Skip to main content

2019 | OriginalPaper | Buchkapitel

23. Fractional Nonlocal Continuum Mechanics and Microstructural Models

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Models of physical lattices with long-range interactions for nonlocal continuum are suggested. The lattice long-range interactions are described by exact fractional-order difference operators. Continuous limit of suggested lattice operators gives continuum fractional derivatives of non-integer orders. The proposed approach gives a new microstructural basis to formulation of theory of nonlocal materials with power-law nonlocality. Moreover these lattice models, which is based on exact fractional differences, allow us to have a unified microscopic description of fractional nonlocal and standard local continuum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (Wiley-ISTE, Hoboken, 2014a)MATH T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (Wiley-ISTE, Hoboken, 2014a)MATH
Zurück zum Zitat T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley-ISTE, Hoboken, 2014b)MATH T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley-ISTE, Hoboken, 2014b)MATH
Zurück zum Zitat A. Carpinteri, P. Cornetti, A. Sapora, Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik. Appl. Math. Mech. 89(3), 207–217 (2009)MathSciNetMATH A. Carpinteri, P. Cornetti, A. Sapora, Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik. Appl. Math. Mech. 89(3), 207–217 (2009)MathSciNetMATH
Zurück zum Zitat A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193, 193–204 (2011)CrossRef A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193, 193–204 (2011)CrossRef
Zurück zum Zitat N. Challamel, D. Zorica, T.M. Atanackovic, D.T. Spasic, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C. R. Mec. 341(3), 298–303 (2013)CrossRef N. Challamel, D. Zorica, T.M. Atanackovic, D.T. Spasic, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C. R. Mec. 341(3), 298–303 (2013)CrossRef
Zurück zum Zitat G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum. Physica E 42(2), 95–103 (2009a)CrossRef G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum. Physica E 42(2), 95–103 (2009a)CrossRef
Zurück zum Zitat G. Cottone, M. Di Paola, M. Zingales, Fractional mechanical model for the dynamics of non-local continuum, in Advances in Numerical Methods. Lecture Notes in Electrical Engineering, vol. 11 (Springer, New York, 2009b), Chapter 33. pp. 389–423 G. Cottone, M. Di Paola, M. Zingales, Fractional mechanical model for the dynamics of non-local continuum, in Advances in Numerical Methods. Lecture Notes in Electrical Engineering, vol. 11 (Springer, New York, 2009b), Chapter 33. pp. 389–423
Zurück zum Zitat M. Di Paola, M. Zingales, Fractional differential calculus for 3D mechanically based non-local elasticity. Int. J. Multiscale Comput. Eng. 9(5), 579–597 (2011)CrossRef M. Di Paola, M. Zingales, Fractional differential calculus for 3D mechanically based non-local elasticity. Int. J. Multiscale Comput. Eng. 9(5), 579–597 (2011)CrossRef
Zurück zum Zitat M. Di Paola, F. Marino, M. Zingales, A generalized model of elastic foundation based on long-range interactions: integral and fractional model. Int. J. Solids Struct. 46(17), 3124–3137 (2009a)CrossRef M. Di Paola, F. Marino, M. Zingales, A generalized model of elastic foundation based on long-range interactions: integral and fractional model. Int. J. Solids Struct. 46(17), 3124–3137 (2009a)CrossRef
Zurück zum Zitat M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009b)MathSciNetCrossRef M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009b)MathSciNetCrossRef
Zurück zum Zitat M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, M. Zingales, The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. R. Soc. A. 371(1993), 20120433 (2013) M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, M. Zingales, The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. R. Soc. A. 371(1993), 20120433 (2013)
Zurück zum Zitat C.S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics. J. Elast. 107(2), 105–123 (2012)MathSciNetCrossRef C.S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics. J. Elast. 107(2), 105–123 (2012)MathSciNetCrossRef
Zurück zum Zitat V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 21(2), 279–280 (1957, in Russian) V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 21(2), 279–280 (1957, in Russian)
Zurück zum Zitat A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006) p. 353MATH A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006) p. 353MATH
Zurück zum Zitat N.A. Rostovtsev, Remarks on the paper by V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 23(4), 1143–1149 (1959) N.A. Rostovtsev, Remarks on the paper by V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 23(4), 1143–1149 (1959)
Zurück zum Zitat S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993), p. 1006MATH S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993), p. 1006MATH
Zurück zum Zitat A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 18(1), 63–74 (2013)MathSciNetCrossRef A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 18(1), 63–74 (2013)MathSciNetCrossRef
Zurück zum Zitat W. Sumelka, Non-local KirchhoffLove plates in terms of fractional calculus. Arch. Civil Mech. Eng. 15(1), 231–242 (2015)CrossRef W. Sumelka, Non-local KirchhoffLove plates in terms of fractional calculus. Arch. Civil Mech. Eng. 15(1), 231–242 (2015)CrossRef
Zurück zum Zitat W. Sumelka, T. Blaszczyk, Fractional continua for linear elasticity. Arch. Mech. 66(3), 147–172 (2014)MathSciNetMATH W. Sumelka, T. Blaszczyk, Fractional continua for linear elasticity. Arch. Mech. 66(3), 147–172 (2014)MathSciNetMATH
Zurück zum Zitat W. Sumelka, R. Zaera, J. Fernández-Sáez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics. Meccanica. 50(9), 2309–2323 (2015)MathSciNetCrossRef W. Sumelka, R. Zaera, J. Fernández-Sáez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics. Meccanica. 50(9), 2309–2323 (2015)MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A. 39(48), 14895–14910 (2006a). arXiv:0711.0826MathSciNetCrossRef V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A. 39(48), 14895–14910 (2006a). arXiv:0711.0826MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2010)CrossRef V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2010)CrossRef
Zurück zum Zitat V.E. Tarasov, Lattice model with power-law spatial dispersion for fractional elasticity. Centr. Eur. J. Phys. 11(11), 1580–1588 (2013) V.E. Tarasov, Lattice model with power-law spatial dispersion for fractional elasticity. Centr. Eur. J. Phys. 11(11), 1580–1588 (2013)
Zurück zum Zitat V.E. Tarasov, Fractional gradient elasticity from spatial dispersion law. ISRN Condens. Matter Phys. 2014, 794097 (13 pages) (2014a) V.E. Tarasov, Fractional gradient elasticity from spatial dispersion law. ISRN Condens. Matter Phys. 2014, 794097 (13 pages) (2014a)
Zurück zum Zitat V.E. Tarasov, Lattice model of fractional gradient and integral elasticity: long-range interaction of Grunwald-Letnikov-Riesz type. Mech. Mater. 70(1), 106–114 (2014b). arXiv:1502.06268CrossRef V.E. Tarasov, Lattice model of fractional gradient and integral elasticity: long-range interaction of Grunwald-Letnikov-Riesz type. Mech. Mater. 70(1), 106–114 (2014b). arXiv:1502.06268CrossRef
Zurück zum Zitat V.E. Tarasov, Lattice with long-range interaction of power-law type for fractional non-local elasticity. Int. J. Solids Struct. 51(15–16), 2900–2907 (2014c). arXiv:1502.05492CrossRef V.E. Tarasov, Lattice with long-range interaction of power-law type for fractional non-local elasticity. Int. J. Solids Struct. 51(15–16), 2900–2907 (2014c). arXiv:1502.05492CrossRef
Zurück zum Zitat V.E. Tarasov, Fractional quantum field theory: from lattice to continuum. Adv. High Energy Phys. 2014, 957863 (14 pages) (2014d) V.E. Tarasov, Fractional quantum field theory: from lattice to continuum. Adv. High Energy Phys. 2014, 957863 (14 pages) (2014d)
Zurück zum Zitat V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B. 28(7), 1450054 (2014f). arXiv:1501.01435CrossRef V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B. 28(7), 1450054 (2014f). arXiv:1501.01435CrossRef
Zurück zum Zitat V.E. Tarasov, Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity. Prog. Frac. Differ. Appl. 1(4), 243–258 (2015a)CrossRef V.E. Tarasov, Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity. Prog. Frac. Differ. Appl. 1(4), 243–258 (2015a)CrossRef
Zurück zum Zitat V.E. Tarasov, Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 56(10), 103506 (2015b)MathSciNetCrossRef V.E. Tarasov, Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 56(10), 103506 (2015b)MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, Variational principle of stationary action for fractional nonlocal media. Pac. J. Math. Ind. 7(1), Article 6. [11 pages] (2015d) V.E. Tarasov, Variational principle of stationary action for fractional nonlocal media. Pac. J. Math. Ind. 7(1), Article 6. [11 pages] (2015d)
Zurück zum Zitat V.E. Tarasov, Non-linear fractional field equations: weak non-linearity at power-law non-locality. Nonlinear Dyn. 80(4), 1665–1672 (2015e)MathSciNetCrossRef V.E. Tarasov, Non-linear fractional field equations: weak non-linearity at power-law non-locality. Nonlinear Dyn. 80(4), 1665–1672 (2015e)MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, Lattice model with nearest-neighbor and next-nearest-neighbor interactions for gradient elasticity. Discontinuity Nonlinearity Complex 4(1), 11–23 (2015g). arXiv:1503.03633CrossRef V.E. Tarasov, Lattice model with nearest-neighbor and next-nearest-neighbor interactions for gradient elasticity. Discontinuity Nonlinearity Complex 4(1), 11–23 (2015g). arXiv:1503.03633CrossRef
Zurück zum Zitat V.E. Tarasov, Exact discrete analogs of derivatives of integer orders: differences as infinite series. J. Math. 2015, Article ID 134842 (2015h) V.E. Tarasov, Exact discrete analogs of derivatives of integer orders: differences as infinite series. J. Math. 2015, Article ID 134842 (2015h)
Zurück zum Zitat V.E. Tarasov, Discrete model of dislocations in fractional nonlocal elasticity. J. King Saud Univ. Sci. 28(1), 33–36 (2016b)CrossRef V.E. Tarasov, Discrete model of dislocations in fractional nonlocal elasticity. J. King Saud Univ. Sci. 28(1), 33–36 (2016b)CrossRef
Zurück zum Zitat V.E. Tarasov, Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. Meccanica. 51(1), 125–138 (2016c)MathSciNetCrossRef V.E. Tarasov, Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. Meccanica. 51(1), 125–138 (2016c)MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 31–61 (2016f)MathSciNetCrossRef V.E. Tarasov, Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 31–61 (2016f)MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, J.J. Trujillo, Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013). arXiv:1503.04349MathSciNetCrossRef V.E. Tarasov, J.J. Trujillo, Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013). arXiv:1503.04349MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction. Chaos. 16(2), 023110 (2006a). arXiv:nlin.PS/0512013MathSciNetCrossRef V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction. Chaos. 16(2), 023110 (2006a). arXiv:nlin.PS/0512013MathSciNetCrossRef
Zurück zum Zitat V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006b). arXiv:1107.5436MathSciNetCrossRef V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006b). arXiv:1107.5436MathSciNetCrossRef
Metadaten
Titel
Fractional Nonlocal Continuum Mechanics and Microstructural Models
verfasst von
Vasily E. Tarasov
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.