Skip to main content

2012 | OriginalPaper | Buchkapitel

Fluorescence Correlation and Cross-Correlation Spectroscopy Using Fluorescent Proteins for Measurements of Biomolecular Processes in Living Organisms

verfasst von : Yong Hwee Foo, Vladimir Korzh, Thorsten Wohland

Erschienen in: Fluorescent Proteins II

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluorescence imaging and spectroscopy have played an important part in the advancement of the modern life sciences. Especially single molecule sensitive fluorescence techniques have allowed researchers to quantify biomolecular processes on the molecular level. However, these techniques were applied mainly in solution or in cell cultures that do not represent a physiologically relevant 3D environment. Results thus obtained are often not predictive of events in biomedically more interesting organisms or tissues. Therefore, many efforts are dedicated to bring single molecule fluorescence techniques into living model organisms. In this context, genetically encoded fluorescent proteins have played a major role. They exist in a wide variety (color, lifetime, Stokes shift, photoactivation, and environmental sensitivity) and ensure a 1:1 stoichiometry of labeling, important for the quantitation of data. In particular, two techniques, fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS), profited from these labels and were successfully modified for applications in organisms. In this chapter, we will review the basics of FCS and FCCS, the challenges of applying FCS in organisms, and the importance of fluorescent proteins in this process. We provide a discussion of the different applications to date and give a perspective of new developments with promising potential for applications within organisms. The application of FCS and other single molecule techniques within living organisms is an important step in the quantitation of biomolecular events in physiologically relevant 3D environments.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In vivo according to the common definition in biochemistry or molecular biology, refers to in living samples such as cell cultures and organisms, while in vitro refers to in tube or solution. However, in developmental biology, in vivo refers only to organism, while in vitro refers to in tube and in 2D cell culture. The term ex vivo is used when cells are directly taken from the organism and studied outside of the organism within a limited time. For the purpose of this chapter, we use the definitions of developmental biology, and therefore in vivo refers only to experiments in organism.
 
2
In some cases, the ACF is defined slightly differently in which the ACF has a convergence value of 0 instead of 1. This different definition is only a change in offset. It does not influence the function of the ACF and does not alter any of the conclusions here.
 
Literatur
1.
Zurück zum Zitat Matz MV, Lukyanov KA, Lukyanov SA (2002) Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24(10):953–959 Matz MV, Lukyanov KA, Lukyanov SA (2002) Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24(10):953–959
2.
Zurück zum Zitat Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77(1):1–12 Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77(1):1–12
3.
Zurück zum Zitat Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845 Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845
4.
Zurück zum Zitat Mets ü, Rigler R (1994) Submillisecond detection of single rhodamine molecules in water. J Fluoresc 4(3):259–264 Mets ü, Rigler R (1994) Submillisecond detection of single rhodamine molecules in water. J Fluoresc 4(3):259–264
5.
Zurück zum Zitat Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182 Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182
6.
Zurück zum Zitat Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84(6):4043–4052 Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84(6):4043–4052
7.
Zurück zum Zitat Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89(5):2960–2971 Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89(5):2960–2971
8.
Zurück zum Zitat Magde D, Webb WW, Elson EL (1978) Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17(2):361–376 Magde D, Webb WW, Elson EL (1978) Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17(2):361–376
9.
Zurück zum Zitat Foquet M et al (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76(6):1618–1626 Foquet M et al (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76(6):1618–1626
10.
Zurück zum Zitat Kinjo M, Rigler R (1995) Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res 23(10):1795–1799 Kinjo M, Rigler R (1995) Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res 23(10):1795–1799
11.
Zurück zum Zitat Schwille P, Oehlenschlager F, Walter NG (1996) Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35(31):10182–10193 Schwille P, Oehlenschlager F, Walter NG (1996) Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35(31):10182–10193
12.
Zurück zum Zitat Auer M et al (1998) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discovery Today 3(10):457–465 Auer M et al (1998) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discovery Today 3(10):457–465
13.
Zurück zum Zitat Pack CG et al (1999) Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy. Cytometry 36(3):247–253 Pack CG et al (1999) Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy. Cytometry 36(3):247–253
14.
Zurück zum Zitat Wohland T et al (1999) Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38(27):8671–8681 Wohland T et al (1999) Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38(27):8671–8681
15.
Zurück zum Zitat Van Craenenbroeck E, Engelborghs Y (1999) Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry 38(16):5082–5088 Van Craenenbroeck E, Engelborghs Y (1999) Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry 38(16):5082–5088
16.
Zurück zum Zitat Octobre G et al (2005) Monitoring the interaction between DNA and a transcription factor (MEF2A) using fluorescence correlation spectroscopy. C R Biol 328(12):1033–1040 Octobre G et al (2005) Monitoring the interaction between DNA and a transcription factor (MEF2A) using fluorescence correlation spectroscopy. C R Biol 328(12):1033–1040
17.
Zurück zum Zitat Kobayashi T et al (2004) Detection of protein-DNA interactions in crude cellular extracts by fluorescence correlation spectroscopy. Anal Biochem 332(1):58–66 Kobayashi T et al (2004) Detection of protein-DNA interactions in crude cellular extracts by fluorescence correlation spectroscopy. Anal Biochem 332(1):58–66
18.
Zurück zum Zitat Rauer B et al (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem 58(1–2):3–12 Rauer B et al (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem 58(1–2):3–12
19.
Zurück zum Zitat Widengren J, Rigler R, Mets ü (1994) Triplet-state monitoring by fluorescence correlation spectroscopy. J Fluoresc 4(3):255–258 Widengren J, Rigler R, Mets ü (1994) Triplet-state monitoring by fluorescence correlation spectroscopy. J Fluoresc 4(3):255–258
20.
Zurück zum Zitat Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99(36):13368–13379 Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99(36):13368–13379
21.
Zurück zum Zitat Widengren J (1999) Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 250:171–186 Widengren J (1999) Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 250:171–186
22.
Zurück zum Zitat Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708 Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708
23.
Zurück zum Zitat Ehrenberg M, Rigler R (1974) Rotational brownian motion and fluorescence intensify fluctuations. Chem Phys 4(3):390–401 Ehrenberg M, Rigler R (1974) Rotational brownian motion and fluorescence intensify fluctuations. Chem Phys 4(3):390–401
24.
Zurück zum Zitat Arag´n SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14(1):119–137 Arag´n SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14(1):119–137
25.
Zurück zum Zitat Kask P et al (1987) Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B. Eur Biophys J 14(4):257–261 Kask P et al (1987) Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B. Eur Biophys J 14(4):257–261
26.
Zurück zum Zitat Kask P et al (1989) Separation of the rotational contribution in fluorescence correlation experiments. Biophys J 55(2):213–220 Kask P et al (1989) Separation of the rotational contribution in fluorescence correlation experiments. Biophys J 55(2):213–220
27.
Zurück zum Zitat Tsay JM, Doose S, Weiss S (2006) Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J Am Chem Soc 128(5):1639–1647 Tsay JM, Doose S, Weiss S (2006) Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J Am Chem Soc 128(5):1639–1647
28.
Zurück zum Zitat Loman A et al (2010) Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochem Photobiol Sci 9(5):627–636 Loman A et al (2010) Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochem Photobiol Sci 9(5):627–636
29.
Zurück zum Zitat Haupts U et al (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95(23):13573–13578 Haupts U et al (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95(23):13573–13578
30.
Zurück zum Zitat Schwille P et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97(1):151–156 Schwille P et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97(1):151–156
31.
Zurück zum Zitat Malvezzi-Campeggi F et al (2001) Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81(3):1776–1785 Malvezzi-Campeggi F et al (2001) Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81(3):1776–1785
32.
Zurück zum Zitat Kettling U et al (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95(4):1416–1420 Kettling U et al (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95(4):1416–1420
33.
Zurück zum Zitat Saito K et al (2004) Direct detection of caspase-3 activation in single live cells by cross-correlation analysis. Biochem Biophys Res Commun 324(2):849–854 Saito K et al (2004) Direct detection of caspase-3 activation in single live cells by cross-correlation analysis. Biochem Biophys Res Commun 324(2):849–854
34.
Zurück zum Zitat Kohl T, Haustein E, Schwille P (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89(4):2770–2782 Kohl T, Haustein E, Schwille P (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89(4):2770–2782
35.
Zurück zum Zitat Rigler R et al (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109 Rigler R et al (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109
36.
Zurück zum Zitat Rippe K (2000) Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39(9):2131–2139 Rippe K (2000) Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39(9):2131–2139
37.
Zurück zum Zitat Ohrt T et al (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36(20):6439–6449 Ohrt T et al (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36(20):6439–6449
38.
Zurück zum Zitat Baudendistel N et al (2005) Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo. ChemPhysChem 6(5):984–990 Baudendistel N et al (2005) Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo. ChemPhysChem 6(5):984–990
39.
Zurück zum Zitat Muto H et al (2006) Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells. Plant Cell Physiol 47(8):1095–1101 Muto H et al (2006) Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells. Plant Cell Physiol 47(8):1095–1101
40.
Zurück zum Zitat Oyama R et al (2006) Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res 34(14):e102 Oyama R et al (2006) Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res 34(14):e102
41.
Zurück zum Zitat Maeder CI et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9(11):1319–1326 Maeder CI et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9(11):1319–1326
42.
Zurück zum Zitat Slaughter BD, Schwartz JW, Li R (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci USA 104(51):20320–20325 Slaughter BD, Schwartz JW, Li R (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci USA 104(51):20320–20325
43.
Zurück zum Zitat Shi X et al (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97(2):678–686 Shi X et al (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97(2):678–686
44.
Zurück zum Zitat Sudhaharan T et al (2009) Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J Biol Chem 284(20):13602–13609 Sudhaharan T et al (2009) Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J Biol Chem 284(20):13602–13609
45.
Zurück zum Zitat Liu P et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698 Liu P et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698
46.
Zurück zum Zitat Neugart F et al (2009) Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy. Biochim Biophys Acta 1788(9):1890–1900 Neugart F et al (2009) Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy. Biochim Biophys Acta 1788(9):1890–1900
47.
Zurück zum Zitat Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27 Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27
48.
Zurück zum Zitat Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61 Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61
49.
Zurück zum Zitat Rigler R et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22(3):169–175 Rigler R et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22(3):169–175
50.
Zurück zum Zitat Thompson NL (1991) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, 1st edn. Plenum Press, New York Thompson NL (1991) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, 1st edn. Plenum Press, New York
51.
Zurück zum Zitat Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297 Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297
52.
Zurück zum Zitat Aragon SR, Pecora R (1976) Fluorescence correlation spectroscopy as a probe of molecular dynamics. J Chem Phys 64:1791 Aragon SR, Pecora R (1976) Fluorescence correlation spectroscopy as a probe of molecular dynamics. J Chem Phys 64:1791
53.
Zurück zum Zitat Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689 Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689
54.
Zurück zum Zitat Meseth U et al (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631 Meseth U et al (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631
55.
Zurück zum Zitat Shi X, Wohland T (2009) Fluorescence correlation spectroscopy. In: Diaspro A (ed) Nanoscopy and multidimensional optical fluorescence microscopy. Taylor & Francis, Boca Raton Shi X, Wohland T (2009) Fluorescence correlation spectroscopy. In: Diaspro A (ed) Nanoscopy and multidimensional optical fluorescence microscopy. Taylor & Francis, Boca Raton
56.
Zurück zum Zitat Ruttinger S et al (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232(2):343–352 Ruttinger S et al (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232(2):343–352
57.
Zurück zum Zitat Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10(6):1938–1945 Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10(6):1938–1945
58.
Zurück zum Zitat Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci USA 95(15):8602–8606 Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci USA 95(15):8602–8606
59.
Zurück zum Zitat Widengren J et al (2001) Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J Phys Chem A 105(28):6851–6866 Widengren J et al (2001) Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J Phys Chem A 105(28):6851–6866
60.
Zurück zum Zitat Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2):153–166 Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2):153–166
61.
Zurück zum Zitat Lakowicz JR (2006) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York Lakowicz JR (2006) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York
62.
Zurück zum Zitat Ries J et al (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643–645 Ries J et al (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643–645
63.
Zurück zum Zitat Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886 Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886
64.
Zurück zum Zitat Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5(4):549–551 Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5(4):549–551
65.
Zurück zum Zitat Heinze KG, Koltermann A, Schwille P (2000) Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc Natl Acad Sci USA 97(19):10377–10382 Heinze KG, Koltermann A, Schwille P (2000) Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc Natl Acad Sci USA 97(19):10377–10382
66.
Zurück zum Zitat Weidemann T et al (2002) Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol 3(1):49–61 Weidemann T et al (2002) Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol 3(1):49–61
67.
Zurück zum Zitat Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3(2):83–89 Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3(2):83–89
68.
Zurück zum Zitat Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49(1):1–13 Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49(1):1–13
69.
Zurück zum Zitat Rička J, Binkert T (1989) Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys Rev A 39(5):2646–2652 Rička J, Binkert T (1989) Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys Rev A 39(5):2646–2652
70.
Zurück zum Zitat Magatti D, Ferri F (2003) 25 ns software correlator for photon and fluorescence correlation spectroscopy. Rev Sci Instrum 74(2):1135–1144 Magatti D, Ferri F (2003) 25 ns software correlator for photon and fluorescence correlation spectroscopy. Rev Sci Instrum 74(2):1135–1144
71.
Zurück zum Zitat Pan X et al (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78(5):053711 Pan X et al (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78(5):053711
73.
Zurück zum Zitat Lamb DC et al (2000) Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79(2):1129–1138 Lamb DC et al (2000) Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79(2):1129–1138
74.
Zurück zum Zitat Böhmer M et al (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353(5–6):439–445 Böhmer M et al (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353(5–6):439–445
75.
Zurück zum Zitat Wenger J et al (2006) Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture: towards rapid multicomponent screening at high concentrations. Opt Express 14(25):12206–12216 Wenger J et al (2006) Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture: towards rapid multicomponent screening at high concentrations. Opt Express 14(25):12206–12216
76.
Zurück zum Zitat Snapp EL et al (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163(2):257–269 Snapp EL et al (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163(2):257–269
77.
Zurück zum Zitat Zacharias DA et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916 Zacharias DA et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916
78.
Zurück zum Zitat Campbell RE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882 Campbell RE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882
79.
Zurück zum Zitat Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572 Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572
80.
Zurück zum Zitat Huet S et al (2010) Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J Virol 84(3):1254–1264 Huet S et al (2010) Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J Virol 84(3):1254–1264
81.
Zurück zum Zitat Lillemeier BF et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96 Lillemeier BF et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96
82.
Zurück zum Zitat Jung G et al (2000) The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem A 104(5):873–877 Jung G et al (2000) The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem A 104(5):873–877
83.
Zurück zum Zitat Hendrix J et al (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94(10):4103–4113 Hendrix J et al (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94(10):4103–4113
84.
Zurück zum Zitat Hillesheim LN, Chen Y, Muller JD (2006) Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys J 91(11):4273–4284 Hillesheim LN, Chen Y, Muller JD (2006) Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys J 91(11):4273–4284
85.
Zurück zum Zitat Kogure T et al (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24(5):577–581 Kogure T et al (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24(5):577–581
86.
Zurück zum Zitat Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B 73(8):829–837 Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B 73(8):829–837
87.
Zurück zum Zitat Berland K, Shen G (2003) Excitation saturation in two-photon fluorescence correlation spectroscopy. Appl Opt 42(27):5566–5576 Berland K, Shen G (2003) Excitation saturation in two-photon fluorescence correlation spectroscopy. Appl Opt 42(27):5566–5576
88.
Zurück zum Zitat Eggeling C, Volkmer A, Seidel CA (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6(5):791–804 Eggeling C, Volkmer A, Seidel CA (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6(5):791–804
89.
Zurück zum Zitat Nagao I et al (2008) Analysis of the molecular dynamics of medaka nuage proteins by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. FEBS J 275(2):341–349 Nagao I et al (2008) Analysis of the molecular dynamics of medaka nuage proteins by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. FEBS J 275(2):341–349
90.
Zurück zum Zitat Shi X et al (2009) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238(12):3156–3167 Shi X et al (2009) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238(12):3156–3167
91.
Zurück zum Zitat Malone MH et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40 Malone MH et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40
92.
Zurück zum Zitat Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76 Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76
93.
Zurück zum Zitat Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68(2):694–701 Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68(2):694–701
94.
Zurück zum Zitat Schwille P et al (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265 Schwille P et al (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265
95.
Zurück zum Zitat Kohl T et al (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci USA 99(19):12161–12166 Kohl T et al (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci USA 99(19):12161–12166
96.
Zurück zum Zitat Rosales T et al (2007) Quantitative detection of the ligand-dependent interaction between the androgen receptor and the co-activator, Tif2, in live cells using two color, two photon fluorescence cross-correlation spectroscopy. Eur Biophys J 36(2):153–161 Rosales T et al (2007) Quantitative detection of the ligand-dependent interaction between the androgen receptor and the co-activator, Tif2, in live cells using two color, two photon fluorescence cross-correlation spectroscopy. Eur Biophys J 36(2):153–161
97.
Zurück zum Zitat Swift JL et al (2007) Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Anal Chem 79(17):6783–6791 Swift JL et al (2007) Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Anal Chem 79(17):6783–6791
98.
Zurück zum Zitat Ruan Q, Tetin SY (2008) Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal Biochem 374(1):182–195 Ruan Q, Tetin SY (2008) Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal Biochem 374(1):182–195
99.
Zurück zum Zitat Nguyen TT et al (2009) Effects of various small-molecule anesthetics on vesicle fusion: a study using two-photon fluorescence cross-correlation spectroscopy. J Phys Chem B 113:10357–10366 Nguyen TT et al (2009) Effects of various small-molecule anesthetics on vesicle fusion: a study using two-photon fluorescence cross-correlation spectroscopy. J Phys Chem B 113:10357–10366
100.
Zurück zum Zitat Li N et al (2010) Multiple Escherichia coli RecQ Helicase monomers cooperate to unwind long DNA substrates: a fluorescence cross-correlation spectroscopy study. J Biol Chem 285(10):6922–6936 Li N et al (2010) Multiple Escherichia coli RecQ Helicase monomers cooperate to unwind long DNA substrates: a fluorescence cross-correlation spectroscopy study. J Biol Chem 285(10):6922–6936
101.
Zurück zum Zitat Savatier J et al (2010) Estrogen receptor interactions and dynamics monitored in live cells by fluorescence cross-correlation spectroscopy. Biochemistry 49(4):772–781 Savatier J et al (2010) Estrogen receptor interactions and dynamics monitored in live cells by fluorescence cross-correlation spectroscopy. Biochemistry 49(4):772–781
102.
Zurück zum Zitat Brand L et al (1997) Single-molecule identification of coumarin-120 by time-resolved fluorescence detection: comparison of one- and two-photon excitation in solution. J Phys Chem A 101(24):4313–4321 Brand L et al (1997) Single-molecule identification of coumarin-120 by time-resolved fluorescence detection: comparison of one- and two-photon excitation in solution. J Phys Chem A 101(24):4313–4321
103.
Zurück zum Zitat Thews E et al (2005) Cross talk free fluorescence cross correlation spectroscopy in live cells. Biophys J 89(3):2069–2076 Thews E et al (2005) Cross talk free fluorescence cross correlation spectroscopy in live cells. Biophys J 89(3):2069–2076
104.
Zurück zum Zitat Müller BK et al (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522 Müller BK et al (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522
105.
Zurück zum Zitat Kapanidis AN et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–8941 Kapanidis AN et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–8941
106.
Zurück zum Zitat Brinkmeier M, Rigler R (1995) Flow analysis by means of fluorescence correlation spectroscopy. Exp Tech Phys 41:205–210 Brinkmeier M, Rigler R (1995) Flow analysis by means of fluorescence correlation spectroscopy. Exp Tech Phys 41:205–210
107.
Zurück zum Zitat Brinkmeier M et al (1999) Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal Chem 71(3):609–616 Brinkmeier M et al (1999) Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal Chem 71(3):609–616
108.
Zurück zum Zitat Dittrich PS, Schwille P (2002) Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Anal Chem 74(17):4472–4479 Dittrich PS, Schwille P (2002) Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Anal Chem 74(17):4472–4479
109.
Zurück zum Zitat Blom H et al (2002) Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2 x 2 fan-out element. Appl Opt 41(16):3336–3342 Blom H et al (2002) Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2 x 2 fan-out element. Appl Opt 41(16):3336–3342
110.
Zurück zum Zitat Blom H et al (2002) Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element. Appl Opt 41(31):6614–6620 Blom H et al (2002) Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element. Appl Opt 41(31):6614–6620
111.
Zurück zum Zitat Gösch M et al (2005) Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements. J Biomed Opt 10(5):054008 Gösch M et al (2005) Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements. J Biomed Opt 10(5):054008
112.
Zurück zum Zitat Takahashi Y et al (2005) Analysis of cellular functions by multipoint fluorescence correlation spectroscopy. Curr Pharm Biotechnol 6(2):159–165 Takahashi Y et al (2005) Analysis of cellular functions by multipoint fluorescence correlation spectroscopy. Curr Pharm Biotechnol 6(2):159–165
113.
Zurück zum Zitat Ohsugi Y, Kinjo M (2009) Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope. J Biomed Opt 14(1):014030 Ohsugi Y, Kinjo M (2009) Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope. J Biomed Opt 14(1):014030
114.
Zurück zum Zitat Kannan B et al (2006) Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78(10):3444–3451 Kannan B et al (2006) Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78(10):3444–3451
115.
Zurück zum Zitat Kannan B et al (2007) Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79(12):4463–4470 Kannan B et al (2007) Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79(12):4463–4470
116.
Zurück zum Zitat Needleman DJ, Xu Y, Mitchison TJ (2009) Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy. Biophys J 96(12):5050–5059 Needleman DJ, Xu Y, Mitchison TJ (2009) Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy. Biophys J 96(12):5050–5059
117.
Zurück zum Zitat Wohland T et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18(10):10627–10641 Wohland T et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18(10):10627–10641
118.
Zurück zum Zitat Petersen NO (1986) Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49(4):809–815 Petersen NO (1986) Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49(4):809–815
119.
Zurück zum Zitat Petersen NO, Johnson DC, Schlesinger MJ (1986) Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49(4):817–820 Petersen NO, Johnson DC, Schlesinger MJ (1986) Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49(4):817–820
120.
Zurück zum Zitat Koppel DE et al (1994) Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J 66(2 Pt 1):502–507 Koppel DE et al (1994) Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J 66(2 Pt 1):502–507
121.
Zurück zum Zitat Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91(5):1915–1924 Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91(5):1915–1924
122.
Zurück zum Zitat Pan X et al (2007) Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. J Biomed Opt 12(1):014034 Pan X et al (2007) Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. J Biomed Opt 12(1):014034
123.
Zurück zum Zitat Berland KM et al (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71(1):410–420 Berland KM et al (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71(1):410–420
124.
Zurück zum Zitat Ruan Q et al (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87(2):1260–1267 Ruan Q et al (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87(2):1260–1267
125.
Zurück zum Zitat Skinner JP, Chen Y, Muller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89(2):1288–1301 Skinner JP, Chen Y, Muller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89(2):1288–1301
126.
Zurück zum Zitat Petràšek Z et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95(11):5476–5486 Petràšek Z et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95(11):5476–5486
127.
Zurück zum Zitat Petràšek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448 Petràšek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448
128.
Zurück zum Zitat Petràšek Z, Schwille P (2008) Photobleaching in two-photon scanning fluorescence correlation spectroscopy. ChemPhysChem 9(1):147–158 Petràšek Z, Schwille P (2008) Photobleaching in two-photon scanning fluorescence correlation spectroscopy. ChemPhysChem 9(1):147–158
129.
Zurück zum Zitat Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497 Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497
130.
Zurück zum Zitat Yu SR et al (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461(7263):533–536 Yu SR et al (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461(7263):533–536
131.
Zurück zum Zitat Sisan DR et al (2006) Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys J 91(11):4241–4252 Sisan DR et al (2006) Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys J 91(11):4241–4252
132.
Zurück zum Zitat Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49(3):141–164 Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49(3):141–164
133.
Zurück zum Zitat Digman MA et al (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327 Digman MA et al (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327
134.
Zurück zum Zitat Digman MA et al (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36 Digman MA et al (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36
135.
Zurück zum Zitat Digman MA et al (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96(2):707–716 Digman MA et al (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96(2):707–716
136.
Zurück zum Zitat Hirschfeld T, Block MJ, Mueller W (1977) Virometer: an optical instrument for visual observation, measurement and classification of free viruses. J Histochem Cytochem 25(7):719–723 Hirschfeld T, Block MJ, Mueller W (1977) Virometer: an optical instrument for visual observation, measurement and classification of free viruses. J Histochem Cytochem 25(7):719–723
137.
Zurück zum Zitat Thompson NL, Burghardt TP, Axelrod D (1981) Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J 33(3):435–454 Thompson NL, Burghardt TP, Axelrod D (1981) Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J 33(3):435–454
138.
Zurück zum Zitat Thompson NL, Axelrod D (1983) Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 43(1):103–114 Thompson NL, Axelrod D (1983) Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 43(1):103–114
139.
Zurück zum Zitat Sankaran J et al (2009) Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys J 97(9):2630–2639 Sankaran J et al (2009) Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys J 97(9):2630–2639
140.
Zurück zum Zitat Schaaf MJ et al (2009) Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 97(4):1206–1214 Schaaf MJ et al (2009) Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 97(4):1206–1214
141.
Zurück zum Zitat Huisken J et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009 Huisken J et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009
142.
Zurück zum Zitat Reynaud EG et al (2008) Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J 2(5):266–275 Reynaud EG et al (2008) Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J 2(5):266–275
143.
Zurück zum Zitat Chalfie M et al (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805 Chalfie M et al (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805
144.
Zurück zum Zitat Wang Z et al (2004) In vivo FCS measurements of ligand diffusion in intact tissues. SPIE 5323:177–183 Wang Z et al (2004) In vivo FCS measurements of ligand diffusion in intact tissues. SPIE 5323:177–183
145.
Zurück zum Zitat Bhattacharya D et al (2009) Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys J 96(9):3832–3839 Bhattacharya D et al (2009) Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys J 96(9):3832–3839
146.
Zurück zum Zitat Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367 Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367
147.
Zurück zum Zitat Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520 Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520
148.
Zurück zum Zitat Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694 Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694
149.
Zurück zum Zitat Bowman TV, Zon LI (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem Biol 5(2):159–161 Bowman TV, Zon LI (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem Biol 5(2):159–161
150.
Zurück zum Zitat Chakraborty C et al (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10(2):116–124 Chakraborty C et al (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10(2):116–124
151.
Zurück zum Zitat Hove JR (2006) Quantifying cardiovascular flow dynamics during early development. Pediatr Res 60(1):6–13 Hove JR (2006) Quantifying cardiovascular flow dynamics during early development. Pediatr Res 60(1):6–13
152.
Zurück zum Zitat Pan X et al (2009) Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements. J Biomed Opt 14(2):024049 Pan X et al (2009) Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements. J Biomed Opt 14(2):024049
153.
Zurück zum Zitat Korzh S et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84 Korzh S et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84
154.
Zurück zum Zitat Furutani-Seiki M, Wittbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121(7–8):629–637 Furutani-Seiki M, Wittbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121(7–8):629–637
155.
Zurück zum Zitat Kastrup L et al (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17):178104 Kastrup L et al (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17):178104
156.
Zurück zum Zitat Vobornik D et al (2008) Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Appl Phys Lett 93(16):163904-3 Vobornik D et al (2008) Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Appl Phys Lett 93(16):163904-3
157.
Zurück zum Zitat Wenger J et al (2005) Single molecule fluorescence in rectangular nano-apertures. Opt Express 13(18):7035–7044 Wenger J et al (2005) Single molecule fluorescence in rectangular nano-apertures. Opt Express 13(18):7035–7044
158.
Zurück zum Zitat Ries J et al (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94(1):221–229 Ries J et al (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94(1):221–229
159.
Zurück zum Zitat Kapusta P et al (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17(1):43–48 Kapusta P et al (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17(1):43–48
160.
Zurück zum Zitat Chen J, Irudayaraj J (2010) Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells. Anal Chem 82(15):6415–6421 Chen J, Irudayaraj J (2010) Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells. Anal Chem 82(15):6415–6421
161.
Zurück zum Zitat Garai K, Muralidhar M, Maiti S (2006) Fiber-optic fluorescence correlation spectrometer. Appl Opt 45(28):7538–7542 Garai K, Muralidhar M, Maiti S (2006) Fiber-optic fluorescence correlation spectrometer. Appl Opt 45(28):7538–7542
162.
Zurück zum Zitat Garai K, Sureka R, Maiti S (2007) Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy. Biophys J 92(7):L55–L57 Garai K, Sureka R, Maiti S (2007) Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy. Biophys J 92(7):L55–L57
163.
Zurück zum Zitat Chang YC et al (2008) Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber. Opt Express 16(17):12640–12649 Chang YC et al (2008) Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber. Opt Express 16(17):12640–12649
164.
Zurück zum Zitat Aouani H et al (2009) Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. Opt Express 17(21):19085–19092 Aouani H et al (2009) Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. Opt Express 17(21):19085–19092
165.
Zurück zum Zitat Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(Pt 24):4247–4260 Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(Pt 24):4247–4260
166.
Zurück zum Zitat Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem 10(9–10):1369–1379 Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem 10(9–10):1369–1379
167.
Zurück zum Zitat Wahl M, et al (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11(26):3583–3591 Wahl M, et al (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11(26):3583–3591
168.
Zurück zum Zitat Yang F, et al (1996) The molecular structure of green fluorescent protein. Nat Biotech 14(10):1246–1251 Yang F, et al (1996) The molecular structure of green fluorescent protein. Nat Biotech 14(10):1246–1251
Metadaten
Titel
Fluorescence Correlation and Cross-Correlation Spectroscopy Using Fluorescent Proteins for Measurements of Biomolecular Processes in Living Organisms
verfasst von
Yong Hwee Foo
Vladimir Korzh
Thorsten Wohland
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/4243_2011_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.