, Li B, Su Z (2009) Realization of high-energy emission from [Cu(N − N)(P − P)]+ complexes for organic light-emitting diode applications. J Phys Chem C 113:13968–13973
110.
Zurück zum Zitat Sun W, Zhang Q, Qin L et al (2010) Phosphorescent cuprous complexes with N, O ligands – synthesis, photoluminescence, and electroluminescence. Eur J Inorg Chem 2010:4009–4017 Sun W, Zhang Q, Qin L et al (2010) Phosphorescent cuprous complexes with N, O ligands – synthesis, photoluminescence, and electroluminescence. Eur J Inorg Chem 2010:4009–4017
111.
Zurück zum Zitat Costa RD, Tordera D, Ortí E et al (2011) Copper(I) complexes for sustainable light-emitting electrochemical cells. J Mater Chem 21:16108–16118 Costa RD, Tordera D, Ortí E et al (2011) Copper(I) complexes for sustainable light-emitting electrochemical cells. J Mater Chem 21:16108–16118
112.
Zurück zum Zitat Wada A, Zhang Q, Yasuda T et al (2012) Efficient luminescence from a copper(I) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chem Commun 48:5340–5342 Wada A, Zhang Q, Yasuda T et al (2012) Efficient luminescence from a copper(I) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chem Commun 48:5340–5342
113.
Zurück zum Zitat Igawa S, Hashimoto M, Kawata I et al (2013) Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(I) complexes. J Mater Chem C 1:542–551 Igawa S, Hashimoto M, Kawata I et al (2013) Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(I) complexes. J Mater Chem C 1:542–551
114.
Zurück zum Zitat Parmeggiani F, Sacchetti A (2012) Preparation and luminescence thermochromism of tetranuclear copper(I)–pyridine–iodide clusters. J Chem Educ 89:946–949 Parmeggiani F, Sacchetti A (2012) Preparation and luminescence thermochromism of tetranuclear copper(I)–pyridine–iodide clusters. J Chem Educ 89:946–949
115.
Zurück zum Zitat Liu Z, Qayyum MF, Wu C et al (2011) A codeposition route to CuI−pyridine coordination complexes for organic light-emitting diodes. J Am Chem Soc 133:3700–3703 Liu Z, Qayyum MF, Wu C et al (2011) A codeposition route to CuI−pyridine coordination complexes for organic light-emitting diodes. J Am Chem Soc 133:3700–3703
116.
Zurück zum Zitat Volz D, Zink DM, Bocksrocker T et al (2013) Molecular construction kit for tuning solubility, stability and luminescence properties: heteroleptic MePyrPHOS-copper iodide-complexes and their application in organic light-emitting diodes. Chem Mater 25:3414–3426 Volz D, Zink DM, Bocksrocker T et al (2013) Molecular construction kit for tuning solubility, stability and luminescence properties: heteroleptic MePyrPHOS-copper iodide-complexes and their application in organic light-emitting diodes. Chem Mater 25:3414–3426
117.
Zurück zum Zitat Hashimoto M, Igawa S, Yashima M et al (2011) Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc 133:10348–10351 Hashimoto M, Igawa S, Yashima M et al (2011) Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc 133:10348–10351
118.
Zurück zum Zitat Yan F, Li WL, Chu B et al (2007) Sensitized electrophosphorescence of infrared emission diode based on copper phthalocyanine by an ytterbium complex. Appl Phys Lett 91:203512 Yan F, Li WL, Chu B et al (2007) Sensitized electrophosphorescence of infrared emission diode based on copper phthalocyanine by an ytterbium complex. Appl Phys Lett 91:203512
119.
Zurück zum Zitat Yan F, Li W, Chu B et al (2009) Sensitized infrared electrophosphorescence based on divalent copper complex by an iridium(III) complex. Org Electron 10:1408–1411 Yan F, Li W, Chu B et al (2009) Sensitized infrared electrophosphorescence based on divalent copper complex by an iridium(III) complex. Org Electron 10:1408–1411
120.
Zurück zum Zitat Yuan GZ, Huo YP, Nie XL et al (2012) Structure and photophysical properties of a dimeric Zn(II) complex based on 8-hydroxyquinoline group containing 2,6-dichlorobenzene unit. Tetrahedron 68:8018–8023 Yuan GZ, Huo YP, Nie XL et al (2012) Structure and photophysical properties of a dimeric Zn(II) complex based on 8-hydroxyquinoline group containing 2,6-dichlorobenzene unit. Tetrahedron 68:8018–8023
121.
Zurück zum Zitat Czugler M, Neumann R, Weber E (2001) X-ray crystal structures and data bank analysis of Zn(II) and Cd(II) complexes of 2- and 7-nonyl substituted 8-hydroxyquinoline and 8-hydroxyquinaldine extractive agents. Inorg Chim Acta 313:100–108 Czugler M, Neumann R, Weber E (2001) X-ray crystal structures and data bank analysis of Zn(II) and Cd(II) complexes of 2- and 7-nonyl substituted 8-hydroxyquinoline and 8-hydroxyquinaldine extractive agents. Inorg Chim Acta 313:100–108
122.
Zurück zum Zitat Xu HB, Wen HM, Chen ZH et al (2010) Square structures and photophysical properties of Zn2Ln2 complexes (Ln = Nd, Eu, Sm, Er, Yb). Dalton Trans 39:1948–1953 Xu HB, Wen HM, Chen ZH et al (2010) Square structures and photophysical properties of Zn2Ln2 complexes (Ln = Nd, Eu, Sm, Er, Yb). Dalton Trans 39:1948–1953
123.
Zurück zum Zitat Huo YP, Zhu SZ, Hu S (2010) Synthesis and luminescent properties of Zn complex based on 8-hydroxyquinoline group containing 3,5-bis(trifluoromethyl) benzene unit with unique crystal structure. Tetrahedron 66:8635–8640 Huo YP, Zhu SZ, Hu S (2010) Synthesis and luminescent properties of Zn complex based on 8-hydroxyquinoline group containing 3,5-bis(trifluoromethyl) benzene unit with unique crystal structure. Tetrahedron 66:8635–8640
124.
Zurück zum Zitat Palenik GJ (1964) The structure of coordination compounds. III. A refinement of the structure of zinc 8-hydroxyquinolinate dehydrate. Acta Crystallogr 17:696–700 Palenik GJ (1964) The structure of coordination compounds. III. A refinement of the structure of zinc 8-hydroxyquinolinate dehydrate. Acta Crystallogr 17:696–700
125.
Zurück zum Zitat Najafi E, Amini MM, Ng SW (2011) 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-2N,O) zincate acetonitrile disolvate. Acta Crystallogr E67:m1280 Najafi E, Amini MM, Ng SW (2011) 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-2N,O) zincate acetonitrile disolvate. Acta Crystallogr E67:m1280
126.
Zurück zum Zitat Hamada Y, Sano T, Fujita M et al (1993) Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn J Appl Phys 32:L514–L515 Hamada Y, Sano T, Fujita M et al (1993) Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn J Appl Phys 32:L514–L515
127.
Zurück zum Zitat Hamada Y, Sano T, Fujita M et al (1993) Blue electroluminescence in thin films of azomethin-zinc complexes. Jpn J Appl Phys 32:L511–L513 Hamada Y, Sano T, Fujita M et al (1993) Blue electroluminescence in thin films of azomethin-zinc complexes. Jpn J Appl Phys 32:L511–L513
128.
Zurück zum Zitat Hamada Y, Sano T, Fujii H et al (1996) White-light-emitting material for organic electroluminescent devices. Jpn J Appl Phys 35:L1339–L1341 Hamada Y, Sano T, Fujii H et al (1996) White-light-emitting material for organic electroluminescent devices. Jpn J Appl Phys 35:L1339–L1341
129.
Zurück zum Zitat Bolink HJ, De Angelis F, Baranoff E et al (2009) White-light phosphorescence emission from a single molecule: application to OLED. Chem Commun 31:4672–4674 Bolink HJ, De Angelis F, Baranoff E et al (2009) White-light phosphorescence emission from a single molecule: application to OLED. Chem Commun 31:4672–4674
130.
Zurück zum Zitat Yu G, Yin S, Liu Y et al (2003) Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J Am Chem Soc 125:14816–14824 Yu G, Yin S, Liu Y et al (2003) Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J Am Chem Soc 125:14816–14824
131.
Zurück zum Zitat Xu X, Liao Y, Yu G et al (2007) Charge carrier transporting, photoluminescent, and electroluminescent properties of Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex. Chem Mater 19:1740–1748 Xu X, Liao Y, Yu G et al (2007) Charge carrier transporting, photoluminescent, and electroluminescent properties of Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex. Chem Mater 19:1740–1748
132.
Zurück zum Zitat Kim DE, Kim WS, Kim BS et al (2008) Improvement of color purity in white OLED based on Zn(HPB)2 as blue emitting layer. Thin Solid Films 516:3637–3640 Kim DE, Kim WS, Kim BS et al (2008) Improvement of color purity in white OLED based on Zn(HPB)2 as blue emitting layer. Thin Solid Films 516:3637–3640
133.
Zurück zum Zitat Son HJ, Han WS, Chun JY et al (2008) Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated Bis(2-oxazolylphenolate) Zinc(II) complexes. Inorg Chem 47:5666–5676 Son HJ, Han WS, Chun JY et al (2008) Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated Bis(2-oxazolylphenolate) Zinc(II) complexes. Inorg Chem 47:5666–5676
134.
Zurück zum Zitat Wang P, Hong Z, Xie Z et al (2003) A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices. Chem Commun 14:1664–1665 Wang P, Hong Z, Xie Z et al (2003) A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices. Chem Commun 14:1664–1665
135.
Zurück zum Zitat Wang R, Deng L, Fu M et al (2012) Novel ZnII complexes of 2-(2-hydroxyphenyl)benzothiazoles ligands: electroluminescence and application as host materials for phosphorescent organic light-emitting diodes. J Mater Chem 22:23454–23460 Wang R, Deng L, Fu M et al (2012) Novel ZnII complexes of 2-(2-hydroxyphenyl)benzothiazoles ligands: electroluminescence and application as host materials for phosphorescent organic light-emitting diodes. J Mater Chem 22:23454–23460
136.
Zurück zum Zitat Aleksanyan DV, Kozlov VA, Petrov BI et al (2013) Lithium, zinc and scandium complexes of phosphorylated salicylaldimines: synthesis, structure, thermochemical and photophysical properties, and application in OLEDs. RSC Adv 3:24484–24491 Aleksanyan DV, Kozlov VA, Petrov BI et al (2013) Lithium, zinc and scandium complexes of phosphorylated salicylaldimines: synthesis, structure, thermochemical and photophysical properties, and application in OLEDs. RSC Adv 3:24484–24491
137.
Zurück zum Zitat Xie J, Qiao J, Wang L et al (2005) An azomethin-zinc complex for organic electroluminescence: Crystal structure, thermal stability and optoelectronic properties. Inorg Chim Acta 358:4451–4458 Xie J, Qiao J, Wang L et al (2005) An azomethin-zinc complex for organic electroluminescence: Crystal structure, thermal stability and optoelectronic properties. Inorg Chim Acta 358:4451–4458
138.
Zurück zum Zitat Yu T, Su W, Li W et al (2006) Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorg Chim Acta 359:2246–2251 Yu T, Su W, Li W et al (2006) Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorg Chim Acta 359:2246–2251
139.
Zurück zum Zitat Zeng HP, Wang GR, Zeng GC et al (2009) The synthesis, characterization and electroluminescent properties of zinc(II) complexes for single-layer organic light-emitting diodes. Dyes Pigments 83:155–161 Zeng HP, Wang GR, Zeng GC et al (2009) The synthesis, characterization and electroluminescent properties of zinc(II) complexes for single-layer organic light-emitting diodes. Dyes Pigments 83:155–161
140.
Zurück zum Zitat Bagatin IA, Legnani C, Cremona M (2009) Investigation on Al(III) and Zn(II) complexes containing a calix[4]arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs. Mater Sci Eng C 29:267–270 Bagatin IA, Legnani C, Cremona M (2009) Investigation on Al(III) and Zn(II) complexes containing a calix[4]arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs. Mater Sci Eng C 29:267–270
141.
Zurück zum Zitat Lepnev L, Vaschenko A, Vitukhnovsky A et al (2009) OLEDs based on some mixed-ligand terbium carboxylates and zinc complexes with tetradentate Schiff bases: mechanisms of electroluminescence degradation. Synth Met 159:625–631 Lepnev L, Vaschenko A, Vitukhnovsky A et al (2009) OLEDs based on some mixed-ligand terbium carboxylates and zinc complexes with tetradentate Schiff bases: mechanisms of electroluminescence degradation. Synth Met 159:625–631
Metadaten
Titel
First-Row Transition Metal Complexes for the Conversion of Light into Electricity and Electricity into Light
verfasst von
Etienne Baranoff
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46054-2_3