Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Fourier Transforms (II)

verfasst von : Toru Maruyama

Erschienen in: Fourier Analysis of Economic Phenomena

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapter, we observed a peculiar relation between the smoothness and the rapidity of vanishing at infinity of a function f, as well as its Fourier transform \(\hat {f}\). Based upon this observation, we introduce an important function space \(\mathfrak {S}\), which is invariant under the Fourier transforms. We then proceed to \(\mathfrak {L}^2\)-theory of Fourier transforms due to M. Plancherel. As a simple application of Plancherel’s theory, we discuss how to solve integral equations of convolution type. Finally, a tempered distribution is defined as an element of \(\mathfrak {S}'\), and its Fourier transform is examined in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Where the domain and the range are clear enough, we write just \(\mathfrak {S, D}\) and so on, for brevity.
 
2
SeeSchwartz [11],Bourbaki [1] andGrothendieck [4] for the theory of locally convex spaces. See also Appendix B in this book.
 
3
A more general theorem is explained in Maruyama [9] pp. 232–233.
 
4
Takagi [13] p. 166.
 
5
The proof of (4.7) here is due to Yosida [16], p. 147. Although this approach is a little bit technical, I adopt it because of its simplicity. There are various other approaches. For instance, see Kawata [6] Chap. 11, Treves [14] Theorem 25.1 or Maruyama [8] Theorem 4.13.
 
6
A direct proof is also possible. Since \(f \in \mathfrak {S}\) is bounded and integrable, f ⋅ f is integrable (i.e. \(f \in \mathfrak {L}^2\)) by Hölder’s inequality. We have only to approximate \(f \in \mathfrak {L}^2\) by a simple function φ with compact support and to approximate φ by a smooth function with compact support.
 
7
The proof here is due to Dunford–Schwartz [2] III, pp. 1988–1989. See also Sect. 4.4 in this chapter and Schwartz [12] Chap. VII for the connection with the theory of distributions.
 
8
In general, it holds good that \(u\ast v\in \mathfrak {L}^p(\mathbb {R}, \mathbb {C})\) and \(\|u\ast v\|{ }_p\leqq \|u\|{ }_p \cdot \|v\|{ }_1\) for any \(u\in \mathfrak {L}^p(\mathbb {R}, \mathbb {C})\, (1\leqq p\leqq \infty )\) and \(v\in \mathfrak {L}^1(\mathbb {R}, \mathbb {C})\). See Maruyama [9] pp. 235–236.
 
9
The relation (4.19) can be verified as follows. In general, if \(u_r\in \mathfrak {L}^2(\mathbb {R},\mathbb {C})\), and \(v \in \mathfrak {L}^1 (\mathbb {R},\mathbb {C})\), and \(\underset {r\to \infty }{\mathrm {l.i.m.}}u_r=u\), then
$$\displaystyle \begin{aligned} \underset{r \to \infty}{\mathrm{l.i.m.}}\int v(x-z)u_r(z)dz=\int v(x-z)u(z)dz. \end{aligned} $$
(†)
In fact, by the footnote just above,
$$\displaystyle \begin{aligned} \bigg\|\int v(x-z)u_r(z)dz-\int v(x-z)u(z)dz\bigg\|{}_2 &=\bigg\| \int [u_r(z)-u(z)]v(x-z)dz\bigg\|{}_2 \\ &\leqq \| u_r-u\|{}_2\cdot \|v\|{}_1 \to 0 \quad \text{as}\quad r \to \infty, \end{aligned} $$
which establishes (). Now (4.19) immediately follows from ().
 
10
This section is basically due to Kawata [5]II, Chap. 17. However, the proof of (4.19) given there does not seem correct.
 
11
cf. Appendix B, Sect. B.​2 (p. 366).
 
12
While the Fourier transform on \(\mathfrak {S}(\mathbb {R})\) is denoted by \(\mathcal {F}\), the Fourier transform on \(\mathfrak {S}(\mathbb {R})'\) is denoted by the German Fraktur letter \(\mathfrak {F}\). The different letters are used for the sake of clear distinction.
 
13
cf. Yosida and Kato [15] pp. 98–99.
 
14
cf. Yosida [16] pp. 151–155.
 
15
Since \(f\in \mathfrak {L}^2(\mathbb {R},\mathbb {C})\) determines a tempered distribution T f, it has its inverse \(\widetilde {T_f}\in \mathfrak {S}(\mathbb {R})'\). \(\widetilde {T_f}\) is a continuous linear functional on \(\mathfrak {S}(\mathbb {R})\) (with respect to \(\mathfrak {L}^2\)-norm). This can be checked by a similar computation to that in (4.30). Hence \(\widetilde {T_f}\) can be uniquely extended to a continuous linear functional on \(\mathfrak {L}^2(\mathbb {R},\mathbb {C})\). By Riesz’s theorem, there exists some \(\tilde {f}\in \mathfrak {L}^2(\mathbb {R},\mathbb {C})\) which represents \(\widetilde {T_f}\). \(\tilde {f}\) is given in a concrete form
$$\displaystyle \begin{aligned} \tilde{f}(x)=\underset{h\rightarrow \infty}{\mathrm{l.i.m.}}\frac{1}{\sqrt{2\pi}} \int_{|y|\leqq h} e^{ixy}f(y)dy \end{aligned} $$
(cf. (4.36) and (4.37)). \(\widetilde {T_f}=T_{\tilde {f}}\) is the inverse operator of \(\widehat {T_f}=T_{\hat {f}}\) on \(\mathfrak {S}(\mathbb {R})\). So it is clear that these are mutually inverse as operators extended to \(\mathfrak {L}^2(\mathbb {R},\mathbb {C})\).
 
16
This section is based upon Maruyama [10].
 
17
We denote by \(\mathfrak {L}_{loc.}^1(\mathbb {R},\mathbb {C})\) the space of locally integrable complex-valued functions defined on \(\mathbb {R}\). \(\mathfrak {D}(\mathbb {R})\) is the space of test functions. See Sect. 4.4 and Appendix C.
 
18
\(\mathfrak {D}(\mathbb {R})'\) denotes the dual space of \(\mathfrak {D}(\mathbb {R})\). Each element of \(\mathfrak {D}(\mathbb {R})'\) is called a distribution.
 
19
The notation supp θ means the support of the function θ.
 
20
\(\displaystyle \sum _{k=-p}^p\theta (x+2k\pi ) \rightarrow \sum _{n=-\infty }^\infty \theta (x+2n\pi )\) (in \(\mathfrak {C}^\infty \)) on supp ψη.
 
21
We should note that supp ψ α θ ⊂supp θ.
 
22
See Folland [3], pp. 320–322 and Lax [7], p. 570 for an outline of ideas.
 
23
n ≠ n r ⇒ λ(n − n r) = 0, n = n r ⇒ λ(n r − n r) = 1.
 
Literatur
1.
Zurück zum Zitat Bourbaki, N.: Eléments de mathématique; Espaces vectoriels topologiques. Hermann, Paris, Chaps. 1–2 (seconde édition) (1965), Chaps. 3–5 (1964) (English edn.) Elements of Mathematics; Topological Vector Spaces. Springers, Berlin/Heidelberg/New York (1987) Bourbaki, N.: Eléments de mathématique; Espaces vectoriels topologiques. Hermann, Paris, Chaps. 1–2 (seconde édition) (1965), Chaps. 3–5 (1964) (English edn.) Elements of Mathematics; Topological Vector Spaces. Springers, Berlin/Heidelberg/New York (1987)
2.
Zurück zum Zitat Dunford, N., Schwartz, J.T.: Linear Operators, Part 1–3. Interscience, New York (1958–1971)MATH Dunford, N., Schwartz, J.T.: Linear Operators, Part 1–3. Interscience, New York (1958–1971)MATH
3.
Zurück zum Zitat Folland, G.B.: Fourier Analysis and Its Applications. American Mathematical Society, Providence (1992)MATH Folland, G.B.: Fourier Analysis and Its Applications. American Mathematical Society, Providence (1992)MATH
4.
Zurück zum Zitat Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, New York (1973)MATH Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, New York (1973)MATH
5.
Zurück zum Zitat Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics). I, II, Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese) Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics). I, II, Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese)
6.
Zurück zum Zitat Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese) Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese)
7.
Zurück zum Zitat Lax, P.D.: Functional Analysis. Wiley, New York (2002)MATH Lax, P.D.: Functional Analysis. Wiley, New York (2002)MATH
8.
Zurück zum Zitat Maruyama, T.: Kansu Kaisekigaku (Functional Analysis). Keio Tsushin, Tokyo (1980) (Originally published in Japanese) Maruyama, T.: Kansu Kaisekigaku (Functional Analysis). Keio Tsushin, Tokyo (1980) (Originally published in Japanese)
9.
Zurück zum Zitat Maruyama, T.: Sekibun to Kansu-kaiseki (Integration and Functional Analysis). Springer, Tokyo (2006) (Originally published in Japanese) Maruyama, T.: Sekibun to Kansu-kaiseki (Integration and Functional Analysis). Springer, Tokyo (2006) (Originally published in Japanese)
10.
Zurück zum Zitat Maruyama, T.: Herglotz-Bochner representation theorem via theory of distributions. J. Oper. Res. Soc. Japan 60, 122–135 (2017)MathSciNetMATH Maruyama, T.: Herglotz-Bochner representation theorem via theory of distributions. J. Oper. Res. Soc. Japan 60, 122–135 (2017)MathSciNetMATH
11.
Zurück zum Zitat Schwartz, L.: Functional Analysis. Courant Institute of Mathematical Sciences, New York University, New York (1964) Schwartz, L.: Functional Analysis. Courant Institute of Mathematical Sciences, New York University, New York (1964)
12.
Zurück zum Zitat Schwartz, L.: Théorìe des distributions. Nouvelle édition, entièrement corrigée, refondue et augmentée, Hermann, Paris (1973) Schwartz, L.: Théorìe des distributions. Nouvelle édition, entièrement corrigée, refondue et augmentée, Hermann, Paris (1973)
13.
Zurück zum Zitat Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese) Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese)
14.
Zurück zum Zitat Treves, J.F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)MATH Treves, J.F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)MATH
15.
Zurück zum Zitat Yosida, K., Kato T.: Ohyo Sugaku (Applied Mathematics). I, Shokabou, Tokyo (1961) (Originally published in Japanese) Yosida, K., Kato T.: Ohyo Sugaku (Applied Mathematics). I, Shokabou, Tokyo (1961) (Originally published in Japanese)
16.
Metadaten
Titel
Fourier Transforms (II)
verfasst von
Toru Maruyama
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2730-8_4