Skip to main content

2010 | OriginalPaper | Buchkapitel

14. Friction

verfasst von : Yoshihiro Matsuo, Daryl D. Clarke, Shinichi Ozeki

Erschienen in: Phenolic Resins: A Century of Progress

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to lower the car body weight. It means that the weight of car components must be decreased. In the case of reduced weight for friction parts, the load applied to the friction parts would be higher (more heat also) and trend would lead to phenolic resins with improved heat resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu Y, Tang C-F, Zhao Y and Wright M A, (2004) “Optimization of a Semimetallic Friction Material Formulation.” J. Reinforced Plastics & Composites 23:1537–1545CrossRef Lu Y, Tang C-F, Zhao Y and Wright M A, (2004) “Optimization of a Semimetallic Friction Material Formulation.” J. Reinforced Plastics & Composites 23:1537–1545CrossRef
2.
Zurück zum Zitat Dong F, Blum F D and Dharani L R, (2000) “Effects of Moulding Pressure on the Mechanical and Friction Properties of a Semi-metallic Friction Material.” Polymer & Polymer Composites 8:151–156 Dong F, Blum F D and Dharani L R, (2000) “Effects of Moulding Pressure on the Mechanical and Friction Properties of a Semi-metallic Friction Material.” Polymer & Polymer Composites 8:151–156
3.
Zurück zum Zitat Qu X, Zhang L, Ding H and Liu G, (2004) “The Effect of Steel Fiber Orientation on Frictional Properties of Asbestos-Free Friction Materials.” Polymer Composites 25: 94–101CrossRef Qu X, Zhang L, Ding H and Liu G, (2004) “The Effect of Steel Fiber Orientation on Frictional Properties of Asbestos-Free Friction Materials.” Polymer Composites 25: 94–101CrossRef
4.
Zurück zum Zitat Rhee S K, Tsang P H S and Wang Y S, (1989) “Friction-Introduced Noise and Vibration of Disk Brakes.” Wear 133:39–45CrossRef Rhee S K, Tsang P H S and Wang Y S, (1989) “Friction-Introduced Noise and Vibration of Disk Brakes.” Wear 133:39–45CrossRef
5.
Zurück zum Zitat Ichiba Y and Nagasawa Y, (1993) “Experimental Study on Disc Brake Squeal.” SAE Technical Paper Series 930802:103–110 Ichiba Y and Nagasawa Y, (1993) “Experimental Study on Disc Brake Squeal.” SAE Technical Paper Series 930802:103–110
6.
Zurück zum Zitat Nack W V and Joshi A M, (1995) “Friction Induced Vibration: Brake Moan.” SAE Technical Paper Series 951095:1967–1973 Nack W V and Joshi A M, (1995) “Friction Induced Vibration: Brake Moan.” SAE Technical Paper Series 951095:1967–1973
7.
Zurück zum Zitat Earles S W E and Charmbers P W, (1988) “Disk Brake Squeal-Some Factors Which Influence its Occurence.” ImechE C454/88:39–46 Earles S W E and Charmbers P W, (1988) “Disk Brake Squeal-Some Factors Which Influence its Occurence.” ImechE C454/88:39–46
8.
Zurück zum Zitat Haigh M J, Smales H and Abe M, (1993) “Vehicle Judder under Dynamic Braking Caused by Disc Thickness Variation.” ImechE C444/022:247–258 Haigh M J, Smales H and Abe M, (1993) “Vehicle Judder under Dynamic Braking Caused by Disc Thickness Variation.” ImechE C444/022:247–258
9.
Zurück zum Zitat Longley J W and Gardner R, (1988) “Some Compositional Effects in the Static and Dynamic Properties of Commercial Vehicle Disk Brakes.” ImechE C453/88:31–38 Longley J W and Gardner R, (1988) “Some Compositional Effects in the Static and Dynamic Properties of Commercial Vehicle Disk Brakes.” ImechE C453/88:31–38
10.
Zurück zum Zitat Tang C-F and Lu Y, (2004) “Combinatorial Screening of Ingredients for Steel Wool Based Semimetallic and Aramid Pulp Based Nonasbestos Organic Brake Materials.” J. Reinforced Plastics & Composites 23:51–63CrossRef Tang C-F and Lu Y, (2004) “Combinatorial Screening of Ingredients for Steel Wool Based Semimetallic and Aramid Pulp Based Nonasbestos Organic Brake Materials.” J. Reinforced Plastics & Composites 23:51–63CrossRef
11.
Zurück zum Zitat Browden F P and Tabor D, (1950) “The Friction and Lubrication of Solids.” Clarendon Press, Oxford, p20 Browden F P and Tabor D, (1950) “The Friction and Lubrication of Solids.” Clarendon Press, Oxford, p20
12.
Zurück zum Zitat Kluger M A, (1990) “A Comparison of Braking Performance of Asbestos, Non-Asbestos, and Semi-Metallic Friction Material.” SAE Technical Paper Series 902272:1–5 Kluger M A, (1990) “A Comparison of Braking Performance of Asbestos, Non-Asbestos, and Semi-Metallic Friction Material.” SAE Technical Paper Series 902272:1–5
13.
Zurück zum Zitat Nicholson G, Facts about Friction, p99 Nicholson G, Facts about Friction, p99
14.
Zurück zum Zitat (2002) “Simulated Mountain-Brake Performance Test Procedure.” SAE Surface Vehicle Recommended Practice, SAE International J1247:1–19 (2002) “Simulated Mountain-Brake Performance Test Procedure.” SAE Surface Vehicle Recommended Practice, SAE International J1247:1–19
15.
Zurück zum Zitat (2000) “Brake Performance and Wear Test Code Commercial Vehicle Interia Dynamometer.” Surface Vehicle Standard, SAE International J2115:1–7 (2000) “Brake Performance and Wear Test Code Commercial Vehicle Interia Dynamometer.” Surface Vehicle Standard, SAE International J2115:1–7
16.
Zurück zum Zitat Ozeki S, (2001) “Modified Phenolic Resins for High Performance Friction Application.” SAE Technical Paper Series 2001-01-3127 Ozeki S, (2001) “Modified Phenolic Resins for High Performance Friction Application.” SAE Technical Paper Series 2001-01-3127
17.
Zurück zum Zitat Haddadi E, Abbasi F and Shojaei A, (2005) “Wear and Thermal Effects in Low Modulus Polymer-Based Composite Friction Material.” Journal of Applied Polymer Science 95:1181–1185CrossRef Haddadi E, Abbasi F and Shojaei A, (2005) “Wear and Thermal Effects in Low Modulus Polymer-Based Composite Friction Material.” Journal of Applied Polymer Science 95:1181–1185CrossRef
18.
Zurück zum Zitat Matsuo Y, (2007) “High-Ortho Phenolic Resin for Improved Flexibility.” SAE Technical Paper Series 2007-01-3943 Matsuo Y, (2007) “High-Ortho Phenolic Resin for Improved Flexibility.” SAE Technical Paper Series 2007-01-3943
19.
Zurück zum Zitat Ozeki S, (2003) “Characterization of Environmentally Responsible Phenolic Resins.” SAE Technical Paper Series 2003-01-3317 Ozeki S, (2003) “Characterization of Environmentally Responsible Phenolic Resins.” SAE Technical Paper Series 2003-01-3317
20.
Zurück zum Zitat Matsuo Y and Ozeki S, (2006) “Gas-Free Phenolic Resin for Friction Materials.” SAE Technical Paper Series 2006-01-3186 Matsuo Y and Ozeki S, (2006) “Gas-Free Phenolic Resin for Friction Materials.” SAE Technical Paper Series 2006-01-3186
Metadaten
Titel
Friction
verfasst von
Yoshihiro Matsuo
Daryl D. Clarke
Shinichi Ozeki
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-04714-5_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.