Skip to main content
Erschienen in: Journal of Electronic Materials 2/2023

03.12.2022 | Topical Collection: Advanced Metal Ion Batteries

Flexible Asymmetric Supercapacitor with Enhanced Energy Density Based on Surface-Modified Carbon Cloth Coupled with NiCoSe2

verfasst von: Qiang Zhao, Jinglin Zhou, Xiang Zheng, Ying Wang, Beirong Ye

Erschienen in: Journal of Electronic Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrodes with excellent flexibility, wide voltage window and high capacity are the key to the performance of asymmetric supercapacitors (ASCs). Herein, a hybrid electrode based on modified nitrogen/alkali co-doped carbon cloth with NiCoSe2 (NCSe/N-Na-ACC) was successfully synthesized and directly used as a positive electrode for ASCs. The surface-modified carbon cloth with N and Na ions effectively moderated the electronic conductivity and activity of the oxygen evolution reaction (OER), resulting in an enlarged overall voltage window, while NCSe provided high specific capacity. Therefore, the voltage of the NCSe/N-Na-ACC electrode increased to 1 V in aqueous electrolyte. As a result, the solid-state ASC assembled by the modified electrode delivered gratifying energy density of 139.5 W h kg–1. Meanwhile, the excellent capacitance retention of 97.1% after 10,000 charge and discharge cycles implies that the ASC assembled with the NCSe/N-Na-ACC electrode has excellent cycling stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat P. Simon and Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151 (2020).CrossRef P. Simon and Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151 (2020).CrossRef
2.
Zurück zum Zitat S. Wang, Y. Yang, Y. Dong, Z. Zhang, and Z. Tang, Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 8, 1 (2019).CrossRef S. Wang, Y. Yang, Y. Dong, Z. Zhang, and Z. Tang, Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 8, 1 (2019).CrossRef
3.
Zurück zum Zitat R. Liu, A. Zhou, X. Zhang, J. Mu, H. Che, Y. Wang, T. Wang, Z. Zhang, and Z. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem. Eng. J. 412, 22 (2021).CrossRef R. Liu, A. Zhou, X. Zhang, J. Mu, H. Che, Y. Wang, T. Wang, Z. Zhang, and Z. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem. Eng. J. 412, 22 (2021).CrossRef
4.
Zurück zum Zitat W. Raza, F. Ali, N. Raza, Y. Luo, K. Kim, J. Yang, S. Kumar, A. Mehmood, and E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441 (2018).CrossRef W. Raza, F. Ali, N. Raza, Y. Luo, K. Kim, J. Yang, S. Kumar, A. Mehmood, and E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441 (2018).CrossRef
5.
Zurück zum Zitat Y. Zhang, H. Mei, Y. Cao, X. Yan, J. Yan, H. Gao, H. Luo, S. Wang, X. Jia, L. Kachalova, J. Yang, S. Xue, C. Zhou, L. Wang, and Y. Gui, Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 438, 30 (2021).CrossRef Y. Zhang, H. Mei, Y. Cao, X. Yan, J. Yan, H. Gao, H. Luo, S. Wang, X. Jia, L. Kachalova, J. Yang, S. Xue, C. Zhou, L. Wang, and Y. Gui, Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 438, 30 (2021).CrossRef
6.
Zurück zum Zitat X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I. Bacho, J. Tu, and H. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008 (2014).CrossRef X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I. Bacho, J. Tu, and H. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008 (2014).CrossRef
7.
Zurück zum Zitat X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, and H. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8, 1559 (2015).CrossRef X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, and H. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8, 1559 (2015).CrossRef
8.
Zurück zum Zitat Y. Zhang, X. Xia, J. Tu, Y. Mai, S. Shi, X. Wang, and C. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sour. 199, 413 (2012).CrossRef Y. Zhang, X. Xia, J. Tu, Y. Mai, S. Shi, X. Wang, and C. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sour. 199, 413 (2012).CrossRef
9.
Zurück zum Zitat T. Nguyen, J. Balamurugan, V. Aravindan, N. Kim, and J. Lee, Boosting the energy density of flexible solid-state supercapacitors via both ternary NiV2Se4 and NiFe2Se4 nanosheet arrays. Chem. Mat. 31, 4490 (2019).CrossRef T. Nguyen, J. Balamurugan, V. Aravindan, N. Kim, and J. Lee, Boosting the energy density of flexible solid-state supercapacitors via both ternary NiV2Se4 and NiFe2Se4 nanosheet arrays. Chem. Mat. 31, 4490 (2019).CrossRef
10.
Zurück zum Zitat T. Nguyen, J. Balamurugan, N. Kim, and J. Lee, Hierarchical 3D Zn-Ni-P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 6, 8669 (2018).CrossRef T. Nguyen, J. Balamurugan, N. Kim, and J. Lee, Hierarchical 3D Zn-Ni-P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 6, 8669 (2018).CrossRef
11.
Zurück zum Zitat Q. Wang, and D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124 (2012).CrossRef Q. Wang, and D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124 (2012).CrossRef
12.
Zurück zum Zitat P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, and L. Hu, Fractal (NixCo1-x)9Se8 nanodendrite arrays with highly exposed surface for wearable all-solid-state supercapacitor. Adv. Energy Mater. 8, 10 (2018). P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, and L. Hu, Fractal (NixCo1-x)9Se8 nanodendrite arrays with highly exposed surface for wearable all-solid-state supercapacitor. Adv. Energy Mater. 8, 10 (2018).
13.
Zurück zum Zitat C. Gopi, A. Reddy, and H. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J. Mater. Chem. A 6, 7439 (2018).CrossRef C. Gopi, A. Reddy, and H. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J. Mater. Chem. A 6, 7439 (2018).CrossRef
14.
Zurück zum Zitat J. Li, M. Wan, T. Li, H. Zhu, Z. Zhao, Z. Wang, W. Wu, and M. Du, NiCoSe2-x/N-doped C mushroom-like core/shell nanorods on n-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161 (2018).CrossRef J. Li, M. Wan, T. Li, H. Zhu, Z. Zhao, Z. Wang, W. Wu, and M. Du, NiCoSe2-x/N-doped C mushroom-like core/shell nanorods on n-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161 (2018).CrossRef
15.
Zurück zum Zitat K. Akbar, J. Jeon, M. Kim, J. Jeong, Y. Yi, and S. Chun, Bifunctional electrodeposited 3D NiCoSe2/Nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustain. Chem. Eng. 6, 7735 (2018).CrossRef K. Akbar, J. Jeon, M. Kim, J. Jeong, Y. Yi, and S. Chun, Bifunctional electrodeposited 3D NiCoSe2/Nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustain. Chem. Eng. 6, 7735 (2018).CrossRef
16.
Zurück zum Zitat J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, and K. Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 11 (2019).CrossRef J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, and K. Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 11 (2019).CrossRef
17.
Zurück zum Zitat X. Liu, W. Xu, D. Zheng, Z. Li, Y. Zeng, and X. Lu, Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. J. Mater. Chem. A 8, 17938 (2020).CrossRef X. Liu, W. Xu, D. Zheng, Z. Li, Y. Zeng, and X. Lu, Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. J. Mater. Chem. A 8, 17938 (2020).CrossRef
18.
Zurück zum Zitat L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S. Dou, and J. Liang, Photo-rechargeable batteries and supercapacitors: critical roles of carbon-based functional materials. Carbon Energy 3, 225 (2021).CrossRef L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S. Dou, and J. Liang, Photo-rechargeable batteries and supercapacitors: critical roles of carbon-based functional materials. Carbon Energy 3, 225 (2021).CrossRef
19.
Zurück zum Zitat H.J. Kang, T. Lee, H. Kim, J. Park, H. Hwang, H. Hwang, K. Jang, H. Kim, Y. Huh, W. Im, and Y. Jun, Thick free-standing electrode based on carbon–carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries. Carbon Energy 3, 410 (2021).CrossRef H.J. Kang, T. Lee, H. Kim, J. Park, H. Hwang, H. Hwang, K. Jang, H. Kim, Y. Huh, W. Im, and Y. Jun, Thick free-standing electrode based on carbon–carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries. Carbon Energy 3, 410 (2021).CrossRef
20.
Zurück zum Zitat N. Zhao, H. Fan, M. Zhang, J. Ma, Z. Du, B. Yan, H. Li, and X. Jiang, Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chem. Eng. J. 390, 9 (2020).CrossRef N. Zhao, H. Fan, M. Zhang, J. Ma, Z. Du, B. Yan, H. Li, and X. Jiang, Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chem. Eng. J. 390, 9 (2020).CrossRef
21.
Zurück zum Zitat W. Chen, T. Wei, L. Mo, S. Wu, Z. Li, S. Chen, X. Zhang, and L. Hu, CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem. Eng. J. 400, 12 (2020).CrossRef W. Chen, T. Wei, L. Mo, S. Wu, Z. Li, S. Chen, X. Zhang, and L. Hu, CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem. Eng. J. 400, 12 (2020).CrossRef
22.
Zurück zum Zitat T. Liu, J. Liu, L. Zhang, B. Cheng, and J. Yu, Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 47, 113 (2020).CrossRef T. Liu, J. Liu, L. Zhang, B. Cheng, and J. Yu, Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 47, 113 (2020).CrossRef
23.
Zurück zum Zitat H. Xia, B. Zhang, C. Wang, L. Cao, B. Luo, X. Fan, J. Zhang, and X. Ou, Surface engineered carbon-cloth with broadening voltage window for boosted energy density aqueous supercapacitors. Carbon 162, 136 (2020).CrossRef H. Xia, B. Zhang, C. Wang, L. Cao, B. Luo, X. Fan, J. Zhang, and X. Ou, Surface engineered carbon-cloth with broadening voltage window for boosted energy density aqueous supercapacitors. Carbon 162, 136 (2020).CrossRef
24.
Zurück zum Zitat T. Qin, H. Chen, Y. Zhang, X. Chen, L. Liu, D. Yan, S. Ma, J. Hou, F. Yu, and S. Peng, Modulating surface chemistry of heteroatom-rich micropore carbon cloth electrode for aqueous 2.1 V high-voltage window all-carbon supercapacitor. J. Power Sour. 431, 232 (2019).CrossRef T. Qin, H. Chen, Y. Zhang, X. Chen, L. Liu, D. Yan, S. Ma, J. Hou, F. Yu, and S. Peng, Modulating surface chemistry of heteroatom-rich micropore carbon cloth electrode for aqueous 2.1 V high-voltage window all-carbon supercapacitor. J. Power Sour. 431, 232 (2019).CrossRef
25.
Zurück zum Zitat S. Zhang, B. Yin, X. Liu, D. Gu, H. Gong, and Z. Wang, A High energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59, 41 (2019).CrossRef S. Zhang, B. Yin, X. Liu, D. Gu, H. Gong, and Z. Wang, A High energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59, 41 (2019).CrossRef
26.
Zurück zum Zitat T. Xiong, T. Tan, L. Lu, W. Lee, and J. Xue, Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Adv. Energy Mater. 8, 10 (2018).CrossRef T. Xiong, T. Tan, L. Lu, W. Lee, and J. Xue, Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Adv. Energy Mater. 8, 10 (2018).CrossRef
27.
Zurück zum Zitat N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, and H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 9 (2017).CrossRef N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, and H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 9 (2017).CrossRef
28.
Zurück zum Zitat J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu, and C. Hu, Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379 (2019).CrossRef J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu, and C. Hu, Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379 (2019).CrossRef
29.
Zurück zum Zitat J. Han, J. Chae, J. Kim, and K. Roh, Facile preparation of composite electrodes for supercapacitors by CNT entrapment into carbon matrix derived from pitch at a softening point. Carbon 163, 402 (2020).CrossRef J. Han, J. Chae, J. Kim, and K. Roh, Facile preparation of composite electrodes for supercapacitors by CNT entrapment into carbon matrix derived from pitch at a softening point. Carbon 163, 402 (2020).CrossRef
30.
Zurück zum Zitat L. Shi, J. Ye, H. Lu, G. Wang, J. Lv, and G. Ning, Flexible All-solid-state supercapacitors based on boron and nitrogen-doped carbon network anchored on carbon fiber cloth. Chem. Eng. J. 410, 9 (2021).CrossRef L. Shi, J. Ye, H. Lu, G. Wang, J. Lv, and G. Ning, Flexible All-solid-state supercapacitors based on boron and nitrogen-doped carbon network anchored on carbon fiber cloth. Chem. Eng. J. 410, 9 (2021).CrossRef
31.
Zurück zum Zitat K. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, and L. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 11 (2017).CrossRef K. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, and L. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 11 (2017).CrossRef
32.
Zurück zum Zitat L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, and C. Yuan, Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28, 12 (2018). L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, and C. Yuan, Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28, 12 (2018).
33.
Zurück zum Zitat K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu, M. Al-Mamun, Y. Dou, S. Chen, P. Liu, H. Yin, P. Rutkowski, and H. Zhao, Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 9, 9 (2019).CrossRef K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu, M. Al-Mamun, Y. Dou, S. Chen, P. Liu, H. Yin, P. Rutkowski, and H. Zhao, Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 9, 9 (2019).CrossRef
34.
Zurück zum Zitat H. Jin, X. Feng, J. Li, M. Li, Y. Xia, Y. Yuan, C. Yang, B. Dai, Z. Lin, J. Wang, J. Lu, and S. Wang, Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem.-Int. Edit. 58, 2397 (2019).CrossRef H. Jin, X. Feng, J. Li, M. Li, Y. Xia, Y. Yuan, C. Yang, B. Dai, Z. Lin, J. Wang, J. Lu, and S. Wang, Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem.-Int. Edit. 58, 2397 (2019).CrossRef
35.
Zurück zum Zitat Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, and C. Qin, B/P/N/O Co-Doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochim. Acta 337, 13 (2020).CrossRef Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, and C. Qin, B/P/N/O Co-Doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochim. Acta 337, 13 (2020).CrossRef
36.
Zurück zum Zitat X. Yan, Y. Liu, X. Fan, X. Jia, Y. Yu, and X. Yang, Nitrogen/Phosphorus Co-Doped nonporous carbon nanofibers for high-performance supercapacitors. J. Power Sour. 248, 745 (2014).CrossRef X. Yan, Y. Liu, X. Fan, X. Jia, Y. Yu, and X. Yang, Nitrogen/Phosphorus Co-Doped nonporous carbon nanofibers for high-performance supercapacitors. J. Power Sour. 248, 745 (2014).CrossRef
37.
Zurück zum Zitat M. Sakthivel, R. Sukanya, S. Chen, K. Pandi, and K. Ho, Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: electrochemical properties dependence on the metal-to-chalcogen composition. Renew. Energy 138, 139 (2019).CrossRef M. Sakthivel, R. Sukanya, S. Chen, K. Pandi, and K. Ho, Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: electrochemical properties dependence on the metal-to-chalcogen composition. Renew. Energy 138, 139 (2019).CrossRef
38.
Zurück zum Zitat X. Shi, Q. Liu, W. Liang, B. Chen, L. Shao, J. Cai, Z. Sun, Y. Zhang, H. Huang, and Y. Wu, Space-confined engineering boosted high-performance of ultrafine nickel selenide nanocomposites for sodium-ion capacitors. Mater. Today Sustain. 18, 100151 (2022).CrossRef X. Shi, Q. Liu, W. Liang, B. Chen, L. Shao, J. Cai, Z. Sun, Y. Zhang, H. Huang, and Y. Wu, Space-confined engineering boosted high-performance of ultrafine nickel selenide nanocomposites for sodium-ion capacitors. Mater. Today Sustain. 18, 100151 (2022).CrossRef
39.
Zurück zum Zitat G. Zhang, S. Sun, D. Yang, J. Dodelet, and E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 Treatment. Carbon 46, 196 (2008).CrossRef G. Zhang, S. Sun, D. Yang, J. Dodelet, and E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 Treatment. Carbon 46, 196 (2008).CrossRef
40.
Zurück zum Zitat Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. Brown, and X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532 (2016).CrossRef Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. Brown, and X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532 (2016).CrossRef
41.
Zurück zum Zitat M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. Norskov, and A. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521 (2013).CrossRef M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. Norskov, and A. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521 (2013).CrossRef
42.
Zurück zum Zitat L. Li, H. Yang, J. Miao, L. Zhang, H. Wang, Z. Zeng, W. Huang, X. Dong, and B. Liu, Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett. 2, 294 (2017).CrossRef L. Li, H. Yang, J. Miao, L. Zhang, H. Wang, Z. Zeng, W. Huang, X. Dong, and B. Liu, Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett. 2, 294 (2017).CrossRef
43.
Zurück zum Zitat J. Zhang, W. Li, T. Shifa, J. Sun, C. Jia, Y. Zhao, and Y. Cui, Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors. J. Power Sour. 439, 7 (2019).CrossRef J. Zhang, W. Li, T. Shifa, J. Sun, C. Jia, Y. Zhao, and Y. Cui, Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors. J. Power Sour. 439, 7 (2019).CrossRef
44.
Zurück zum Zitat T. Pham, J. Kim, J. Jung, J. Kim, H. Cho, T. Seo, H. Lee, N. Kim, and M. Kim, High areal capacitance of n-doped graphene synthesized by arc discharge. Adv. Funct. Mater. 29, 9 (2019).CrossRef T. Pham, J. Kim, J. Jung, J. Kim, H. Cho, T. Seo, H. Lee, N. Kim, and M. Kim, High areal capacitance of n-doped graphene synthesized by arc discharge. Adv. Funct. Mater. 29, 9 (2019).CrossRef
45.
Zurück zum Zitat K. Xiao, L. Ding, G. Liu, H. Chen, S. Wang, and H. Wang, Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 28, 5997 (2016).CrossRef K. Xiao, L. Ding, G. Liu, H. Chen, S. Wang, and H. Wang, Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 28, 5997 (2016).CrossRef
46.
Zurück zum Zitat J. Zhao, S. Hou, Y. Bai, Y. Lian, Q. Zhou, C. Ban, Z. Wang, and H. Zhang, Multilayer dodecahedrons Zn-Co sulfide for supercapacitors. Electrochim. Acta 354, 9 (2020).CrossRef J. Zhao, S. Hou, Y. Bai, Y. Lian, Q. Zhou, C. Ban, Z. Wang, and H. Zhang, Multilayer dodecahedrons Zn-Co sulfide for supercapacitors. Electrochim. Acta 354, 9 (2020).CrossRef
47.
Zurück zum Zitat L. Lyu, K. Seong, J. Kim, W. Zhang, X. Jin, D. Kim, Y. Jeon, J. Kang, and Y. Piao, CNT/High mass loading MnO2/Graphene-Grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 12 (2019).CrossRef L. Lyu, K. Seong, J. Kim, W. Zhang, X. Jin, D. Kim, Y. Jeon, J. Kang, and Y. Piao, CNT/High mass loading MnO2/Graphene-Grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 12 (2019).CrossRef
48.
Zurück zum Zitat T. Wang, H. Chen, F. Yu, X. Zhao, and H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545 (2019).CrossRef T. Wang, H. Chen, F. Yu, X. Zhao, and H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545 (2019).CrossRef
49.
Zurück zum Zitat Z. Tang, C. Jia, Z. Wan, Q. Zhou, X. Ye, and Y. Zhu, Facile preparation of CoNi2S4 @ NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Adv. 6, 112307 (2016).CrossRef Z. Tang, C. Jia, Z. Wan, Q. Zhou, X. Ye, and Y. Zhu, Facile preparation of CoNi2S4 @ NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Adv. 6, 112307 (2016).CrossRef
50.
Zurück zum Zitat Q. Yang, Y. Liu, C. Deng, M. Yan, and W. Shi, MOF-derived 3D hierarchical nanoarrays consisting of NiCoZn-S nanosheets coupled with granular NiCo2S4 nanowires for high-performance hybrid supercapacitors. J. Mater. Chem. A 7, 26131 (2019).CrossRef Q. Yang, Y. Liu, C. Deng, M. Yan, and W. Shi, MOF-derived 3D hierarchical nanoarrays consisting of NiCoZn-S nanosheets coupled with granular NiCo2S4 nanowires for high-performance hybrid supercapacitors. J. Mater. Chem. A 7, 26131 (2019).CrossRef
51.
Zurück zum Zitat S. Ghosh, S. Barg, S. Jeong, and K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 44 (2020).CrossRef S. Ghosh, S. Barg, S. Jeong, and K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 44 (2020).CrossRef
52.
Zurück zum Zitat X. Shi, J. Yu, J. Huang, B. Chen, L. Fang, L. Shao, and Z. Sun, Metal-organic framework derived high-content N, P and O-Codoped Co/C composites as electrode materials for high performance supercapacitors. J. Power Sour. 467, 228304 (2020).CrossRef X. Shi, J. Yu, J. Huang, B. Chen, L. Fang, L. Shao, and Z. Sun, Metal-organic framework derived high-content N, P and O-Codoped Co/C composites as electrode materials for high performance supercapacitors. J. Power Sour. 467, 228304 (2020).CrossRef
53.
Zurück zum Zitat G. Nagaraju, S. Cha, S. Sekhar, and J. Yu, Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 7, 13 (2017).CrossRef G. Nagaraju, S. Cha, S. Sekhar, and J. Yu, Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 7, 13 (2017).CrossRef
54.
Zurück zum Zitat S. Li, Y. Ruan, and Q. Xie, Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 356, 8 (2020).CrossRef S. Li, Y. Ruan, and Q. Xie, Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 356, 8 (2020).CrossRef
55.
Zurück zum Zitat Y. Wang, W. Zhang, X. Guo, K. Jin, Z. Chen, Y. Liu, L. Yin, L. Li, K. Yin, L. Sun, and Y. Zhao, Ni-Co Selenide Nanosheet/3D Graphene/Nickel foam binder-free electrode for high-performance supercapacitor. ACS Appl. Mater. Interfaces 11, 7946 (2019).CrossRef Y. Wang, W. Zhang, X. Guo, K. Jin, Z. Chen, Y. Liu, L. Yin, L. Li, K. Yin, L. Sun, and Y. Zhao, Ni-Co Selenide Nanosheet/3D Graphene/Nickel foam binder-free electrode for high-performance supercapacitor. ACS Appl. Mater. Interfaces 11, 7946 (2019).CrossRef
56.
Zurück zum Zitat F. Chen, H. Wang, S. Ji, V. Linkov, and R. Wang, Core-shell structured Ni3S2 @ Co(OH)2 nano-wires grown on ni foam as binder-free electrode for asymmetric supercapacitors. Chem. Eng. J. 345, 48 (2018).CrossRef F. Chen, H. Wang, S. Ji, V. Linkov, and R. Wang, Core-shell structured Ni3S2 @ Co(OH)2 nano-wires grown on ni foam as binder-free electrode for asymmetric supercapacitors. Chem. Eng. J. 345, 48 (2018).CrossRef
57.
Zurück zum Zitat G. Zhao, Y. Tang, G. Wan, X. Xu, X. Zhou, M. Zhou, C. Hao, S. Deng, and G. Wang, High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J. Colloid Interface Sci. 572, 151 (2020).CrossRef G. Zhao, Y. Tang, G. Wan, X. Xu, X. Zhou, M. Zhou, C. Hao, S. Deng, and G. Wang, High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J. Colloid Interface Sci. 572, 151 (2020).CrossRef
58.
Zurück zum Zitat Y. Zheng, Y. Tian, S. Sarwar, J. Luo, and X. Zhang, Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J. Power Sour. 452, 8 (2020).CrossRef Y. Zheng, Y. Tian, S. Sarwar, J. Luo, and X. Zhang, Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J. Power Sour. 452, 8 (2020).CrossRef
59.
Zurück zum Zitat Z. Chen, L. Zheng, T. Zhu, Z. Ma, Y. Yang, C. Wei, L. Liu, and X. Gong, All-solid-state flexible asymmetric supercapacitors fabricated by the binder-free hydrophilic carbon cloth @ MnO2 and hydrophilic carbon Cloth @ polypyrrole electrodes. Adv. Electron. Mater. 5, 9 (2019).CrossRef Z. Chen, L. Zheng, T. Zhu, Z. Ma, Y. Yang, C. Wei, L. Liu, and X. Gong, All-solid-state flexible asymmetric supercapacitors fabricated by the binder-free hydrophilic carbon cloth @ MnO2 and hydrophilic carbon Cloth @ polypyrrole electrodes. Adv. Electron. Mater. 5, 9 (2019).CrossRef
60.
Zurück zum Zitat P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, M. Liu, and A. Low-Cost, Self-standing NiCo2O4 @ CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv. Funct. Mater. 27, 9 (2017).CrossRef P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, M. Liu, and A. Low-Cost, Self-standing NiCo2O4 @ CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv. Funct. Mater. 27, 9 (2017).CrossRef
Metadaten
Titel
Flexible Asymmetric Supercapacitor with Enhanced Energy Density Based on Surface-Modified Carbon Cloth Coupled with NiCoSe2
verfasst von
Qiang Zhao
Jinglin Zhou
Xiang Zheng
Ying Wang
Beirong Ye
Publikationsdatum
03.12.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 2/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10094-y

Weitere Artikel der Ausgabe 2/2023

Journal of Electronic Materials 2/2023 Zur Ausgabe

Topical Collection: Electronic Packaging and Interconnections 2022

Hybrid Solder Joint for Low-Temperature Bonding Application

Neuer Inhalt