Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Fuel Flow and Balance in a D–T Fusion Reactor

verfasst von : Tetsuo Tanabe, Masabumi Nishikawa

Erschienen in: Tritium: Fuel of Fusion Reactors

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Because of radioactivity of tritium (T), special cares for safety are required. In addition, limited resources of T require fuel self-sufficiency in a fusion reactor. Accordingly, accurate T accountancy, i.e., to know quantitatively how much T is in throughput, exhausted, and retained in all T handling systems in a reactor is required. At the same time, T retention in any systems should be minimized, or T retained in the systems should be recovered as much as possible. In this chapter, fuel flows and balances in all fuel processing/handling subsystems of a reactor are introduced referring deuterium (D) flow in present experimental tokamaks, which are using D as operating gas. Subsequently, current designs of the fueling and recycling systems of a fusion reactor are introduced and required conditions to keep T safety and fuel self-sufficiency are considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Kallenbach, M. Bernert, R. Dux et al., Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Phys. Control Fusion 55, 124041 (2013)CrossRef A. Kallenbach, M. Bernert, R. Dux et al., Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Phys. Control Fusion 55, 124041 (2013)CrossRef
2.
Zurück zum Zitat T. Tanabe, Tritium fuel cycle in ITER and DEMO: issues in handling large amount of fuel. J. Nucl. Mater. 438, S19–S26 (2013)CrossRef T. Tanabe, Tritium fuel cycle in ITER and DEMO: issues in handling large amount of fuel. J. Nucl. Mater. 438, S19–S26 (2013)CrossRef
3.
Zurück zum Zitat M. Glugla, D.K. Murdoch, A. Antipenkov et al., ITER fuel cycle R&D: consequences for the design. Fusion Eng. Des. 81, 733–744 (2006)CrossRef M. Glugla, D.K. Murdoch, A. Antipenkov et al., ITER fuel cycle R&D: consequences for the design. Fusion Eng. Des. 81, 733–744 (2006)CrossRef
4.
Zurück zum Zitat D. Babineau, S. Maruyama, R. Pearce, et al., in Review of the ITER fuel cycle. In Proceedings of 23rd IAEA Fusion Energy Conference, ITR2/2, Daejeon, Republic of Korea D. Babineau, S. Maruyama, R. Pearce, et al., in Review of the ITER fuel cycle. In Proceedings of 23rd IAEA Fusion Energy Conference, ITR2/2, Daejeon, Republic of Korea
5.
Zurück zum Zitat I.R. Cristescu, I. Cristescu, L. Doerr et al., Tritium inventories and tritium safety design principles for the fuel cycle of ITER. Nucl. Fusion 47, S458–S463 (2007)CrossRef I.R. Cristescu, I. Cristescu, L. Doerr et al., Tritium inventories and tritium safety design principles for the fuel cycle of ITER. Nucl. Fusion 47, S458–S463 (2007)CrossRef
6.
Zurück zum Zitat T. Tanabe, Tritium handling issues in fusion reactor materials. J. Nucl. Mater. 417, 545–550 (2011)CrossRef T. Tanabe, Tritium handling issues in fusion reactor materials. J. Nucl. Mater. 417, 545–550 (2011)CrossRef
7.
Zurück zum Zitat J. Roth, E. Tsitrone, A. Loarte et al., Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater. 390–391, 1–9 (2009)CrossRef J. Roth, E. Tsitrone, A. Loarte et al., Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater. 390–391, 1–9 (2009)CrossRef
8.
Zurück zum Zitat E. Tsitrone, B. Pegourie, Y. Marande et al., Multi machine scaling of fuel retention in 4 carbon dominated tokamaks. J. Nucl. Mater. 415, s735 (2011)CrossRef E. Tsitrone, B. Pegourie, Y. Marande et al., Multi machine scaling of fuel retention in 4 carbon dominated tokamaks. J. Nucl. Mater. 415, s735 (2011)CrossRef
9.
Zurück zum Zitat D. Murdoch, M. Glugla, T. Hayashi et al., Evolution of ITER Tritium confinement strategy and adaptation to Cadarache site conditions and French regulatory requirements. Fusion Eng. Des. 83, 1355–1358 (2008)CrossRef D. Murdoch, M. Glugla, T. Hayashi et al., Evolution of ITER Tritium confinement strategy and adaptation to Cadarache site conditions and French regulatory requirements. Fusion Eng. Des. 83, 1355–1358 (2008)CrossRef
11.
Zurück zum Zitat C.H. Skinner, Tritium retention and removal in tokamaks, ed. by in: S.-I. Itoh, S. Inagaki, M. Shindo, M. Yagi Proceedings of 2nd ITER International Summer School: Confinement, 2009, Amer. Inst. Phys, pp. 127–145 C.H. Skinner, Tritium retention and removal in tokamaks, ed. by in: S.-I. Itoh, S. Inagaki, M. Shindo, M. Yagi Proceedings of 2nd ITER International Summer School: Confinement, 2009, Amer. Inst. Phys, pp. 127–145
12.
Zurück zum Zitat Technical basis for the ITER final design Document Series No.24, IAEA Vienna 2002 Technical basis for the ITER final design Document Series No.24, IAEA Vienna 2002
13.
Zurück zum Zitat D. Murdoch, S. Beloglazov, P. Boucquey et al., ITER design review: Tritium issues fusion. Sci. Technol. 54, 3–8 (2008) D. Murdoch, S. Beloglazov, P. Boucquey et al., ITER design review: Tritium issues fusion. Sci. Technol. 54, 3–8 (2008)
14.
Zurück zum Zitat R. Raman, K. Itami, Conceptual design description of a CT fueler for JT-60U. J. Plasma Fus. Res. 76, 1079–1087 (2000) R. Raman, K. Itami, Conceptual design description of a CT fueler for JT-60U. J. Plasma Fus. Res. 76, 1079–1087 (2000)
15.
Zurück zum Zitat A. Yu, I.V. Sokolov, A.A. Altovkij, Borisov et al., RF TBMs for ITER tests, Fusion Eng. Des. 81 (2006) 425 and references there in A. Yu, I.V. Sokolov, A.A. Altovkij, Borisov et al., RF TBMs for ITER tests, Fusion Eng. Des. 81 (2006) 425 and references there in
16.
Zurück zum Zitat C.P.C. Wong, S. Malang, M. Sawn, et al., An overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design, Fusion Eng. Design, 81(2006) 461–467, and references there in\ C.P.C. Wong, S. Malang, M. Sawn, et al., An overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design, Fusion Eng. Design, 81(2006) 461–467, and references there in\
17.
Zurück zum Zitat H. Nakmura, D. Sakurai, S. Suzuki et al., Case study on tritium inventory in the fusion DEMO plant at JAERI. Fusion Eng. Des. 81, 1339–1345 (2006)CrossRef H. Nakmura, D. Sakurai, S. Suzuki et al., Case study on tritium inventory in the fusion DEMO plant at JAERI. Fusion Eng. Des. 81, 1339–1345 (2006)CrossRef
18.
Zurück zum Zitat K. Tobita, S. Nishio, M. Enoeda et al., Design study of fusion DEMO plant in JARI. Fusion Eng. Des. 81, 1151–1158 (2006)CrossRef K. Tobita, S. Nishio, M. Enoeda et al., Design study of fusion DEMO plant in JARI. Fusion Eng. Des. 81, 1151–1158 (2006)CrossRef
19.
Zurück zum Zitat M.A. Abdou, E.L. Vold, C.Y. Gung, Deuterium-Tritium fuel self-sufficiency infusion reactors. Fusion Technol. 9, 250–285 (1986) M.A. Abdou, E.L. Vold, C.Y. Gung, Deuterium-Tritium fuel self-sufficiency infusion reactors. Fusion Technol. 9, 250–285 (1986)
20.
Zurück zum Zitat M.E. Sawan, M.A. Abdou, Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle. Fusion Eng. Des. 81, 1131–1144 (2006)CrossRef M.E. Sawan, M.A. Abdou, Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle. Fusion Eng. Des. 81, 1131–1144 (2006)CrossRef
21.
Zurück zum Zitat L.A. El-Guebaly, S. Malang, Toward the ultimate goal of tritium self-sufficiency: technical issues and requirements imposed on ARIES advanced power plants. Fusion Eng. Des. 84(12), December 2009, Pages 2072–2083 and references therein L.A. El-Guebaly, S. Malang, Toward the ultimate goal of tritium self-sufficiency: technical issues and requirements imposed on ARIES advanced power plants. Fusion Eng. Des. 84(12), December 2009, Pages 2072–2083 and references therein
22.
Zurück zum Zitat M. Nishikawa, T. Tanabe, Study on the fuel balance of a DT reactor. Fusion Eng. Des. 85, 987–991 (2010)CrossRef M. Nishikawa, T. Tanabe, Study on the fuel balance of a DT reactor. Fusion Eng. Des. 85, 987–991 (2010)CrossRef
23.
Zurück zum Zitat M. Nishikawa, Study on Tritium balance in a D–T fusion reactor. Fusion Sci. Technol. 57, 120–128 (2010) M. Nishikawa, Study on Tritium balance in a D–T fusion reactor. Fusion Sci. Technol. 57, 120–128 (2010)
24.
Zurück zum Zitat K. Tobita, S. Nishio, M. Enoeda et al., Compact DEMO, SlimCS: design progress and issues. Nucl. Fusion 49, 075029 (2009)CrossRef K. Tobita, S. Nishio, M. Enoeda et al., Compact DEMO, SlimCS: design progress and issues. Nucl. Fusion 49, 075029 (2009)CrossRef
Metadaten
Titel
Fuel Flow and Balance in a D–T Fusion Reactor
verfasst von
Tetsuo Tanabe
Masabumi Nishikawa
Copyright-Jahr
2017
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56460-7_3