Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Flow Control in Sampled Data Systems

verfasst von : Przemysław Ignaciuk, Andrzej Bartoszewicz

Erschienen in: Congestion Control in Data Transmission Networks

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For telecommunication operators, the cost of running a particular algorithm is an important factor when deciding about its applicability in the supervised network. Therefore, the business point of view will generally favor such control strategies which allow for the explicit specification (or at least estimation) of the amount of the exchanged feedback information in relation to the transferred users’ data. In consequence, emitting feedback information carriers at regular time intervals (which is assumed in traditional approaches for discrete-time network modeling, e.g., [2–5]) is not cost efficient in the economical terms. Instead, one can send a feedback information carrier every N data packets and, in this way, place a direct limit on the extent of the transmitted management traffic with respect to the profit generating transmission of the users’ data. Since this method relies neither on continuous feedback information availability nor on maintaining the synchronization of constant sampling period (which is a serious challenge in multisource systems [1]), it is more scalable and requires less control effort than the classical regulation schemes presented in the literature. However, sending a control unit every N data packets, and not every T seconds, means that (after RTT) the feedback information will be available for rate adaptation at the sources at irregular time instants. Consequently, in order to maintain adequate system performance, the variable, input-dependent sampling period should be explicitly accounted for in the design of flow control algorithm. We will show, however, that the controllers developed for the system with constant discretization period in Chaps.​ 5 and 6 can be quite intuitively adapted for the case of variable sampling rate analyzed here. Moreover, we will demonstrate that provided that certain additional constraints are met, the new strategies maintain the favorable properties of constant-sampling-rate controllers. In particular, the proposed schemes will be shown to eliminate packet losses originating from unknown bandwidth variations and to ensure full bandwidth usage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng RG, Chang CJ (1996) Design of a fuzzy traffic controller for ATM networks. IEEE/ACM Trans Netw 4:460–469CrossRef Cheng RG, Chang CJ (1996) Design of a fuzzy traffic controller for ATM networks. IEEE/ACM Trans Netw 4:460–469CrossRef
2.
Zurück zum Zitat Jagannathan S, Talluri J (2002) Predictive congestion control of ATM networks: multiple sources/single buffer scenario. Automatica 38:815–820MathSciNetMATHCrossRef Jagannathan S, Talluri J (2002) Predictive congestion control of ATM networks: multiple sources/single buffer scenario. Automatica 38:815–820MathSciNetMATHCrossRef
3.
Zurück zum Zitat Kim HS, Shin SY, Kwon WH (2004) Feedback control for QoS of mixed traffic in communication networks. Control Eng Pract 12:527–536CrossRef Kim HS, Shin SY, Kwon WH (2004) Feedback control for QoS of mixed traffic in communication networks. Control Eng Pract 12:527–536CrossRef
4.
Zurück zum Zitat Laberteaux KP, Rohrs ChE, Antsaklis PJ (2002) A practical controller for explicit rate congestion control. IEEE Trans Autom Control 47:960–978MathSciNetCrossRef Laberteaux KP, Rohrs ChE, Antsaklis PJ (2002) A practical controller for explicit rate congestion control. IEEE Trans Autom Control 47:960–978MathSciNetCrossRef
5.
Zurück zum Zitat Tan L, Pugh AC, Yin M (2003) Rate-based congestion control in ATM switching networks using a recursive digital filter. Control Eng Pract 11:1171–1181CrossRef Tan L, Pugh AC, Yin M (2003) Rate-based congestion control in ATM switching networks using a recursive digital filter. Control Eng Pract 11:1171–1181CrossRef
Metadaten
Titel
Flow Control in Sampled Data Systems
verfasst von
Przemysław Ignaciuk
Andrzej Bartoszewicz
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4147-1_7

Neuer Inhalt