Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Flame Retardancy of Polymer Nanocomposite

verfasst von : Yoshihiko Arao

Erschienen in: Flame Retardants

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofillers such as carbon nanotubes and clay are attractive materials, because addition of small amount of nanofillers can improve mechanical, thermal and electrical properties of plastics without changing processability. However, nanofillers themselves do not show excellent fire retardancy such as self-extinguish properties. Nanofillers should be combined with other fire retardants. Some combination showed positive synergy effect in fire retardancy, but some case showed negative synergy. It is important to know fire retardant mechanism of nanofiller to develop more efficient fire-retardant nanocomposites. In this chapter, we’ll show the fire retardant mechanism of nanofillers. Then, effective combination of nanofiller and conventional fire retardant is introduced reviewing lots of papers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Morgan, A.B., Gilman, J.W.: An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013)CrossRef Morgan, A.B., Gilman, J.W.: An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013)CrossRef
3.
Zurück zum Zitat Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, Ph: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng., R 63, 100–125 (2009)CrossRef Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, Ph: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng., R 63, 100–125 (2009)CrossRef
4.
Zurück zum Zitat Dasari, A., Yu, Z.Z., Cai, G.P., Mai, Y.W.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013)CrossRef Dasari, A., Yu, Z.Z., Cai, G.P., Mai, Y.W.: Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013)CrossRef
5.
Zurück zum Zitat Morgan, A.B.: Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 17, 206–217 (2006)CrossRef Morgan, A.B.: Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 17, 206–217 (2006)CrossRef
7.
Zurück zum Zitat Stabkovich, S., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef Stabkovich, S., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
8.
Zurück zum Zitat Dikin, D.A., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRef Dikin, D.A., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRef
9.
Zurück zum Zitat Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)CrossRef Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)CrossRef
10.
Zurück zum Zitat Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef
11.
Zurück zum Zitat Dittrich, B., Wartig, K.A., Hofmann, D., Mülhaupt, R., Schartel, B.: Flame retardancy through carbon nanomaterials; carbon black, multiwall nanotubes, expanded graphite, multi-layer grapheme and grapheme in polypropylene. Polym. Degrad. Stab. 98, 1495–1505 (2013)CrossRef Dittrich, B., Wartig, K.A., Hofmann, D., Mülhaupt, R., Schartel, B.: Flame retardancy through carbon nanomaterials; carbon black, multiwall nanotubes, expanded graphite, multi-layer grapheme and grapheme in polypropylene. Polym. Degrad. Stab. 98, 1495–1505 (2013)CrossRef
12.
Zurück zum Zitat Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K., Shields, J., Kharchenko, S., Douglas, J.: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45, 4227–4239 (2004)CrossRef Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K., Shields, J., Kharchenko, S., Douglas, J.: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45, 4227–4239 (2004)CrossRef
13.
Zurück zum Zitat Kashiwagi, T., et al.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)CrossRef Kashiwagi, T., et al.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)CrossRef
14.
Zurück zum Zitat Kashiwagi, T., Du, F., Winey, K.I., Groth, K.M., Shields, J.R., Bellayer, S.P., Kim, H., Douglas, J.F.: Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 46, 471–481 (2005)CrossRef Kashiwagi, T., Du, F., Winey, K.I., Groth, K.M., Shields, J.R., Bellayer, S.P., Kim, H., Douglas, J.F.: Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 46, 471–481 (2005)CrossRef
15.
Zurück zum Zitat Kashiwagi, T., et al.: Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49, 4358–4368 (2008)CrossRef Kashiwagi, T., et al.: Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49, 4358–4368 (2008)CrossRef
16.
Zurück zum Zitat Cipiriano, B.H., Kashiwagi, T., Raghavan, S.R., Yang, Y., Grulke, E.A., Yamamoto, K., Shields, J.R., Douglas, J.F.: Effect of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 6086–6096 (2007)CrossRef Cipiriano, B.H., Kashiwagi, T., Raghavan, S.R., Yang, Y., Grulke, E.A., Yamamoto, K., Shields, J.R., Douglas, J.F.: Effect of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 6086–6096 (2007)CrossRef
17.
Zurück zum Zitat Schartel, B., Pötschke, P., Knoll, U., Abdel-Goad, A.: Fire behavior of polyamide 6/multiwall carbon nanotube nanocomposites. Eur. Polymer J. 41, 1061–1070 (2005)CrossRef Schartel, B., Pötschke, P., Knoll, U., Abdel-Goad, A.: Fire behavior of polyamide 6/multiwall carbon nanotube nanocomposites. Eur. Polymer J. 41, 1061–1070 (2005)CrossRef
18.
Zurück zum Zitat Barus, S., Zanetti, M., Bracco, P., Musso, S., Chiodoni, A., Tagliaferro, A.: Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites. Polym. Degrad. Stab. 95, 756–762 (2010)CrossRef Barus, S., Zanetti, M., Bracco, P., Musso, S., Chiodoni, A., Tagliaferro, A.: Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites. Polym. Degrad. Stab. 95, 756–762 (2010)CrossRef
19.
Zurück zum Zitat Wen, X., Wang, Y., Gong, J., Liu, J., Tian, N., Wang, Y., Jiang, Z., Qiu, J., Tang, T.: Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym. Degrad. Stab. 97, 793–801 (2012)CrossRef Wen, X., Wang, Y., Gong, J., Liu, J., Tian, N., Wang, Y., Jiang, Z., Qiu, J., Tang, T.: Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym. Degrad. Stab. 97, 793–801 (2012)CrossRef
20.
Zurück zum Zitat Wen, X., Tian, N., Gong, J., Chen, Q., Qi, Y., Liu, Z., Liu, J., Jiang, Z., Chen, X., Tang, T. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym. Adv. Technol. (2013). doi:1002/pat.3172 Wen, X., Tian, N., Gong, J., Chen, Q., Qi, Y., Liu, Z., Liu, J., Jiang, Z., Chen, X., Tang, T. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym. Adv. Technol. (2013). doi:1002/pat.3172
21.
Zurück zum Zitat Villmow, T., Kretzschmar, B., Pötschke, P.: Influence of screw configulation, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos. Sci. Technol. 70, 2045–2055 (2010)CrossRef Villmow, T., Kretzschmar, B., Pötschke, P.: Influence of screw configulation, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos. Sci. Technol. 70, 2045–2055 (2010)CrossRef
22.
Zurück zum Zitat Alig, I., Pötschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G.R., Villmow, T.: Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53, 4–28 (2012)CrossRef Alig, I., Pötschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G.R., Villmow, T.: Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53, 4–28 (2012)CrossRef
23.
Zurück zum Zitat Kasaliwal, G.R., Pegel, S., Göldel, A., Pötschke, P., Heinrich, G.: Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51, 2708–2720 (2010)CrossRef Kasaliwal, G.R., Pegel, S., Göldel, A., Pötschke, P., Heinrich, G.: Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51, 2708–2720 (2010)CrossRef
24.
Zurück zum Zitat Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef
25.
Zurück zum Zitat Qin, H., Zhang, S., Zhao, C., Hu, G., Yang, M.: Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer 46, 8386–8395 (2005)CrossRef Qin, H., Zhang, S., Zhao, C., Hu, G., Yang, M.: Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer 46, 8386–8395 (2005)CrossRef
26.
Zurück zum Zitat Kashiwagi, T., Harris Jr, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef Kashiwagi, T., Harris Jr, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef
27.
Zurück zum Zitat Zhu, J., Uhl, F.M., Morgan, A.B., Wilkie, C.A.: Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 13, 4649–4654 (2001)CrossRef Zhu, J., Uhl, F.M., Morgan, A.B., Wilkie, C.A.: Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 13, 4649–4654 (2001)CrossRef
28.
Zurück zum Zitat Bartholmai, M., Schartel, B.: Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potensials and the tasks using a model system. Polym. Adv. Technol. 15, 355–364 (2004)CrossRef Bartholmai, M., Schartel, B.: Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potensials and the tasks using a model system. Polym. Adv. Technol. 15, 355–364 (2004)CrossRef
29.
Zurück zum Zitat Song, R., Wang, Z., Meng, X., Zhang, B., Tang, T.: Influence of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J. Appl. Polym. Sci. 106, 3488–3494 (2007)CrossRef Song, R., Wang, Z., Meng, X., Zhang, B., Tang, T.: Influence of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J. Appl. Polym. Sci. 106, 3488–3494 (2007)CrossRef
30.
Zurück zum Zitat Hu, Y., Tang, Y., Song, L.: Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym. Adv. Technol. 17, 235–245 (2006)CrossRef Hu, Y., Tang, Y., Song, L.: Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym. Adv. Technol. 17, 235–245 (2006)CrossRef
31.
Zurück zum Zitat Fina, A., Cuttica, F., Camino, G.: Ignition of polypropylene/montmorillonite nanocomposites. Polym. Degrad. Stab. 97, 2619–2626 (2012)CrossRef Fina, A., Cuttica, F., Camino, G.: Ignition of polypropylene/montmorillonite nanocomposites. Polym. Degrad. Stab. 97, 2619–2626 (2012)CrossRef
32.
Zurück zum Zitat Zhang, J., Bai, M., Wang, Y., Xiao, F.: Featured structures of fire residue of high-impact polystyrene/organically modified montmorillonite nanocomposites during burning. Fire Mater. 36, 661–670 (2012)CrossRef Zhang, J., Bai, M., Wang, Y., Xiao, F.: Featured structures of fire residue of high-impact polystyrene/organically modified montmorillonite nanocomposites during burning. Fire Mater. 36, 661–670 (2012)CrossRef
33.
Zurück zum Zitat Liu, J., Fu, M., Jing, M., Li, Q.: Flame retardancy and charring behavior of polystyrene-organic montmorillonite nanocomposites. Polym. Adv. Technol. 24, 273–281 (2013)CrossRef Liu, J., Fu, M., Jing, M., Li, Q.: Flame retardancy and charring behavior of polystyrene-organic montmorillonite nanocomposites. Polym. Adv. Technol. 24, 273–281 (2013)CrossRef
34.
Zurück zum Zitat Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., Yang, M.: Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym. Degrad. Stab. 87, 183–189 (2005)CrossRef Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., Yang, M.: Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym. Degrad. Stab. 87, 183–189 (2005)CrossRef
35.
Zurück zum Zitat Wang, S., Hu, Y., Zhongkai, Q., Wang, Z., Chen, Z., Fan, W.: Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite. Mater. Lett. 57, 2675–2678 (2003)CrossRef Wang, S., Hu, Y., Zhongkai, Q., Wang, Z., Chen, Z., Fan, W.: Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite. Mater. Lett. 57, 2675–2678 (2003)CrossRef
36.
Zurück zum Zitat Zhang, J., Wilkie, C.A.: Preparation and flammability properties of polyethylene-clay nanocomposites. Polym. Degrad. Stab. 80, 163–169 (2003)CrossRef Zhang, J., Wilkie, C.A.: Preparation and flammability properties of polyethylene-clay nanocomposites. Polym. Degrad. Stab. 80, 163–169 (2003)CrossRef
37.
Zurück zum Zitat Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris Jr, R.H.: Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866–1873 (2000)CrossRef Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris Jr, R.H.: Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866–1873 (2000)CrossRef
38.
Zurück zum Zitat Zhu, J., Start, P., Mauritz, K.A., Wilkie, C.A.: Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym. Degrad. Stab. 77, 253–258 (2002)CrossRef Zhu, J., Start, P., Mauritz, K.A., Wilkie, C.A.: Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym. Degrad. Stab. 77, 253–258 (2002)CrossRef
39.
Zurück zum Zitat Jash, P., Wilkie, C.A.: Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym. Degrad. Stab. 88, 401–406 (2005)CrossRef Jash, P., Wilkie, C.A.: Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym. Degrad. Stab. 88, 401–406 (2005)CrossRef
40.
Zurück zum Zitat Sahoo, P.K., Samal, R.: Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite. Polym. Degrad. Stab. 92, 1700–1707 (2007)CrossRef Sahoo, P.K., Samal, R.: Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite. Polym. Degrad. Stab. 92, 1700–1707 (2007)CrossRef
41.
Zurück zum Zitat Jang, B.N., Costache, M., Wilkie, C.A.: The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 46, 10678–10687 (2005)CrossRef Jang, B.N., Costache, M., Wilkie, C.A.: The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 46, 10678–10687 (2005)CrossRef
42.
Zurück zum Zitat Kashiwagi, T., Shields, J.R., Harris Jr, R.H., Davis, R.D.: Flame-retardant mechanism of silica: effects of resin molecular weight. J. Appl. Polym. Sci. 87, 1541–1553 (2003)CrossRef Kashiwagi, T., Shields, J.R., Harris Jr, R.H., Davis, R.D.: Flame-retardant mechanism of silica: effects of resin molecular weight. J. Appl. Polym. Sci. 87, 1541–1553 (2003)CrossRef
43.
Zurück zum Zitat Samyn, F., Bourbigot, S., Jama, C., Bellayer, S.: Fire retardancy of polymer clay nanocomposites: is there an influence of the nanomorphology? Polym. Degrad. Stab. 93, 2019–2024 (2008)CrossRef Samyn, F., Bourbigot, S., Jama, C., Bellayer, S.: Fire retardancy of polymer clay nanocomposites: is there an influence of the nanomorphology? Polym. Degrad. Stab. 93, 2019–2024 (2008)CrossRef
44.
Zurück zum Zitat Szustakiewicz, K., Kiersnowski, A., Gazińska, M., Bujnowicz, K., Pigłowski, J.: Flammability, structure and mechanical properties of PP/OMMT nanocomposites. Polym. Degrad. Stab. 96, 291–294 (2011)CrossRef Szustakiewicz, K., Kiersnowski, A., Gazińska, M., Bujnowicz, K., Pigłowski, J.: Flammability, structure and mechanical properties of PP/OMMT nanocomposites. Polym. Degrad. Stab. 96, 291–294 (2011)CrossRef
45.
Zurück zum Zitat Zhang, J., Lewin, M.: Pearce Eli, Zammarano M, Gliman JW. Flame retarding polyamide 6 with melamine cyanurate and layered silicates. Polym. Adv. Technol. 19, 928–936 (2008)CrossRef Zhang, J., Lewin, M.: Pearce Eli, Zammarano M, Gliman JW. Flame retarding polyamide 6 with melamine cyanurate and layered silicates. Polym. Adv. Technol. 19, 928–936 (2008)CrossRef
46.
Zurück zum Zitat Kiliaris, P., Papaspyrides, C.D., Pfaendner, R.: Polyamide 6 filled with melamine cyanurate and layered silicates: Evaluation of flame retardancy and physical properties. Macromol. Mater. Eng. 293, 740–751 (2008)CrossRef Kiliaris, P., Papaspyrides, C.D., Pfaendner, R.: Polyamide 6 filled with melamine cyanurate and layered silicates: Evaluation of flame retardancy and physical properties. Macromol. Mater. Eng. 293, 740–751 (2008)CrossRef
47.
Zurück zum Zitat Hu, Y., Wang, S., Ling, Z., Zhuang, Y., Chen, Z., Fan, W.: Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol. Mater. Eng. 288, 272–276 (2003)CrossRef Hu, Y., Wang, S., Ling, Z., Zhuang, Y., Chen, Z., Fan, W.: Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol. Mater. Eng. 288, 272–276 (2003)CrossRef
48.
Zurück zum Zitat Chen, Y., Guo, Z., Fang, Z.: Relationship between the distribution of organo-montmorillonite and the flammability of flame retardant polypropylene. Polym. Eng. Sci. 52, 390–398 (2012)CrossRef Chen, Y., Guo, Z., Fang, Z.: Relationship between the distribution of organo-montmorillonite and the flammability of flame retardant polypropylene. Polym. Eng. Sci. 52, 390–398 (2012)CrossRef
49.
Zurück zum Zitat Zanetti, M., Camino, G., Canavese, D., Morgan, A.B., Lamelas, F.J., Wilkie, C.A.: Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites. Chem. Mater. 14, 189–193 (2002)CrossRef Zanetti, M., Camino, G., Canavese, D., Morgan, A.B., Lamelas, F.J., Wilkie, C.A.: Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites. Chem. Mater. 14, 189–193 (2002)CrossRef
50.
Zurück zum Zitat Chen, X., Yu, Z., Zhang, S.: Synergistic effect of decarbomodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polym. Degrad. Stab. 94, 1520–1525 (2009)CrossRef Chen, X., Yu, Z., Zhang, S.: Synergistic effect of decarbomodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polym. Degrad. Stab. 94, 1520–1525 (2009)CrossRef
51.
Zurück zum Zitat Si, M., Zaitsev, V., Goldman, M., Frenkel, A., Peiffer, D.G., Weil, E., Sokolov, J.C., Rafailovich, M.H.: Self-extinguishing polymer/organoclay nanocomposites. Polym. Degrad. Stab. 92, 86–93 (2007)CrossRef Si, M., Zaitsev, V., Goldman, M., Frenkel, A., Peiffer, D.G., Weil, E., Sokolov, J.C., Rafailovich, M.H.: Self-extinguishing polymer/organoclay nanocomposites. Polym. Degrad. Stab. 92, 86–93 (2007)CrossRef
52.
Zurück zum Zitat Lu, H., Wilkie, C.A.: Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym. Degrad. Stab. 95, 564–571 (2010)CrossRef Lu, H., Wilkie, C.A.: Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym. Degrad. Stab. 95, 564–571 (2010)CrossRef
53.
Zurück zum Zitat Chigwada, G., Jash, P., Jiang, D.D., Wilkie, C.A.: Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes. Polym. Degrad. Stab. 88, 382–393 (2005)CrossRef Chigwada, G., Jash, P., Jiang, D.D., Wilkie, C.A.: Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes. Polym. Degrad. Stab. 88, 382–393 (2005)CrossRef
54.
Zurück zum Zitat Du, B., Ma, H., Fang, Z.: How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 22, 1139–1146 (2011)CrossRef Du, B., Ma, H., Fang, Z.: How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 22, 1139–1146 (2011)CrossRef
55.
Zurück zum Zitat Du, B., Fang, Z.: Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym. Degrad. Stab. 96, 1725–1731 (2011)CrossRef Du, B., Fang, Z.: Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym. Degrad. Stab. 96, 1725–1731 (2011)CrossRef
56.
Zurück zum Zitat Isitman, N.A., Kaynak, C.: Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polym. Degrad. Stab. 95, 1523–1532 (2010)CrossRef Isitman, N.A., Kaynak, C.: Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polym. Degrad. Stab. 95, 1523–1532 (2010)CrossRef
57.
Zurück zum Zitat Ma, H., Tong, L., Xu, Z., Fang, Z.: Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Appl. Clay Sci. 42, 238–245 (2008)CrossRef Ma, H., Tong, L., Xu, Z., Fang, Z.: Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Appl. Clay Sci. 42, 238–245 (2008)CrossRef
58.
Zurück zum Zitat Du, B., Guo, Z., Song, P., Liu, H., Fang, Z., Wu, Y.: Flame retardant mechanism of organo-bentonite in polypropylene. Appl. Clay Sci. 45, 178–184 (2009)CrossRef Du, B., Guo, Z., Song, P., Liu, H., Fang, Z., Wu, Y.: Flame retardant mechanism of organo-bentonite in polypropylene. Appl. Clay Sci. 45, 178–184 (2009)CrossRef
59.
Zurück zum Zitat Du, B., Guo, Z., Fang, Z.: Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behavior of intumescent flame retarded polypropylene. Polym. Degrad. Stab. 94, 1979–1985 (2009)CrossRef Du, B., Guo, Z., Fang, Z.: Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behavior of intumescent flame retarded polypropylene. Polym. Degrad. Stab. 94, 1979–1985 (2009)CrossRef
60.
Zurück zum Zitat Huang, G., Zhu, B., Shi, H.: Combination effect of organics-modified montmorillonite with intumescent flame retardants on thermal stability and fire behavior of polyethylene nanocomposites. J. Appl. Clay Sci. 121, 1285–1291 (2011)CrossRef Huang, G., Zhu, B., Shi, H.: Combination effect of organics-modified montmorillonite with intumescent flame retardants on thermal stability and fire behavior of polyethylene nanocomposites. J. Appl. Clay Sci. 121, 1285–1291 (2011)CrossRef
61.
Zurück zum Zitat Isitman, N.A., Gunduz, H.O., Kaynak, C.: Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polym. Degrad. Stab. 94, 2241–2250 (2009)CrossRef Isitman, N.A., Gunduz, H.O., Kaynak, C.: Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polym. Degrad. Stab. 94, 2241–2250 (2009)CrossRef
62.
Zurück zum Zitat Chen, Y., Fang, Z., Yang, C., Wang, Y., Guo, Z., Zhang, Y.: Effect of clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. J. Appl. Polym. Sci. 115, 777–783 (2010)CrossRef Chen, Y., Fang, Z., Yang, C., Wang, Y., Guo, Z., Zhang, Y.: Effect of clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. J. Appl. Polym. Sci. 115, 777–783 (2010)CrossRef
63.
Zurück zum Zitat Szustakiewicz, K., Kiersnowski, A., Grazuńska, M., Bujnowicz, K., Pigłowski, J.: Flammability, structure and mechanical properties of PP/OMMT nanocomposites. Polym. Degrad. Stab. 96, 291–294 (2011)CrossRef Szustakiewicz, K., Kiersnowski, A., Grazuńska, M., Bujnowicz, K., Pigłowski, J.: Flammability, structure and mechanical properties of PP/OMMT nanocomposites. Polym. Degrad. Stab. 96, 291–294 (2011)CrossRef
64.
Zurück zum Zitat Chigwada, G., Wilkie, C.A.: Synergy between conventional phosphorus fire retardants and organically-modified clays can lead to fire retardancy of styrenics. Polym. Degrad. Stab. 80, 551–557 (2003)CrossRef Chigwada, G., Wilkie, C.A.: Synergy between conventional phosphorus fire retardants and organically-modified clays can lead to fire retardancy of styrenics. Polym. Degrad. Stab. 80, 551–557 (2003)CrossRef
65.
Zurück zum Zitat Hu, Y., Tang, Y., Song, L.: Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym. Adv. Technol. 17, 235–245 (2006)CrossRef Hu, Y., Tang, Y., Song, L.: Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym. Adv. Technol. 17, 235–245 (2006)CrossRef
66.
Zurück zum Zitat Cinausero, N., Azema, N., Lopez-Cuesta, J.M., Cochez, M., Ferriol, M.: Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrene. Polym. Degrad. Stab. 96, 1445–1454 (2011)CrossRef Cinausero, N., Azema, N., Lopez-Cuesta, J.M., Cochez, M., Ferriol, M.: Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrene. Polym. Degrad. Stab. 96, 1445–1454 (2011)CrossRef
67.
Zurück zum Zitat Li, N., Mao, Z., Wang, L., Guan, Y., Zheng, A.: Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polym. Degrad. Stab. 97, 1737–1744 (2012)CrossRef Li, N., Mao, Z., Wang, L., Guan, Y., Zheng, A.: Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polym. Degrad. Stab. 97, 1737–1744 (2012)CrossRef
68.
Zurück zum Zitat Wu, N., Yang, R.: Effects of metal oxides on intumescent flame retardant polypropylene. Polym. Adv. Technol. 22, 495–501 (2011)CrossRef Wu, N., Yang, R.: Effects of metal oxides on intumescent flame retardant polypropylene. Polym. Adv. Technol. 22, 495–501 (2011)CrossRef
69.
Zurück zum Zitat Beyer, G.: Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polym. Adv. Technol. 17, 218–225 (2006)CrossRef Beyer, G.: Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polym. Adv. Technol. 17, 218–225 (2006)CrossRef
70.
Zurück zum Zitat Yen, Y.Y., Wang, H.T., Guo, W.J.: Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym. Degrad. Stab. 97, 863–869 (2012)CrossRef Yen, Y.Y., Wang, H.T., Guo, W.J.: Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym. Degrad. Stab. 97, 863–869 (2012)CrossRef
71.
Zurück zum Zitat Laoutid, F., Gaudon, P., Taulemesse, J.M., Lopez-Cuesta, J.M., Velasco, J.L., Piechaczyk, A.: Study of hydromagnesite and magunesium hydroxide based fire retardant systems for ethylene-vinyl acetate containing organo-modified montmorillonite. Polym. Degrad. Stab. 91, 3074–3082 (2006)CrossRef Laoutid, F., Gaudon, P., Taulemesse, J.M., Lopez-Cuesta, J.M., Velasco, J.L., Piechaczyk, A.: Study of hydromagnesite and magunesium hydroxide based fire retardant systems for ethylene-vinyl acetate containing organo-modified montmorillonite. Polym. Degrad. Stab. 91, 3074–3082 (2006)CrossRef
72.
Zurück zum Zitat Witkowski, A., Stec, A.A., Hull, R.: The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polym. Degrad. Stab. 97, 2231–2240 (2012)CrossRef Witkowski, A., Stec, A.A., Hull, R.: The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polym. Degrad. Stab. 97, 2231–2240 (2012)CrossRef
73.
Zurück zum Zitat Ye, L., Wu, Q., Qu, B.: Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposite. Polym. Degrad. Stab. 94, 751–756 (2009)CrossRef Ye, L., Wu, Q., Qu, B.: Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposite. Polym. Degrad. Stab. 94, 751–756 (2009)CrossRef
74.
Zurück zum Zitat Hong, C.H., Lee, Y.B., Bae, J.W., Jho, J.Y., Nam, B.U., Nam, G.J., Lee, K.J.: Tensile and flammability properties of polypropylene-based RTPO/clay nanocomposites for cable insulating materials. J. Appl. Polym. Sci. 97, 2375–2381 (2005)CrossRef Hong, C.H., Lee, Y.B., Bae, J.W., Jho, J.Y., Nam, B.U., Nam, G.J., Lee, K.J.: Tensile and flammability properties of polypropylene-based RTPO/clay nanocomposites for cable insulating materials. J. Appl. Polym. Sci. 97, 2375–2381 (2005)CrossRef
75.
Zurück zum Zitat Kong, Q., Hu, Y., Song, L., Yi, C.: Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym. Adv. Technol. 20, 404–409 (2009)CrossRef Kong, Q., Hu, Y., Song, L., Yi, C.: Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym. Adv. Technol. 20, 404–409 (2009)CrossRef
76.
Zurück zum Zitat Zhang, J., Wilkie, C.A.: Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist. Polym. Adv. Technol. 16, 549–553 (2005)CrossRef Zhang, J., Wilkie, C.A.: Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist. Polym. Adv. Technol. 16, 549–553 (2005)CrossRef
77.
Zurück zum Zitat Isitman, N.A., Kaynak, C.: Tailored flame retardancy via nanofiller dispertion state: Synergistic action between a conventional flame-retardant and nanoclay in high-impact polystyrene. Polym. Degrad. Stab. 95, 1759–1768 (2010)CrossRef Isitman, N.A., Kaynak, C.: Tailored flame retardancy via nanofiller dispertion state: Synergistic action between a conventional flame-retardant and nanoclay in high-impact polystyrene. Polym. Degrad. Stab. 95, 1759–1768 (2010)CrossRef
78.
Zurück zum Zitat Goodarzi, V., Monemian, S.A., Angaji, M.T., Motahari, S.: Improvement of thermal and fire properties of polypropylene. J. Appl. Polym. Sci. 110, 2971–2979 (2008)CrossRef Goodarzi, V., Monemian, S.A., Angaji, M.T., Motahari, S.: Improvement of thermal and fire properties of polypropylene. J. Appl. Polym. Sci. 110, 2971–2979 (2008)CrossRef
79.
Zurück zum Zitat Zaharescu, T., Jipa, S., Kappel, W., Supaphol, P.: The control of thermal and radiation stability of polypropylene containing calcium carbonate nanoparticles. Macromol. Symp. 242, 234–319 (2006)CrossRef Zaharescu, T., Jipa, S., Kappel, W., Supaphol, P.: The control of thermal and radiation stability of polypropylene containing calcium carbonate nanoparticles. Macromol. Symp. 242, 234–319 (2006)CrossRef
80.
Zurück zum Zitat Ma, H., Tong, L., Xu, Z., Fang, Z.: Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18, 375602 (2007)CrossRef Ma, H., Tong, L., Xu, Z., Fang, Z.: Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18, 375602 (2007)CrossRef
81.
Zurück zum Zitat Peeterbroeck, S., Dubois, Ph, et al.: Polymer-layered silicate-carbon nanotube nanocomposites: unique nanofiller synergistic effect. Compos. Sci. Technol. 64, 2317–2323 (2004)CrossRef Peeterbroeck, S., Dubois, Ph, et al.: Polymer-layered silicate-carbon nanotube nanocomposites: unique nanofiller synergistic effect. Compos. Sci. Technol. 64, 2317–2323 (2004)CrossRef
82.
Zurück zum Zitat Hapuarachchi, T.D., Peijs, T., Bilotti, E.: Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polym. Adv. Technol. 24, 331–338 (2013)CrossRef Hapuarachchi, T.D., Peijs, T., Bilotti, E.: Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polym. Adv. Technol. 24, 331–338 (2013)CrossRef
83.
Zurück zum Zitat Weil, E.D.: Fire-protective and flame-retardant coatings-a state-of-the-art review. J. Fire Sci. 29, 259–296 (2011)CrossRef Weil, E.D.: Fire-protective and flame-retardant coatings-a state-of-the-art review. J. Fire Sci. 29, 259–296 (2011)CrossRef
84.
Zurück zum Zitat Liang, S., Neisius, N.M., Gaan, S.: Recent development in flame retardant polymeric coatings. Prog. Org. Coat. 76, 1642–1655 (2013)CrossRef Liang, S., Neisius, N.M., Gaan, S.: Recent development in flame retardant polymeric coatings. Prog. Org. Coat. 76, 1642–1655 (2013)CrossRef
85.
Zurück zum Zitat Duquesne, S., Jimenez, M., Bourbigot, S. Aging of the flame-retardant properties of polycarbonate and polypropylene protected by an intumescent coating. J. Appl. Polym. Sci. (2013). doi:10.1002/app.39566 Duquesne, S., Jimenez, M., Bourbigot, S. Aging of the flame-retardant properties of polycarbonate and polypropylene protected by an intumescent coating. J. Appl. Polym. Sci. (2013). doi:10.​1002/​app.​39566
86.
Zurück zum Zitat Vargas, J.R., Gracia, T., Goto, T.: Thermal barrier coatings produced by chemical vapor deposition. Sci. Technol. Adv. Mater. 4, 397–402 (2003)CrossRef Vargas, J.R., Gracia, T., Goto, T.: Thermal barrier coatings produced by chemical vapor deposition. Sci. Technol. Adv. Mater. 4, 397–402 (2003)CrossRef
87.
Zurück zum Zitat Jimenez, M., Duquesne, S., Bourbigot, S.: Fire protection of polypropylene and polycarbonate by intumescent coatings. Polym. Adv. Technol. 23, 130–135 (2012)CrossRef Jimenez, M., Duquesne, S., Bourbigot, S.: Fire protection of polypropylene and polycarbonate by intumescent coatings. Polym. Adv. Technol. 23, 130–135 (2012)CrossRef
88.
Zurück zum Zitat Wang, X.Y., Han, E.H., Liu, F.C., Ke, W.: Fire and corrosion resistances of intumescent nano-coating containing nano-SiO2 in salt spray condition. J. Mater. Sci. Technol. 26, 75–81 (2010)CrossRef Wang, X.Y., Han, E.H., Liu, F.C., Ke, W.: Fire and corrosion resistances of intumescent nano-coating containing nano-SiO2 in salt spray condition. J. Mater. Sci. Technol. 26, 75–81 (2010)CrossRef
89.
Zurück zum Zitat Wang, X.Y., Han, E.H., Ke, W.: Fire-resistant effect of nanoclay on intumescent nanocomposite coating. J. Appl. Polym. Sci. 103, 1681–1689 (2007)CrossRef Wang, X.Y., Han, E.H., Ke, W.: Fire-resistant effect of nanoclay on intumescent nanocomposite coating. J. Appl. Polym. Sci. 103, 1681–1689 (2007)CrossRef
90.
Zurück zum Zitat Gusev, A.A., Lusti, R.: Rational design of nanocomposite for barrier applications. Adv. Mater. 13, 1641–1643 (2001)CrossRef Gusev, A.A., Lusti, R.: Rational design of nanocomposite for barrier applications. Adv. Mater. 13, 1641–1643 (2001)CrossRef
91.
Zurück zum Zitat Ebina, T., Mizukami, F.: Flexible transparent clay film with heat-resistant and high gas-barrier properties. Adv. Mater. 19, 2450–2453 (2007)CrossRef Ebina, T., Mizukami, F.: Flexible transparent clay film with heat-resistant and high gas-barrier properties. Adv. Mater. 19, 2450–2453 (2007)CrossRef
92.
Zurück zum Zitat Priolo, M.A., Gamboa, D., Holder, K.M., Grunlan, J.C.: Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett. 10, 4970–4974 (2010)CrossRef Priolo, M.A., Gamboa, D., Holder, K.M., Grunlan, J.C.: Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett. 10, 4970–4974 (2010)CrossRef
93.
Zurück zum Zitat Walther, A., Bjurhager, I., Malho, J.M., Pere, J., Ruokolainen, J., Berglund, L.A., Ikkala, O.: Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 10, 2742–2748 (2010)CrossRef Walther, A., Bjurhager, I., Malho, J.M., Pere, J., Ruokolainen, J., Berglund, L.A., Ikkala, O.: Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 10, 2742–2748 (2010)CrossRef
94.
Zurück zum Zitat Das, P., Schipmann, S., Malho, J.M., Zhu, B., Klemradt, U., Walther, A.: Facile access to large-scale, self-assembled, narcre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 5, 3738–3747 (2013)CrossRef Das, P., Schipmann, S., Malho, J.M., Zhu, B., Klemradt, U., Walther, A.: Facile access to large-scale, self-assembled, narcre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 5, 3738–3747 (2013)CrossRef
95.
Zurück zum Zitat Liu, A., Walther, A., Ikkala, O., Belova, L., Berglund, L.A.: Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12, 633–641 (2011)CrossRef Liu, A., Walther, A., Ikkala, O., Belova, L., Berglund, L.A.: Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12, 633–641 (2011)CrossRef
96.
Zurück zum Zitat Podsiadlo, P., et al.: Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007)CrossRef Podsiadlo, P., et al.: Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007)CrossRef
97.
Zurück zum Zitat Putz, K.W., Compton, O.C., Palmeri, M.J., Nguyen, S.T., Brinson, L.C.: High-nanofiller-content grapheme oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20, 3322–3329 (2010)CrossRef Putz, K.W., Compton, O.C., Palmeri, M.J., Nguyen, S.T., Brinson, L.C.: High-nanofiller-content grapheme oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20, 3322–3329 (2010)CrossRef
98.
Zurück zum Zitat Laachachi, A., Ball, V., Apaydin, K., Toniazzo, V., Ruch, D.: Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: Flame retardant-intumescent films with improved oxygen barrier. Langmuir 27, 13879–13887 (2011)CrossRef Laachachi, A., Ball, V., Apaydin, K., Toniazzo, V., Ruch, D.: Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: Flame retardant-intumescent films with improved oxygen barrier. Langmuir 27, 13879–13887 (2011)CrossRef
99.
Zurück zum Zitat Apaydin, K., Laauchachi, A., Ball, V., Jimenez, M., Bourbigot, S., Toniazzo, V., Ruch, D.: Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym. Degrad. Stab. 98, 627–634 (2013)CrossRef Apaydin, K., Laauchachi, A., Ball, V., Jimenez, M., Bourbigot, S., Toniazzo, V., Ruch, D.: Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym. Degrad. Stab. 98, 627–634 (2013)CrossRef
100.
Zurück zum Zitat Laufer, D., Kirkland, C., Cain, A.A., Grunlan, J.C.: Clay-chitosan nanobrick walls: Completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 4, 1643–1649 (2012)CrossRef Laufer, D., Kirkland, C., Cain, A.A., Grunlan, J.C.: Clay-chitosan nanobrick walls: Completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 4, 1643–1649 (2012)CrossRef
101.
Zurück zum Zitat Wu, Q., Zhu, W., Liang, Z., Wang, B.: Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48, 1799–1806 (2010)CrossRef Wu, Q., Zhu, W., Liang, Z., Wang, B.: Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48, 1799–1806 (2010)CrossRef
102.
Zurück zum Zitat Liu, Y., Wang, X., Qi, K., Xin, J.H.: Functionalization of cotton with carbon nanotubes. J. Mater. Chem. 18, 3454–3460 (2008)CrossRef Liu, Y., Wang, X., Qi, K., Xin, J.H.: Functionalization of cotton with carbon nanotubes. J. Mater. Chem. 18, 3454–3460 (2008)CrossRef
Metadaten
Titel
Flame Retardancy of Polymer Nanocomposite
verfasst von
Yoshihiko Arao
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-03467-6_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.