Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Flows of Fluids with Pressure Dependent Material Coefficients

verfasst von : Miroslav Bulíček

Erschienen in: Fluids Under Pressure

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It has been well documented in many studies that the material parameters of a fluid may essentially depend on the pressure and that they can vary by several orders of magnitude. The material parameters, for which this dependence is observed, are mainly the viscosity (due to the internal forces in the fluid) and the friction (due to fluid–(rigid) solid interaction). In addition, these large variations with respect to the pressure in the material parameters occur although the variations of the density are almost negligible (in comparison with other parameters). Therefore it is still reasonable to describe the above mentioned phenomena in many fluids by incompressible models. Likewise, the viscosity and the drag of many fluids vary with the shear rate and such shear (rate)-dependent viscosity and friction are extensively used, ranging from geophysics, chemical engineering, and bio-material science up to the food industry, enhanced oil recovery, carbon dioxide sequestration, or extraction of unconventional oil deposits, etc.
The aim of this study is to present an overview of available results for models with very complicated rheological laws used in engineering praxes. As particular examples that fit into the class of models studied here, we refer to the Darcy model, to the Brinkman models, and to the Bingham models. Nevertheless, the aim of this study is much more ambitious and we go much beyond these standard models and present a kind of unifying theory, which is based on the use of the so-called maximal monotone graphs, which seems to be very appropriate from the point of view of mathematical analysis of the problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We can consider the normal component of v since we control the divergence of v.
 
2
Whenever we write f on Γ, we are automatically employing the trace operator.
 
3
The space \(L^{r}_{ \operatorname {\mathrm {div}},\Gamma _1}(\Omega )\) can be equivalently defined as
$$\displaystyle \begin{aligned}L^{r}_{\operatorname{\mathrm{div}},\Gamma_1}(\Omega)\mathrel{\mathop{:}}= \left\{ \boldsymbol{\varphi} \in L^{r}(\Omega) \mid \mathrm{ for all} u\in W^{1,r'}_{\Gamma_2}(\Omega) \quad \int_{\Omega} \nabla u \cdot \boldsymbol{\varphi} \, dx =0\right\}. \end{aligned}$$
 
4
We say that the graph \(\mathcal {A}\) is strictly monotone with respect to v if for all \((\boldsymbol {m}_i,\boldsymbol {v}_i)\in \mathcal {A}\), there holds
$$\displaystyle \begin{aligned}(\boldsymbol{m}_1-\boldsymbol{m}_2)\cdot (\boldsymbol{v}_1-\boldsymbol{v}_2)= 0 \quad \implies \quad \boldsymbol{v}_1=\boldsymbol{v}_2. \end{aligned}$$
Similarly, we say that the graph is strictly monotone with respect to m if there holds
$$\displaystyle \begin{aligned}(\boldsymbol{m}_1-\boldsymbol{m}_2)\cdot (\boldsymbol{v}_1-\boldsymbol{v}_2)= 0 \quad \implies \quad \boldsymbol{m}_1=\boldsymbol{m}_2. \end{aligned}$$
 
5
The generalization of (N1) was already studied in the preceding section.
 
6
Ideally, one would like to fix the pressure at one point. But since we deal only with Lebesgue integrable functions, such procedure cannot be applied. Nevertheless, we can try to mimic the fixing the value of p at some x 0 just by fixing the integral
$$\displaystyle \begin{aligned}\int_{B(x_0)} p\, dx \end{aligned}$$
over some very small ball B centered at x 0.
 
7
\( \operatorname {\mathrm {curl}} = \frac {1}{2} (\nabla - \nabla ^T )\).
 
8
This definition means that \(-\Delta \psi ^k_L=T_L(p^k_1-p_1)\).
 
9
Here the symbol ∼ denotes just that the sequences on both sides behave in the same way, i.e., if one converges weakly, the second one converges also weakly.
 
10
It follows from the embedding W 1, r( Ω)↪L 2+δ( Ω) for some δ > 0 provided that r > 2d∕(d + 2).
 
Literatur
1.
Zurück zum Zitat E. Acerbi and N. Fusco. An approximation lemma for W 1, p functions. In Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., pages 1–5. Oxford Univ. Press, New York, 1988. E. Acerbi and N. Fusco. An approximation lemma for W 1, p functions. In Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., pages 1–5. Oxford Univ. Press, New York, 1988.
2.
Zurück zum Zitat G. Alberti and L. Ambrosio. A geometrical approach to monotone functions in \(\mathbb {R}^n\). Math. Z., 230(2):259–316, 1999. G. Alberti and L. Ambrosio. A geometrical approach to monotone functions in \(\mathbb {R}^n\). Math. Z., 230(2):259–316, 1999.
3.
Zurück zum Zitat E.C. Andrade. Viscosity of liquids. Nature, 125(3148):309–310, 1930.MATH E.C. Andrade. Viscosity of liquids. Nature, 125(3148):309–310, 1930.MATH
4.
Zurück zum Zitat E. Aulisa, L. Bloshanskaya, L. Hoang, and A. Ibragimov. Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys., 50(10):103102, 44, 2009. E. Aulisa, L. Bloshanskaya, L. Hoang, and A. Ibragimov. Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys., 50(10):103102, 44, 2009.
5.
Zurück zum Zitat J.M. Ball and F. Murat. Remarks on Chacon’s biting lemma. Proc. Amer. Math. Soc., 107(3):655–663, 1989.MathSciNetMATH J.M. Ball and F. Murat. Remarks on Chacon’s biting lemma. Proc. Amer. Math. Soc., 107(3):655–663, 1989.MathSciNetMATH
6.
Zurück zum Zitat C. Barus. Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci., 45(3):87–96, 1893. C. Barus. Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci., 45(3):87–96, 1893.
7.
Zurück zum Zitat R.B. Bird, R.C. Armstrong, O. Hassager, and C.F. Curtiss. Dynamics of Polymeric Liquids. Number v. 1–2 in Board of advisors, engineering. Wiley, 1977. R.B. Bird, R.C. Armstrong, O. Hassager, and C.F. Curtiss. Dynamics of Polymeric Liquids. Number v. 1–2 in Board of advisors, engineering. Wiley, 1977.
8.
Zurück zum Zitat P.W. Bridgman. The Physics of High Pressure. Dover books on physics and mathematical physics. Dover Publ., 1970. P.W. Bridgman. The Physics of High Pressure. Dover books on physics and mathematical physics. Dover Publ., 1970.
9.
Zurück zum Zitat H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1:27–34, 1947a.MATH H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1:27–34, 1947a.MATH
10.
Zurück zum Zitat H.C. Brinkman. On the permeability of the media consisting of closely packed porous particles. Appl. Sci. Res., A1:81–86, 1947b. H.C. Brinkman. On the permeability of the media consisting of closely packed porous particles. Appl. Sci. Res., A1:81–86, 1947b.
11.
Zurück zum Zitat J.K. Brooks and R.V. Chacon. Continuity and compactness of measures. Adv. in Math., 37(1):16–26, 1980.MathSciNetMATH J.K. Brooks and R.V. Chacon. Continuity and compactness of measures. Adv. in Math., 37(1):16–26, 1980.MathSciNetMATH
12.
Zurück zum Zitat M. Bulíček and V. Fišerová. Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend., 28(3):349–371, 2009.MathSciNetMATH M. Bulíček and V. Fišerová. Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend., 28(3):349–371, 2009.MathSciNetMATH
13.
Zurück zum Zitat M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal, and A. Świerczewska-Gwiazda. On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. In J. C. Robinson, J. L. Rodrigo, and W. Sadowski, editors, Mathematical Aspects of Fluid Mechanics, London Mathematical Society Lecture Note Series (No. 402), pages 26–54. Cambridge University Press, 2012. M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal, and A. Świerczewska-Gwiazda. On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. In J. C. Robinson, J. L. Rodrigo, and W. Sadowski, editors, Mathematical Aspects of Fluid Mechanics, London Mathematical Society Lecture Note Series (No. 402), pages 26–54. Cambridge University Press, 2012.
14.
Zurück zum Zitat M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda. On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal., 44(4):2756–2801, 2012.MathSciNetMATH M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda. On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal., 44(4):2756–2801, 2012.MathSciNetMATH
15.
Zurück zum Zitat M. Bulíček and J. Málek. On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary. In H. Amann, Y. Giga, H. Kozono, H. Okamoto, and M. Yamazaki, editors, Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, pages 135–156. Birkhäuser, 2016. M. Bulíček and J. Málek. On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary. In H. Amann, Y. Giga, H. Kozono, H. Okamoto, and M. Yamazaki, editors, Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, pages 135–156. Birkhäuser, 2016.
16.
Zurück zum Zitat M. Bulíček, J. Málek, and K.R. Rajagopal. Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J., 56(1):51–85, 2007.MathSciNetMATH M. Bulíček, J. Málek, and K.R. Rajagopal. Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J., 56(1):51–85, 2007.MathSciNetMATH
17.
Zurück zum Zitat M. Bulíček, J. Málek, and K.R. Rajagopal. Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν(p, ⋅) → +∞ as p → +∞. Czechoslovak Math. J., 59(2):503–528, 2009. M. Bulíček, J. Málek, and K.R. Rajagopal. Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν(p, ⋅) → + as p → +. Czechoslovak Math. J., 59(2):503–528, 2009.
18.
Zurück zum Zitat M. Bulíček, J. Málek, and J. Žabenský. On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient. Nonlinear Anal. Real World Appl., 26(0):109–132, 2015.MathSciNetMATH M. Bulíček, J. Málek, and J. Žabenský. On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient. Nonlinear Anal. Real World Appl., 26(0):109–132, 2015.MathSciNetMATH
19.
Zurück zum Zitat M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska Gwiazda. On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var., 2(2):109–136, 2009.MathSciNetMATH M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska Gwiazda. On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var., 2(2):109–136, 2009.MathSciNetMATH
20.
Zurück zum Zitat M. Bulíček and J. Málek. On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary. In Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 135–156. Birkhäuser/Springer, Basel, 2016. M. Bulíček and J. Málek. On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary. In Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 135–156. Birkhäuser/Springer, Basel, 2016.
21.
Zurück zum Zitat M. Bulíček and J. Málek. Internal flows of incompressible fluids subject to stick-slip boundary conditions. Vietnam J. Math., 45(1–2):207–220, 2017.MathSciNetMATH M. Bulíček and J. Málek. Internal flows of incompressible fluids subject to stick-slip boundary conditions. Vietnam J. Math., 45(1–2):207–220, 2017.MathSciNetMATH
22.
Zurück zum Zitat M. Bulíček and J. Málek. Large data analysis for Kolmogorov’s two-equation model of turbulence. Nonlinear Analysis: Real World Applications, 50:104–143, 2019.MathSciNetMATH M. Bulíček and J. Málek. Large data analysis for Kolmogorov’s two-equation model of turbulence. Nonlinear Analysis: Real World Applications, 50:104–143, 2019.MathSciNetMATH
23.
Zurück zum Zitat M. Bulíček, J. Málek, and J. Žabenský. A generalization of the Darcy-Forchheimer equation involving an implicit, pressure-dependent relation between the drag force and the velocity. J. Math. Anal. Appl., 424(1):785–801, 2015.MathSciNetMATH M. Bulíček, J. Málek, and J. Žabenský. A generalization of the Darcy-Forchheimer equation involving an implicit, pressure-dependent relation between the drag force and the velocity. J. Math. Anal. Appl., 424(1):785–801, 2015.MathSciNetMATH
24.
Zurück zum Zitat M. Bulíček and J. Žabenský. Large data existence theory for unsteady flows of fluids with pressure- and shear-dependent viscosities. Nonlinear Anal., 127:94–127, 2015.MathSciNetMATH M. Bulíček and J. Žabenský. Large data existence theory for unsteady flows of fluids with pressure- and shear-dependent viscosities. Nonlinear Anal., 127:94–127, 2015.MathSciNetMATH
25.
Zurück zum Zitat H. Darcy. Les Fontaines publiques de la ville de Dijon. V. Dalmont, 1856. H. Darcy. Les Fontaines publiques de la ville de Dijon. V. Dalmont, 1856.
26.
Zurück zum Zitat L. Diening, M. Růžička, and J. Wolf. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(1):1–46, 2010.MathSciNetMATH L. Diening, M. Růžička, and J. Wolf. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(1):1–46, 2010.MathSciNetMATH
27.
Zurück zum Zitat E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel, 2009. E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel, 2009.
28.
Zurück zum Zitat P. Forchheimer. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieuer, 45:1782–1788, 1901. P. Forchheimer. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieuer, 45:1782–1788, 1901.
29.
Zurück zum Zitat G. Francfort, F. Murat, and L. Tartar. Monotone operators in divergence form with x-dependent multivalued graphs. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7(1):23–59, 2004.MathSciNetMATH G. Francfort, F. Murat, and L. Tartar. Monotone operators in divergence form with x-dependent multivalued graphs. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7(1):23–59, 2004.MathSciNetMATH
30.
Zurück zum Zitat M. Franta, J. Málek, and K.R. Rajagopal. On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2055):651–670, 2005.MathSciNetMATH M. Franta, J. Málek, and K.R. Rajagopal. On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2055):651–670, 2005.MathSciNetMATH
31.
Zurück zum Zitat G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems. G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems.
32.
Zurück zum Zitat F. Gazzola. A note on the evolution Navier-Stokes equations with a pressure-dependent viscosity. Z. Angew. Math. Phys., 48(5):760–773, 1997.MathSciNetMATH F. Gazzola. A note on the evolution Navier-Stokes equations with a pressure-dependent viscosity. Z. Angew. Math. Phys., 48(5):760–773, 1997.MathSciNetMATH
33.
Zurück zum Zitat F. Gazzola and P. Secchi. Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity. In Navier-Stokes equations: theory and numerical methods (Varenna, 1997), volume 388 of Pitman Res. Notes Math. Ser., pages 31–37. Longman, Harlow, 1998.MATH F. Gazzola and P. Secchi. Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity. In Navier-Stokes equations: theory and numerical methods (Varenna, 1997), volume 388 of Pitman Res. Notes Math. Ser., pages 31–37. Longman, Harlow, 1998.MATH
34.
Zurück zum Zitat J. Hron, J. Málek, J. Nečas, and K.R. Rajagopal. Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Math. Comput. Simulation, 61(3–6):297–315, 2003. MODELLING 2001 (Pilsen). J. Hron, J. Málek, J. Nečas, and K.R. Rajagopal. Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Math. Comput. Simulation, 61(3–6):297–315, 2003. MODELLING 2001 (Pilsen).
35.
Zurück zum Zitat J. Hron, J. Málek, V. Průša, and K.R. Rajagopal. Further remarks on simple flows of fluids with pressure-dependent viscosities. Nonlinear Anal. Real World Appl., 12(1):394–402, 2011.MathSciNetMATH J. Hron, J. Málek, V. Průša, and K.R. Rajagopal. Further remarks on simple flows of fluids with pressure-dependent viscosities. Nonlinear Anal. Real World Appl., 12(1):394–402, 2011.MathSciNetMATH
36.
Zurück zum Zitat V. Kalantarov and S. Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal., 11(5):2037–2054, 2012.MathSciNetMATH V. Kalantarov and S. Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal., 11(5):2037–2054, 2012.MathSciNetMATH
37.
Zurück zum Zitat K. Kannan and K.R. Rajagopal. Flow through porous media due to high pressure gradients. Appl. Math. Comput., 199(2):748–759, 2008.MathSciNetMATH K. Kannan and K.R. Rajagopal. Flow through porous media due to high pressure gradients. Appl. Math. Comput., 199(2):748–759, 2008.MathSciNetMATH
38.
Zurück zum Zitat M. Lanzendörfer. On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal. Real World Appl., 10(4):1943–1954, 2009.MathSciNetMATH M. Lanzendörfer. On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal. Real World Appl., 10(4):1943–1954, 2009.MathSciNetMATH
39.
Zurück zum Zitat M. Lanzendörfer and J. Stebel. On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities. Appl. Math., 56(3):265–285, 2011.MathSciNetMATH M. Lanzendörfer and J. Stebel. On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities. Appl. Math., 56(3):265–285, 2011.MathSciNetMATH
40.
Zurück zum Zitat J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969. J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.
41.
Zurück zum Zitat J. Málek, J. Nečas, and K.R. Rajagopal. Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal., 165(3):243–269, 2002.MathSciNetMATH J. Málek, J. Nečas, and K.R. Rajagopal. Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal., 165(3):243–269, 2002.MathSciNetMATH
42.
Zurück zum Zitat J. Málek, J. Nečas, and K.R. Rajagopal. Global existence of solutions for flows of fluids with pressure and shear dependent viscosities. Appl. Math. Lett., 15(8):961–967, 2002.MathSciNetMATH J. Málek, J. Nečas, and K.R. Rajagopal. Global existence of solutions for flows of fluids with pressure and shear dependent viscosities. Appl. Math. Lett., 15(8):961–967, 2002.MathSciNetMATH
43.
Zurück zum Zitat J. Málek, K.R. Rajagopal, and M. Růžička. Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci., 5(6):789–812, 1995.MathSciNetMATH J. Málek, K.R. Rajagopal, and M. Růžička. Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci., 5(6):789–812, 1995.MathSciNetMATH
44.
Zurück zum Zitat G.J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.MathSciNetMATH G.J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.MathSciNetMATH
45.
Zurück zum Zitat F. Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(3):489–507, 1978.MathSciNetMATH F. Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(3):489–507, 1978.MathSciNetMATH
46.
Zurück zum Zitat K.B. Nakshatrala and K.R. Rajagopal. A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium. Internat. J. Numer. Methods Fluids, 67(3):342–368, 2011.MathSciNetMATH K.B. Nakshatrala and K.R. Rajagopal. A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium. Internat. J. Numer. Methods Fluids, 67(3):342–368, 2011.MathSciNetMATH
47.
Zurück zum Zitat D.A. Nield and A. Bejan. Convection in porous media. Springer-Verlag, New York, second edition, 1999.MATH D.A. Nield and A. Bejan. Convection in porous media. Springer-Verlag, New York, second edition, 1999.MATH
48.
Zurück zum Zitat J.M. Paton and C.J. Schaschke. Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer. Chemical Engineering Research and Design, 87(11A):1520–1526, 2009. J.M. Paton and C.J. Schaschke. Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer. Chemical Engineering Research and Design, 87(11A):1520–1526, 2009.
49.
Zurück zum Zitat V. Průša. Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities. International Journal of Engineering Science, 48(12):2054–2065, 2010.MathSciNet V. Průša. Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities. International Journal of Engineering Science, 48(12):2054–2065, 2010.MathSciNet
50.
Zurück zum Zitat K.R. Rajagopal. On implicit constitutive theories for fluids. J. Fluid Mech., 550:243–249, 2006.MathSciNetMATH K.R. Rajagopal. On implicit constitutive theories for fluids. J. Fluid Mech., 550:243–249, 2006.MathSciNetMATH
51.
Zurück zum Zitat K.R. Rajagopal. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci., 17(2):215–252, 2007.MathSciNetMATH K.R. Rajagopal. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci., 17(2):215–252, 2007.MathSciNetMATH
52.
Zurück zum Zitat K.R. Rajagopal and L. Tao. Mechanics of mixtures, volume 35 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.MATH K.R. Rajagopal and L. Tao. Mechanics of mixtures, volume 35 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.MATH
53.
Zurück zum Zitat M. Renardy. Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity. Comm. Partial Differential Equations, 11(7):779–793, 1986.MathSciNetMATH M. Renardy. Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity. Comm. Partial Differential Equations, 11(7):779–793, 1986.MathSciNetMATH
54.
Zurück zum Zitat I. Samohýl. Thermodynamics of irreversible processes in fluid mixtures, volume 12 of Teubner-Texte zur Physik [Teubner Texts in Physics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987. Approached by rational thermodynamics, With German, French, Spanish and Russian summaries. I. Samohýl. Thermodynamics of irreversible processes in fluid mixtures, volume 12 of Teubner-Texte zur Physik [Teubner Texts in Physics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987. Approached by rational thermodynamics, With German, French, Spanish and Russian summaries.
55.
Zurück zum Zitat D.G. Schaeffer. Instability in the evolution equations describing incompressible granular flow. J. Differential Equations, 66(1):19–50, 1987.MathSciNetMATH D.G. Schaeffer. Instability in the evolution equations describing incompressible granular flow. J. Differential Equations, 66(1):19–50, 1987.MathSciNetMATH
56.
Zurück zum Zitat C.J. Schaschke, S. Allio, and E. Holmberg. Viscosity measurement of vegetable oil at high pressure. Food and Bioproducts Processing, 84(C3):173–178, 2006. C.J. Schaschke, S. Allio, and E. Holmberg. Viscosity measurement of vegetable oil at high pressure. Food and Bioproducts Processing, 84(C3):173–178, 2006.
57.
Zurück zum Zitat T. Schwedoff. Recherches expérimentales sur la cohésion des liquides. I. rigidité des liquides. J. Phys. Theor. Appl., 8:341–359, 1889. T. Schwedoff. Recherches expérimentales sur la cohésion des liquides. I. rigidité des liquides. J. Phys. Theor. Appl., 8:341–359, 1889.
58.
Zurück zum Zitat T. Schwedoff. Recherches expérimentales sur la cohésion des liquides. II. viscosité des liquides. J. Phys. Theor. Appl., 9:34–46, 1890. T. Schwedoff. Recherches expérimentales sur la cohésion des liquides. II. viscosité des liquides. J. Phys. Theor. Appl., 9:34–46, 1890.
59.
Zurück zum Zitat S. Srinivasan, A. Bonito, and K.R. Rajagopal. Flow of a fluid through porous solid due to high pressure gradients. J. Porous Media, 16(3):193–203, 2013. S. Srinivasan, A. Bonito, and K.R. Rajagopal. Flow of a fluid through porous solid due to high pressure gradients. J. Porous Media, 16(3):193–203, 2013.
60.
Zurück zum Zitat S. Srinivasan and K.R. Rajagopal. A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. International Journal of Non-Linear Mechanics, 58:162–166, 2014. S. Srinivasan and K.R. Rajagopal. A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. International Journal of Non-Linear Mechanics, 58:162–166, 2014.
61.
Zurück zum Zitat G.G. Stokes. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Transactions of the Cambridge Philosophical Society, 9:8–106, 1851. G.G. Stokes. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Transactions of the Cambridge Philosophical Society, 9:8–106, 1851.
62.
Zurück zum Zitat S.C. Subramanian and K.R. Rajagopal. A note on the flow through porous solids at high pressures. Comput. Math. Appl., 53(2):260–275, 2007.MathSciNetMATH S.C. Subramanian and K.R. Rajagopal. A note on the flow through porous solids at high pressures. Comput. Math. Appl., 53(2):260–275, 2007.MathSciNetMATH
63.
Zurück zum Zitat S.C. Subramanian and K.R. Rajagopal. A note on the flow through porous solids at high pressures. Comput. Math. Appl., 53(2):260–275, 2007.MathSciNetMATH S.C. Subramanian and K.R. Rajagopal. A note on the flow through porous solids at high pressures. Comput. Math. Appl., 53(2):260–275, 2007.MathSciNetMATH
64.
Zurück zum Zitat S.A. Suslov and T.D. Tran. Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid. J. Non-Newton. Fluid Mech, 154:170–178, 2008. S.A. Suslov and T.D. Tran. Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid. J. Non-Newton. Fluid Mech, 154:170–178, 2008.
65.
Zurück zum Zitat S.A. Suslov and T.D. Tran. Stability of plane Poiseuille-Couette flows of a piezo-viscous fluid. J. Non-Newton. Fluid Mech, 156:139–149, 2009.MATH S.A. Suslov and T.D. Tran. Stability of plane Poiseuille-Couette flows of a piezo-viscous fluid. J. Non-Newton. Fluid Mech, 156:139–149, 2009.MATH
66.
Zurück zum Zitat L. Tartar. Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pages 136–212. Pitman, Boston, Mass.-London, 1979. L. Tartar. Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pages 136–212. Pitman, Boston, Mass.-London, 1979.
67.
Zurück zum Zitat C. Truesdell. Sulle basi della termomeccanica. I, II. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 22:33–38, 158–166, 1957. C. Truesdell. Sulle basi della termomeccanica. I, II. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 22:33–38, 158–166, 1957.
68.
Zurück zum Zitat M. Vasudevaiah and K.R. Rajagopal. On fully developed flows of fluids with a pressure dependent viscosity in a pipe. Appl. Math., 50(4):341–353, 2005.MathSciNetMATH M. Vasudevaiah and K.R. Rajagopal. On fully developed flows of fluids with a pressure dependent viscosity in a pipe. Appl. Math., 50(4):341–353, 2005.MathSciNetMATH
Metadaten
Titel
Flows of Fluids with Pressure Dependent Material Coefficients
verfasst von
Miroslav Bulíček
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39639-8_5