Skip to main content

2012 | OriginalPaper | Buchkapitel

7. Fuel Management

verfasst von : Pavel Tsvetkov, Alan Waltar, Massimo Salvatores

Erschienen in: Fast Spectrum Reactors

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fuel management deals with the irradiation and processing of fuel. An analysis of the fuel cycle is necessary to estimate fuel costs and to define operational requirements such as initial fuel compositions, how often to refuel, changes in power densities during operation, and reactivity control. The great flexibility of fast spectrum systems allows them to either “breed” desired fuel or “burn” undesired wastes—particularly the minor actinides (MA),1 which constitute the greatest long-term contribution to radiotoxicity and heat load in geologic waste repositories. Fuel costs represent one contribution to the total power costs, as discussed in Chapter 3. Unlike the light water reactor (LWR), fuel costs for a fast soectrum reactor are insensitive to U3O8, price. Hence, this contribution to total power cost is predicted to be lower for a fast breeder reactor than for a thermal reactor as the price of U3O8, rises. Since more fissile material is produced in a breeder reactor configuration than is consumed, the basic (feed) fuel for the fast breeder reactor is depleted uranium, which is available for centuries without further mining of uranium ore.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
“Minor actinides” refers to the actinide elements heavier than uranium typically found in used nuclear fuel, but does not include uranium or plutonium, which are “major actinides”. Minor actinides are typically Np, Am, and Cm.
 
2
Lanthanide elements such as gadolinium are used as neutron absorbers in the manufactured fuel for reactivity control, and so they are likely present in the used fuel. Separation of these elements from the others is important to assure that neutron absorbers do not affect subsequent usage of the partitioned materials.
 
3
Transuranic isotopes all have atomic numbers greater than 92 (the atomic number of uranium).
 
4
One can integrate over the fluence from zero to discharge here (i.e., for Q cycles) for a single batch as long as N m is calculated as if all the region were composed of this batch. This is equivalent to the sum of the fissile material destroyed in each of the Q batches in the region for one cycle.
 
5
This doubling time is called fuel-cycle-inventory doubling time (IDT) in Ref. [8].
 
Literatur
1.
Zurück zum Zitat J. Gourdon, et al., “An Overview of SUPERPHENIX Commissioning Tests,” Nucl. Sci. Eng., 106, p. 1 (1990). J. Gourdon, et al., “An Overview of SUPERPHENIX Commissioning Tests,” Nucl. Sci. Eng., 106, p. 1 (1990).
2.
Zurück zum Zitat P. Greebler and C. L. Cowan, FUMBLE: An Approach to Fast Power Reactor Fuel Management und Burnup Calculations, November 1970, GEAP-13599. General Electric Co., USA (1970). P. Greebler and C. L. Cowan, FUMBLE: An Approach to Fast Power Reactor Fuel Management und Burnup Calculations, November 1970, GEAP-13599. General Electric Co., USA (1970).
3.
Zurück zum Zitat J. Hoover, G. K. Leaf, D. A. Meneley, and P. M. Walker, “The Fuel Cycle Analysis System, REBUS,” Nucl. Sci. Eng., 45, pp. 52–65 (1971). J. Hoover, G. K. Leaf, D. A. Meneley, and P. M. Walker, “The Fuel Cycle Analysis System, REBUS,” Nucl. Sci. Eng., 45, pp. 52–65 (1971).
4.
Zurück zum Zitat W. W. Little, Jr. and R. W. Hardie, 2DB User’s Manual, BNWL-831, Pacific Northwest Laboratory, Richland, WA (1968).CrossRef W. W. Little, Jr. and R. W. Hardie, 2DB User’s Manual, BNWL-831, Pacific Northwest Laboratory, Richland, WA (1968).CrossRef
5.
Zurück zum Zitat R. W. Hardie and W. W. Little, Jr., 3DB, Three-Dimensional Diffusion Theory Burnup Code, BNWL-1264, March 1970, Pacific Northwest Laboratory, Richland, WA (1970).CrossRef R. W. Hardie and W. W. Little, Jr., 3DB, Three-Dimensional Diffusion Theory Burnup Code, BNWL-1264, March 1970, Pacific Northwest Laboratory, Richland, WA (1970).CrossRef
6.
Zurück zum Zitat K. L. Derstine, DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite-Difference Diffusion Theory Problems, ANL-82-64, Argonne National Laboratory, Argonne, IL (1984). K. L. Derstine, DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite-Difference Diffusion Theory Problems, ANL-82-64, Argonne National Laboratory, Argonne, IL (1984).
7.
Zurück zum Zitat G. Palmiotti, E. E. Lewis, and C. B. Carrico, “VARIANT” VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation, ANL-95140, Argonne National Laboratory, Argonne, IL (1995). G. Palmiotti, E. E. Lewis, and C. B. Carrico, “VARIANT” VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation, ANL-95140, Argonne National Laboratory, Argonne, IL (1995).
8.
Zurück zum Zitat H. L. Wyckoff and P. Greebler, “Definitions of Breeding Ratio and Doubling Time,” Nucl. Technol., 21, pp. 158–164 (1974). H. L. Wyckoff and P. Greebler, “Definitions of Breeding Ratio and Doubling Time,” Nucl. Technol., 21, pp. 158–164 (1974).
9.
Zurück zum Zitat K. Ott, “An Improved Definition of the Breeding Ratio for Fast Reactors,” Trans. Am. Nucl. Soc., 12, p. 719 (1969).MathSciNet K. Ott, “An Improved Definition of the Breeding Ratio for Fast Reactors,” Trans. Am. Nucl. Soc., 12, p. 719 (1969).MathSciNet
10.
Zurück zum Zitat W. P. Barthold and Y. I. Chang, “Breeding Ratio and Doubling Time Definitions Used for Advanced Fuels Performance Characterization,” Trans. Am. Nucl. Soc., 26, p. 588 (1977). W. P. Barthold and Y. I. Chang, “Breeding Ratio and Doubling Time Definitions Used for Advanced Fuels Performance Characterization,” Trans. Am. Nucl. Soc., 26, p. 588 (1977).
11.
Zurück zum Zitat D. R. Marr. R. W. Hardie, and R. P. Omberg, “An Expression for the Compound System Doubling Time Which Explicitly Includes the Approach to Equilibrium,” Trans. Am. Nucl. Soc., 26, p. 587 (1977). D. R. Marr. R. W. Hardie, and R. P. Omberg, “An Expression for the Compound System Doubling Time Which Explicitly Includes the Approach to Equilibrium,” Trans. Am. Nucl. Soc., 26, p. 587 (1977).
12.
Zurück zum Zitat M. Salvatores, I. Slessarev, and M. Uematsu, “A Global Physics Approach to Transmutation of Radioactive Nuclei,” Nucl. Sci. Eng., 116, p. 1 (1994). M. Salvatores, I. Slessarev, and M. Uematsu, “A Global Physics Approach to Transmutation of Radioactive Nuclei,” Nucl. Sci. Eng., 116, p. 1 (1994).
13.
Zurück zum Zitat M. Salvatores, R. Hill, I. Slessarev, and G. Youinou, “The Physics of TRU Transmutation – A Systematic Approach to the Intercomparison of Systems,” Proc. PHYSOR 2004 – The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, IL, April 25–29 (2004). M. Salvatores, R. Hill, I. Slessarev, and G. Youinou, “The Physics of TRU Transmutation – A Systematic Approach to the Intercomparison of Systems,” Proc. PHYSOR 2004 – The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, IL, April 25–29 (2004).
14.
Zurück zum Zitat R. N. Hill and T. A. Taiwo, “Transmutation Impacts of Generation-IV Nuclear Energy Systems,” Proc.Int. Conf. PHYSOR, Vancouver (2006). R. N. Hill and T. A. Taiwo, “Transmutation Impacts of Generation-IV Nuclear Energy Systems,” Proc.Int. Conf. PHYSOR, Vancouver (2006).
15.
Zurück zum Zitat G. Aliberti, et al., “Nuclear Data Sensitivity, Uncertainty and Target Accuracy Assessment for Future Nuclear Systems,” Ann. Nucl. Ener., 33, pp. 700–733 (2006).CrossRef G. Aliberti, et al., “Nuclear Data Sensitivity, Uncertainty and Target Accuracy Assessment for Future Nuclear Systems,” Ann. Nucl. Ener., 33, pp. 700–733 (2006).CrossRef
16.
Zurück zum Zitat G. Aliberti, et al., “Impact of Nuclear Data Uncertainties on Transmutation of Actinides in Accelerator-Driven Assemblies,” Nucl. Sci. Eng., 46, pp. 13–50 (2004). G. Aliberti, et al., “Impact of Nuclear Data Uncertainties on Transmutation of Actinides in Accelerator-Driven Assemblies,” Nucl. Sci. Eng., 46, pp. 13–50 (2004).
17.
Zurück zum Zitat M. Salvatores, et al., “OECD/NEA WPEC Subgroup 26 Final Report: Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations,” OECD-NEA Report, Paris (2008). M. Salvatores, et al., “OECD/NEA WPEC Subgroup 26 Final Report: Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations,” OECD-NEA Report, Paris (2008).
18.
Zurück zum Zitat W. P. Barthold and J. C. Beitel, “Performance Characteristics of Homogeneous Versus Heterogeneous Liquid-Metal Fast Breeder Reactors,” Nucl. Tech., 44, pp. 45, 50–52 (1979). W. P. Barthold and J. C. Beitel, “Performance Characteristics of Homogeneous Versus Heterogeneous Liquid-Metal Fast Breeder Reactors,” Nucl. Tech., 44, pp. 45, 50–52 (1979).
19.
Zurück zum Zitat C. A. Erdman and A. B. Reynolds, “Radionuclide Behavior During Normal Operation of Liquid-Metal-Cooled Fast Breeder Reactors. Part I: Production,” Nucl. Safety, 16, pp. 44–46 (1975). C. A. Erdman and A. B. Reynolds, “Radionuclide Behavior During Normal Operation of Liquid-Metal-Cooled Fast Breeder Reactors. Part I: Production,” Nucl. Safety, 16, pp. 44–46 (1975).
20.
Zurück zum Zitat Y. I. Chang, C. E. Till, R. R. Rudolph, J. R. Deen, and M. J. King, Alternative Fuel Cycle Options: Performance Characteristics und Impact on Nuclear Power Growth Potential, ANL-77 70. Argonne National Laboratory, Argonne, IL (1977). Y. I. Chang, C. E. Till, R. R. Rudolph, J. R. Deen, and M. J. King, Alternative Fuel Cycle Options: Performance Characteristics und Impact on Nuclear Power Growth Potential, ANL-77 70. Argonne National Laboratory, Argonne, IL (1977).
21.
Zurück zum Zitat M. Salvatores, “Nuclear Fuel Cycle Strategies Including Partitioning and Transmutation,” Nucl. Eng. Design, 235, p. 805 (2005).CrossRef M. Salvatores, “Nuclear Fuel Cycle Strategies Including Partitioning and Transmutation,” Nucl. Eng. Design, 235, p. 805 (2005).CrossRef
22.
Zurück zum Zitat M. A. Smith, et al., Physics and Safety Studies of Low Conversion Ratio Sodium Cooled Fast Reactors, PHYSOR 2004, Chicago, IL (2004). M. A. Smith, et al., Physics and Safety Studies of Low Conversion Ratio Sodium Cooled Fast Reactors, PHYSOR 2004, Chicago, IL (2004).
23.
Zurück zum Zitat Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Fuel Cycles. A Comparative Study. OECD-NEA Report, Paris (2002). Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Fuel Cycles. A Comparative Study. OECD-NEA Report, Paris (2002).
24.
Zurück zum Zitat G. Palmiotti, M. Salvatores, and M. Assawaroongruengchot, “Innovative Fast Reactors: Impact of Fuel Composition on Reactivity Coefficients,” Proc. Int. Conf. on Fast Reactors, FR09, December 2009, Kyoto, Japan (2009). G. Palmiotti, M. Salvatores, and M. Assawaroongruengchot, “Innovative Fast Reactors: Impact of Fuel Composition on Reactivity Coefficients,” Proc. Int. Conf. on Fast Reactors, FR09, December 2009, Kyoto, Japan (2009).
25.
Zurück zum Zitat T. Wakabayashi, “Transmutation Characteristics of MA and LLFP in a Fast Reactor,” Progr. Nucl. Energy, 40, No. 3–4 (2002).CrossRef T. Wakabayashi, “Transmutation Characteristics of MA and LLFP in a Fast Reactor,” Progr. Nucl. Energy, 40, No. 3–4 (2002).CrossRef
26.
Zurück zum Zitat J. M. Bonnerot, et al., “Progress on Inert Matrix Fuels for Minor Actinid Transmutation in Fast Reactor,” Proceedings Global 2007, Boise, ID, USA (2007). J. M. Bonnerot, et al., “Progress on Inert Matrix Fuels for Minor Actinid Transmutation in Fast Reactor,” Proceedings Global 2007, Boise, ID, USA (2007).
27.
Zurück zum Zitat J. F. Babelot and N. Chauvin, Joint CEA/ITU Synthesis Report of the Experiment SUPERFACT 1, Report, JRC-ITU, Karlsruhe, TN-99/03 (1999). J. F. Babelot and N. Chauvin, Joint CEA/ITU Synthesis Report of the Experiment SUPERFACT 1, Report, JRC-ITU, Karlsruhe, TN-99/03 (1999).
28.
Zurück zum Zitat L. Buiron, et al., “Minor Actinide Transmutation in SFR Depleted Uranium Radial Blanket. Neutronics and Thermal-Hydraulics Evaluation,” Proc. Int. Conf. GLOBAL 2007, Boise, ID, USA (2007). L. Buiron, et al., “Minor Actinide Transmutation in SFR Depleted Uranium Radial Blanket. Neutronics and Thermal-Hydraulics Evaluation,” Proc. Int. Conf. GLOBAL 2007, Boise, ID, USA (2007).
29.
Zurück zum Zitat W. Maschek, “Report on Intermediate Results of the IAEA CRP on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste,” Energy Conversion Manag, 49, pp. 1810–1819, Elsevier (2008).CrossRef W. Maschek, “Report on Intermediate Results of the IAEA CRP on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste,” Energy Conversion Manag, 49, pp. 1810–1819, Elsevier (2008).CrossRef
30.
Zurück zum Zitat K. Noack, A. Rogov, et al., “The GDT-Based Fusion Neutron Source as Driver of a Minor Actinides Burner,” Ann. Nucl. Energy, 35, pp. 1216–1222, Elsevier (2008).CrossRef K. Noack, A. Rogov, et al., “The GDT-Based Fusion Neutron Source as Driver of a Minor Actinides Burner,” Ann. Nucl. Energy, 35, pp. 1216–1222, Elsevier (2008).CrossRef
31.
Zurück zum Zitat T. A. Mehlhorn, et al., “Fusion–Fission Hybrids for Nuclear Waste Transmutation: A Synergistic Step Between Gen-IV Fission and Fusion Reactors,” Fusion Eng. Design, 83, pp. 948–953, Elsevier (2008).CrossRef T. A. Mehlhorn, et al., “Fusion–Fission Hybrids for Nuclear Waste Transmutation: A Synergistic Step Between Gen-IV Fission and Fusion Reactors,” Fusion Eng. Design, 83, pp. 948–953, Elsevier (2008).CrossRef
32.
Zurück zum Zitat J. Rouault and M. Salvatores, “The CAPRA Project: Status and Perspectives,” Nuclear Europe Worldscan (1995). J. Rouault and M. Salvatores, “The CAPRA Project: Status and Perspectives,” Nuclear Europe Worldscan (1995).
33.
Zurück zum Zitat E. A. Hoffman, W. S. Yang, and R. N. Hill, “A Study on Variable Conversion Ratio for Fast Burner Reactor,” Trans. Am. Nucl. Soc., 96 (2007). E. A. Hoffman, W. S. Yang, and R. N. Hill, “A Study on Variable Conversion Ratio for Fast Burner Reactor,” Trans. Am. Nucl. Soc., 96 (2007).
34.
Zurück zum Zitat C. Fazio, M. Salvatores, and W. S. Yang, “Down-Selection of Partitioning Routes and of Transmutation Fuels for P&T Strategies Implementation,” Proc.Int. Conf. GLOBAL 2007, September 2007, Boise, ID (2007). C. Fazio, M. Salvatores, and W. S. Yang, “Down-Selection of Partitioning Routes and of Transmutation Fuels for P&T Strategies Implementation,” Proc.Int. Conf. GLOBAL 2007, September 2007, Boise, ID (2007).
35.
Zurück zum Zitat R. E. Schenter and M. E. Korenko, “Transmuting Very Long Lived Nuclear Waste into Valuable Materials,” Trans. Am. Soc., 99, pp. 229–230 (2008). R. E. Schenter and M. E. Korenko, “Transmuting Very Long Lived Nuclear Waste into Valuable Materials,” Trans. Am. Soc., 99, pp. 229–230 (2008).
36.
Zurück zum Zitat M. Delpech, et al., “Scenarios Analysis of Transition from Gen II/III to Gen IV Systems. Case of the French Fleet,” GLOBAL 2005, Tsukuba, Japan (2005). M. Delpech, et al., “Scenarios Analysis of Transition from Gen II/III to Gen IV Systems. Case of the French Fleet,” GLOBAL 2005, Tsukuba, Japan (2005).
37.
Zurück zum Zitat C. Chabert, “An Improved Method for Fuel Cycle Analysis at Equilibrium and Its Application to the Study of Fast Burner Reactors with Variable Conversion Ratios,” Proc. Int. Conf. PHYSOR ’08, September 14–19, 2008 Interlaken, Switzerland (2008). C. Chabert, “An Improved Method for Fuel Cycle Analysis at Equilibrium and Its Application to the Study of Fast Burner Reactors with Variable Conversion Ratios,” Proc. Int. Conf. PHYSOR ’08, September 14–19, 2008 Interlaken, Switzerland (2008).
38.
Zurück zum Zitat M. Kurata, et al., “Fabrication of U-Pu-Zr Metallic Fuel Containing Minor Actinides” GLOBAL 97 Conference, October 5–10 1997, Yokohama, Japan. See also L. Breton, et al., “METAPHIX-1 Non Destructive Post-Irradiation Examinations in the Irradiated Element Cells at PHENIX,” Proc. Int. Conf. Global 2007, September 9–13,Boise, USA, and H. Otha, et al. “Irradiation Experiment on Fast Reactor Metal Fuels Containing Minor Actinides up to 7% At. Burn-up”, ibidem. M. Kurata, et al., “Fabrication of U-Pu-Zr Metallic Fuel Containing Minor Actinides” GLOBAL 97 Conference, October 5–10 1997, Yokohama, Japan. See also L. Breton, et al., “METAPHIX-1 Non Destructive Post-Irradiation Examinations in the Irradiated Element Cells at PHENIX,” Proc. Int. Conf. Global 2007, September 9–13,Boise, USA, and H. Otha, et al. “Irradiation Experiment on Fast Reactor Metal Fuels Containing Minor Actinides up to 7% At. Burn-up”, ibidem.
39.
Zurück zum Zitat F. Nakashima, et al., “Current Status of the Global Actinide Cycle International Demonstration Project,” Proc. Int. GIF Symposium, September 9–10, 2009, OECD Report, Paris (2009). F. Nakashima, et al., “Current Status of the Global Actinide Cycle International Demonstration Project,” Proc. Int. GIF Symposium, September 9–10, 2009, OECD Report, Paris (2009).
40.
Zurück zum Zitat J. M. Adnet, et al., “Development of New Hydrometallurgical Processes for Actinide Recovery: GANEX Concept,” Proc. Int. Conf. GLOBAL ’05, October 9–13, 2005, Tsukuba, Japan (2005). J. M. Adnet, et al., “Development of New Hydrometallurgical Processes for Actinide Recovery: GANEX Concept,” Proc. Int. Conf. GLOBAL ’05, October 9–13, 2005, Tsukuba, Japan (2005).
41.
Zurück zum Zitat C. Pereira, et al., “Preliminary Results of the Lab-Scale Demonstration of the UREX+1a Process Using Spent Nuclear Fuel,” 2005 AIChE National Meeting, Cincinnati (2005). C. Pereira, et al., “Preliminary Results of the Lab-Scale Demonstration of the UREX+1a Process Using Spent Nuclear Fuel,” 2005 AIChE National Meeting, Cincinnati (2005).
42.
Zurück zum Zitat M. Salvatores, et al., “Fuel Cycle Synergies and Regional Scenarios,” Proc. Int. Conf. IEMPT-10, October 2008, Mito, Japan (2008). M. Salvatores, et al., “Fuel Cycle Synergies and Regional Scenarios,” Proc. Int. Conf. IEMPT-10, October 2008, Mito, Japan (2008).
Metadaten
Titel
Fuel Management
verfasst von
Pavel Tsvetkov
Alan Waltar
Massimo Salvatores
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9572-8_7