Skip to main content
Erschienen in: Experiments in Fluids 10/2021

01.10.2021 | Research Article

Flow characteristics inside shear thinning xanthan gum non-Newtonian droplets moving in rectangular microchannels

verfasst von: Mengqi Li, Zhaomiao Liu, Yan Pang, Ju Wang, Yao Lu, Yanlin Ren, Siyu Zhao, Shanshan Gao

Erschienen in: Experiments in Fluids | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the internal flow characteristics of shear thinning xanthan gum (0.02–0.08 wt %) non-Newtonian droplets moving in rectangular microchannels were studied by means of micro-PIV. When the capillary number Ca is less than 4.05 × 10–3, there are four eddies inside droplets running in the low depth-to-width ratio channel. Once the aspect ratio gets higher, more oil film resistance would result in a pair of eddies inside droplets near the channel wall at the plane of half the channel height, which means six eddies exist inside droplets in total. As Ca gradually increased to 5.06 × 10–2, due to the shear stress of continuous phase and the shear thinning of dispersed phase, the flow topologies inside droplets would change to symmetric butterfly wing double vortex and \(\dot{\mathrm{M}}\) structure. The uneven distribution of interfacial tension caused by the inertial aggregation of surfactants at the back end of the droplet transforms long droplets into a teardrop-like under continuous phase extrusion. Because of the continuous phase reflux in the middle of the droplet horizontal axis, an obvious pressure fluctuation is observed. At high xanthan gum concentration, the increase of viscosity leads to four eddies inside teardrop-like droplet. The essence of the flow fields inside non-Newtonian droplets is the redistribution of dispersed phase velocity with different degrees of shear thinning. The results are beneficial to the development of microfluidic flow cytometry, the control of biochemical reaction process inside droplets and the understanding of the complex logic behavior of non-Newtonian droplets in microchannels.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Asghari E, Moosavi A, Hannani SK (2020) Non-Newtonian droplet-based microfluidics logic gates. Sci Rep 10(1):1–18CrossRef Asghari E, Moosavi A, Hannani SK (2020) Non-Newtonian droplet-based microfluidics logic gates. Sci Rep 10(1):1–18CrossRef
Zurück zum Zitat Baret JC, Kleinschmidt F, El Harrak A, Griffiths AD (2009) Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25(11):6088–6093CrossRef Baret JC, Kleinschmidt F, El Harrak A, Griffiths AD (2009) Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25(11):6088–6093CrossRef
Zurück zum Zitat Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Measure Sci Technol 24(6):065301CrossRef Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Measure Sci Technol 24(6):065301CrossRef
Zurück zum Zitat Chen C, Zhao Y, Wang J, Zhu P, Tian Y, Min X, Wang L, Huang X (2018) Passive mixing inside microdroplets. Micromachines 9(4):160CrossRef Chen C, Zhao Y, Wang J, Zhu P, Tian Y, Min X, Wang L, Huang X (2018) Passive mixing inside microdroplets. Micromachines 9(4):160CrossRef
Zurück zum Zitat Chung C, Ahn KH, Lee SJ (2009) Numerical study on the dynamics of droplet passing through a cylinder obstruction in confined microchannel flow. J Nonnewton Fluid Mech 162(1–3):38–44CrossRef Chung C, Ahn KH, Lee SJ (2009) Numerical study on the dynamics of droplet passing through a cylinder obstruction in confined microchannel flow. J Nonnewton Fluid Mech 162(1–3):38–44CrossRef
Zurück zum Zitat Dore V, Tsaoulidis D, Angeli P (2012) Mixing patterns in water plugs during water/ionic liquid segmented flow in microchannels. Chem Eng Sci 80:334–341CrossRef Dore V, Tsaoulidis D, Angeli P (2012) Mixing patterns in water plugs during water/ionic liquid segmented flow in microchannels. Chem Eng Sci 80:334–341CrossRef
Zurück zum Zitat Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11):1479–1489CrossRef Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11):1479–1489CrossRef
Zurück zum Zitat Jo YK, Lee D (2020) Biopolymer microparticles prepared by microfluidics for biomedical applications. Small 16(9):1903736CrossRef Jo YK, Lee D (2020) Biopolymer microparticles prepared by microfluidics for biomedical applications. Small 16(9):1903736CrossRef
Zurück zum Zitat Hein M, Moskopp M, Seemann R (2015) Flow field induced particle accumulation inside droplets in rectangular channels. Lab Chip 15(13):2879–2886CrossRef Hein M, Moskopp M, Seemann R (2015) Flow field induced particle accumulation inside droplets in rectangular channels. Lab Chip 15(13):2879–2886CrossRef
Zurück zum Zitat Hemminger OL, Boukany PE, Wang SQ, Lee LJ (2010) Flow pattern and molecular visualization of DNA solutions through a 4: 1 planar micro-contraction. J Nonnewton Fluid Mech 165(23–24):1613–1624CrossRef Hemminger OL, Boukany PE, Wang SQ, Lee LJ (2010) Flow pattern and molecular visualization of DNA solutions through a 4: 1 planar micro-contraction. J Nonnewton Fluid Mech 165(23–24):1613–1624CrossRef
Zurück zum Zitat Hodges SR, Jensen OE, Rallison JM (2004) The motion of a viscous drop through a cylindrical tube. J Fluid Mech 501:279MathSciNetCrossRef Hodges SR, Jensen OE, Rallison JM (2004) The motion of a viscous drop through a cylindrical tube. J Fluid Mech 501:279MathSciNetCrossRef
Zurück zum Zitat Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 Summer Program, Center for Turbulence Research Report No. CTR-S88, pp 193–298 Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 Summer Program, Center for Turbulence Research Report No. CTR-S88, pp 193–298
Zurück zum Zitat Jakiela S, Korczyk PM, Makulska S, Cybulski O, Garstecki P (2012) Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel. Phys Rev Lett 108(13):134501CrossRef Jakiela S, Korczyk PM, Makulska S, Cybulski O, Garstecki P (2012) Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel. Phys Rev Lett 108(13):134501CrossRef
Zurück zum Zitat Kinoshita H, Kaneda S, Fujii T, Oshima M (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7(3):338–346CrossRef Kinoshita H, Kaneda S, Fujii T, Oshima M (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7(3):338–346CrossRef
Zurück zum Zitat Kovalev AV, Yagodnitsyna AA, Bilsky AV (2018) Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction. Chem Eng J 352:120–132CrossRef Kovalev AV, Yagodnitsyna AA, Bilsky AV (2018) Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction. Chem Eng J 352:120–132CrossRef
Zurück zum Zitat Krstonošić V, Dokić L, Dokić P, Dapčević T (2009) Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids 23(8):2212–2218CrossRef Krstonošić V, Dokić L, Dokić P, Dapčević T (2009) Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids 23(8):2212–2218CrossRef
Zurück zum Zitat Li Y, Cherukury H, Zimak J, Harrison J, Peterson E, Zhao W (2020a) Enumeration of ampicillin-resistant e. coli in blood using droplet microfluidics and high-speed image processing. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, pp 1592–1595 Li Y, Cherukury H, Zimak J, Harrison J, Peterson E, Zhao W (2020a) Enumeration of ampicillin-resistant e. coli in blood using droplet microfluidics and high-speed image processing. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, pp 1592–1595
Zurück zum Zitat Li M, Liu Z, Pang Y, Yan C, Wang J, Zhao S, Zhou Q (2020b) Flow topology and its transformation inside droplets traveling in rectangular microchannels. Phys Fluids 32(5):052009CrossRef Li M, Liu Z, Pang Y, Yan C, Wang J, Zhao S, Zhou Q (2020b) Flow topology and its transformation inside droplets traveling in rectangular microchannels. Phys Fluids 32(5):052009CrossRef
Zurück zum Zitat Liu Z, Li M, Pang Y, Zhang L, Ren Y, Wang J (2019) Flow characteristics inside droplets moving in a curved microchannel with rectangular section. Phys Fluids 31(2):022004CrossRef Liu Z, Li M, Pang Y, Zhang L, Ren Y, Wang J (2019) Flow characteristics inside droplets moving in a curved microchannel with rectangular section. Phys Fluids 31(2):022004CrossRef
Zurück zum Zitat Liu Z, Zhang L, Pang Y, Wang X, Li M (2017) Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel. Microfluid Nanofluid 21(12):180CrossRef Liu Z, Zhang L, Pang Y, Wang X, Li M (2017) Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel. Microfluid Nanofluid 21(12):180CrossRef
Zurück zum Zitat Ma S, Sherwood JM, Huck WT, Balabani S (2014) On the flow topology inside droplets moving in rectangular microchannels. Lab Chip 14(18):3611–3620CrossRef Ma S, Sherwood JM, Huck WT, Balabani S (2014) On the flow topology inside droplets moving in rectangular microchannels. Lab Chip 14(18):3611–3620CrossRef
Zurück zum Zitat Merdasi A, Moosavi A (2021) Electrowetting induced droplet generation in T-junctions. J Heat Transfer 143(5):052103CrossRef Merdasi A, Moosavi A (2021) Electrowetting induced droplet generation in T-junctions. J Heat Transfer 143(5):052103CrossRef
Zurück zum Zitat Parthiban P, Khan SA (2012) Filtering microfluidic bubble trains at a symmetric junction. Lab Chip 12(3):582–588CrossRef Parthiban P, Khan SA (2012) Filtering microfluidic bubble trains at a symmetric junction. Lab Chip 12(3):582–588CrossRef
Zurück zum Zitat Payne EM, Holland-Moritz DA, Sun S, Kennedy RT (2020) High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab Chip 20(13):2247–2262CrossRef Payne EM, Holland-Moritz DA, Sun S, Kennedy RT (2020) High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab Chip 20(13):2247–2262CrossRef
Zurück zum Zitat Piao Y, Han DJ, Azad MR, Park M, Seo TS (2015) Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron 65:220–225CrossRef Piao Y, Han DJ, Azad MR, Park M, Seo TS (2015) Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron 65:220–225CrossRef
Zurück zum Zitat Rath D, Barcikowski S, De Graaf S, Garrels W, Grossfeld R, Klein S, Washausen S (2013) Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145(1):R15–R30CrossRef Rath D, Barcikowski S, De Graaf S, Garrels W, Grossfeld R, Klein S, Washausen S (2013) Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145(1):R15–R30CrossRef
Zurück zum Zitat Rao SS, Wong H (2018) The motion of long drops in rectangular microchannels at low capillary numbers. J Fluid Mech 852:60–104MathSciNetCrossRef Rao SS, Wong H (2018) The motion of long drops in rectangular microchannels at low capillary numbers. J Fluid Mech 852:60–104MathSciNetCrossRef
Zurück zum Zitat Roumpea E, Chinaud M, Angeli P (2017) Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels. AIChE J 63(8):3599–3609CrossRef Roumpea E, Chinaud M, Angeli P (2017) Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels. AIChE J 63(8):3599–3609CrossRef
Zurück zum Zitat Rostami B, Morini GL (2018) Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. Int J Multiph Flow 105:202–216CrossRef Rostami B, Morini GL (2018) Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. Int J Multiph Flow 105:202–216CrossRef
Zurück zum Zitat Rostami B, Morini GL (2019) Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers. Exp Thermal Fluid Sci 103:191–200CrossRef Rostami B, Morini GL (2019) Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers. Exp Thermal Fluid Sci 103:191–200CrossRef
Zurück zum Zitat Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2011) Droplet based microfluidics. Reports Progress Phys 75(1):016601CrossRef Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2011) Droplet based microfluidics. Reports Progress Phys 75(1):016601CrossRef
Zurück zum Zitat Stavrakis S, Holzner G, Choo J, DeMello A (2019) High-throughput microfluidic imaging flow cytometry. Curr Opin Biotechnol 55:36–43CrossRef Stavrakis S, Holzner G, Choo J, DeMello A (2019) High-throughput microfluidic imaging flow cytometry. Curr Opin Biotechnol 55:36–43CrossRef
Zurück zum Zitat Tanaka D, Sawai S, Hattori S, Nozaki Y, Yoon DH, Fujita H, Sekiguchi T, Akitsu T, Shoji S (2020) Microdroplet synthesis of azo compounds with simple microfluidics-based pH control. RSC Adv 10(64):38900–38905CrossRef Tanaka D, Sawai S, Hattori S, Nozaki Y, Yoon DH, Fujita H, Sekiguchi T, Akitsu T, Shoji S (2020) Microdroplet synthesis of azo compounds with simple microfluidics-based pH control. RSC Adv 10(64):38900–38905CrossRef
Zurück zum Zitat Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163CrossRef Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163CrossRef
Zurück zum Zitat Williams L, Peter Y (2007) Adult stem cells of the lung in organ dysfunction. J Organ Dysfun 3(1):31–35CrossRef Williams L, Peter Y (2007) Adult stem cells of the lung in organ dysfunction. J Organ Dysfun 3(1):31–35CrossRef
Zurück zum Zitat Zhang G, Zhang M, Zhu X, Yang W (2006) Experimental study on rheological properties of blood and blood substitute fluids. Chinese J Hemorheol, 016(002):185–187,193. (Chinese) Zhang G, Zhang M, Zhu X, Yang W (2006) Experimental study on rheological properties of blood and blood substitute fluids. Chinese J Hemorheol, 016(002):185–187,193. (Chinese)
Zurück zum Zitat Zhou P, He J, Huang L, Yu Z, Su Z, Shi X, Zhou J (2020) Microfluidic high-throughput platforms for discovery of novel materials. Nanomaterials 10(12):2514CrossRef Zhou P, He J, Huang L, Yu Z, Su Z, Shi X, Zhou J (2020) Microfluidic high-throughput platforms for discovery of novel materials. Nanomaterials 10(12):2514CrossRef
Metadaten
Titel
Flow characteristics inside shear thinning xanthan gum non-Newtonian droplets moving in rectangular microchannels
verfasst von
Mengqi Li
Zhaomiao Liu
Yan Pang
Ju Wang
Yao Lu
Yanlin Ren
Siyu Zhao
Shanshan Gao
Publikationsdatum
01.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 10/2021
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03302-8

Weitere Artikel der Ausgabe 10/2021

Experiments in Fluids 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.