Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2

verfasst von : Justus Masa, Kenneth I. Ozoemena, Wolfgang Schuhmann, José H. Zagal

Erschienen in: Electrocatalysis in Fuel Cells

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high prospects of exploiting the oxygen reduction reaction (ORR) for lucrative technologies, for example, in the fuel cells industry, chlor-alkali electrolysis, and metal-air batteries, to name but a few, have prompted enormous research interest in the search for cost-effective and abundant catalysts for the electrocatalytic reduction of oxygen. This chapter describes and discusses the electrocatalysis of oxygen reduction by metallomacrocyclic complexes and the prospect of their potential to be used in fuel cells. Since the main interest of most researchers in this field is to design catalysts which can achieve facile reduction of O2 at a high thermodynamic efficiency, this chapter aims to bring to light the research frontiers uncovering important milestones towards the synthesis and design of promising metallomacrocyclic catalysts which can accomplish the four-electron reduction of O2 at low overpotential and to draw attention to the fundamental requirements for synthesis of improved catalysts. Particular attention has been paid to discussion of the common properties which cut across these complexes and how they may be aptly manipulated for tailored catalyst synthesis. Therefore, besides discussion of the progress attained with regard to synthesis and design of catalysts with high selectivity towards the four-electron reduction of O2, a major part of this chapter highlights quantitative structure–activity relationships (QSAR) which govern the activity and stability of these complexes, which when well understood, refined, and carefully implemented should lead to rational design of better catalysts. A brief discussion about nonmacrocyclic copper (I) complexes, particularly Cu(I) phenanthrolines, and those with a laccase-like structure which exhibit promising activity for ORR has been included in a separate section at the end.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352 Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352
2.
Zurück zum Zitat Lee J, Kim ST, Cao R, Choi N, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50 Lee J, Kim ST, Cao R, Choi N, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50
3.
Zurück zum Zitat Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35 Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35
4.
Zurück zum Zitat Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675 Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675
5.
Zurück zum Zitat Min M (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217 Min M (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217
6.
Zurück zum Zitat Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20(8):1224–1231 Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20(8):1224–1231
7.
Zurück zum Zitat Sun Z, Masa J, Liu Z, Schuhmann MM (2012) Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem Eur J 18:6972–6978 Sun Z, Masa J, Liu Z, Schuhmann MM (2012) Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem Eur J 18:6972–6978
8.
Zurück zum Zitat Jasinski R (1964) New fuel cell cathode catalyst. Nature 201(492):1212–1213 Jasinski R (1964) New fuel cell cathode catalyst. Nature 201(492):1212–1213
9.
Zurück zum Zitat Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Schäfer F, Gerischer H, Willig F, Meier H, Jahnke H, Schönborn M, Zimmermann G (eds) Physical and chemical applications of dyestuffs, vol 61. Springer, Heidelberg, pp 133–181 Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Schäfer F, Gerischer H, Willig F, Meier H, Jahnke H, Schönborn M, Zimmermann G (eds) Physical and chemical applications of dyestuffs, vol 61. Springer, Heidelberg, pp 133–181
10.
Zurück zum Zitat Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28(1):8–19 Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28(1):8–19
11.
Zurück zum Zitat Kadish K (1984) Redox tuning of metalloporphyrin reactivity. J Electroanal Chem 168(1–2):261–274 Kadish K (1984) Redox tuning of metalloporphyrin reactivity. J Electroanal Chem 168(1–2):261–274
12.
Zurück zum Zitat Randin J (1974) Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim Acta 19(2):83–85 Randin J (1974) Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim Acta 19(2):83–85
13.
Zurück zum Zitat Richards G, Swavey S (2009) Electrooxidation of Fe, Co, Ni and Cu metalloporphyrins on edge-plane pyrolytic graphite electrodes and their electrocatalytic ability towards the reduction of molecular oxygen in acidic media. Eur J Inorg Chem 35:5367–5376 Richards G, Swavey S (2009) Electrooxidation of Fe, Co, Ni and Cu metalloporphyrins on edge-plane pyrolytic graphite electrodes and their electrocatalytic ability towards the reduction of molecular oxygen in acidic media. Eur J Inorg Chem 35:5367–5376
14.
Zurück zum Zitat Zagal JH, Páez M, Tanaka A, dos Santos Jr JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30 Zagal JH, Páez M, Tanaka A, dos Santos Jr JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30
15.
Zurück zum Zitat Vasudevan P, Santosh MN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90 Vasudevan P, Santosh MN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90
16.
Zurück zum Zitat Yuasa M, Nishihara R, Shi C, Anson FC (2001) A comparison of several meso-tetraalkyl cobalt porphyrins as catalysts for the electroreduction of dioxygen. Polym Adv Technol 12(3–4):266–270 Yuasa M, Nishihara R, Shi C, Anson FC (2001) A comparison of several meso-tetraalkyl cobalt porphyrins as catalysts for the electroreduction of dioxygen. Polym Adv Technol 12(3–4):266–270
17.
Zurück zum Zitat Song E, Shi C, Anson FC (1998) Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14(15):4315–4321 Song E, Shi C, Anson FC (1998) Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14(15):4315–4321
18.
Zurück zum Zitat Ozer D, Harth R, Mor U, Bettelheim A (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part II. Catalytic reduction of dioxygen by electropolymerized films. J Electroanal Chem 266(1):109–123 Ozer D, Harth R, Mor U, Bettelheim A (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part II. Catalytic reduction of dioxygen by electropolymerized films. J Electroanal Chem 266(1):109–123
19.
Zurück zum Zitat Bettelheim A, Ozer D, Harth R, Murray RW (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part I. Redox properties of dissolved, adsorbed and electropolymerized species. J Electroanal Chem 266(1):93–108 Bettelheim A, Ozer D, Harth R, Murray RW (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part I. Redox properties of dissolved, adsorbed and electropolymerized species. J Electroanal Chem 266(1):93–108
20.
Zurück zum Zitat van der Putten A, Elzing A, Visscher W, Barendrecht E (1987) Redox potential and electrocatalysis of O2 reduction on transition metal chelates. J Electroanal Chem 221(1–2):95–104 van der Putten A, Elzing A, Visscher W, Barendrecht E (1987) Redox potential and electrocatalysis of O2 reduction on transition metal chelates. J Electroanal Chem 221(1–2):95–104
21.
Zurück zum Zitat Elzing A, van der Putten A, Visscher W, Barendrecht E (1986) The cathodic reduction of oxygen at cobalt phthalocyanine. Influence of electrode preparation on electrocatalysis. J Electroanal Chem 200(1–2):313–322 Elzing A, van der Putten A, Visscher W, Barendrecht E (1986) The cathodic reduction of oxygen at cobalt phthalocyanine. Influence of electrode preparation on electrocatalysis. J Electroanal Chem 200(1–2):313–322
22.
Zurück zum Zitat Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109(5):1659–1713 Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109(5):1659–1713
23.
Zurück zum Zitat Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36(2):189 Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36(2):189
24.
Zurück zum Zitat Sun D, Tham FS, Reed CA, Chaker L, Boyd PD (2002) Supramolecular fullerene-porphyrin chemistry. fullerene complexation by metalated “Jaws Porphyrin” Hosts. J Am Chem Soc 124(23):6604–6612 Sun D, Tham FS, Reed CA, Chaker L, Boyd PD (2002) Supramolecular fullerene-porphyrin chemistry. fullerene complexation by metalated “Jaws Porphyrin” Hosts. J Am Chem Soc 124(23):6604–6612
25.
Zurück zum Zitat NEC (2007) Advanced energy initiative, 2006. National Environmental Council for the President of the United States NEC (2007) Advanced energy initiative, 2006. National Environmental Council for the President of the United States
26.
Zurück zum Zitat Adzic R (1998) Recent advances in kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, NY, pp 197–237 Adzic R (1998) Recent advances in kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, NY, pp 197–237
27.
Zurück zum Zitat Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York, NY Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York, NY
28.
Zurück zum Zitat Zagal JH, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127(7):1506 Zagal JH, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127(7):1506
29.
Zurück zum Zitat Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145 Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145
30.
Zurück zum Zitat Dobrzeniecka A, Zeradjanin A, Masa J, Puschhof A, Stroka J, Kulesza PJ, Schuhmann W (2013) Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal Today 202:55–62 Dobrzeniecka A, Zeradjanin A, Masa J, Puschhof A, Stroka J, Kulesza PJ, Schuhmann W (2013) Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal Today 202:55–62
31.
Zurück zum Zitat Okunola AO, Nagaiah TC, Chen X, Eckhard K, Schuhmann BM (2009) Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54(22):4971–4978 Okunola AO, Nagaiah TC, Chen X, Eckhard K, Schuhmann BM (2009) Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54(22):4971–4978
32.
Zurück zum Zitat Sánchez-Sánchez CM, Bard AJ (2009) Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal Chem 81(19):8094–8100 Sánchez-Sánchez CM, Bard AJ (2009) Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal Chem 81(19):8094–8100
33.
Zurück zum Zitat Mezour MA, Cornut R, Hussien EM, Morin M, Mauzeroll J (2010) Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol − porphyrin monolayers on gold using SECM and nanoelectrodes. Langmuir 26(15):13000–13006 Mezour MA, Cornut R, Hussien EM, Morin M, Mauzeroll J (2010) Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol − porphyrin monolayers on gold using SECM and nanoelectrodes. Langmuir 26(15):13000–13006
34.
Zurück zum Zitat Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ (2008) Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal Chem 80(9):3254–3260 Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ (2008) Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal Chem 80(9):3254–3260
35.
Zurück zum Zitat Collman J, Ghosh S (2010) Recent applications of a synthetic model of cytochrome c. Inorg Chem 49(13):5798–5810 Collman J, Ghosh S (2010) Recent applications of a synthetic model of cytochrome c. Inorg Chem 49(13):5798–5810
36.
Zurück zum Zitat Kim E, Chufán EE, Kamaraj K, Karlin KD (2004) Synthetic models for heme − copper oxidases. Chem Rev 104(2):1077–1134 Kim E, Chufán EE, Kamaraj K, Karlin KD (2004) Synthetic models for heme − copper oxidases. Chem Rev 104(2):1077–1134
37.
Zurück zum Zitat Collman J, Boulatov R, Sunderland CJ, Fu L (2004) Functional analogues of Cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev 104(2):561–588 Collman J, Boulatov R, Sunderland CJ, Fu L (2004) Functional analogues of Cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev 104(2):561–588
38.
Zurück zum Zitat Collman J, Devaraj NK, Decreau RA, Yang Y, Yan Y, Ebina W, Eberspacher TA, Chidsey CED (2007) A Cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315(5818):1565–1568 Collman J, Devaraj NK, Decreau RA, Yang Y, Yan Y, Ebina W, Eberspacher TA, Chidsey CED (2007) A Cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315(5818):1565–1568
39.
Zurück zum Zitat Boulatov R, Collman J, Shiryaeva IM, Sunderland CJ (2002) Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J Am Chem Soc 124(40):11923–11935 Boulatov R, Collman J, Shiryaeva IM, Sunderland CJ (2002) Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J Am Chem Soc 124(40):11923–11935
40.
Zurück zum Zitat Chang CJ, Deng YQ, Shi CN, Chang CK, Anson FC, Nocera DG (2000) Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin. Chem Commun 15:1355–1356 Chang CJ, Deng YQ, Shi CN, Chang CK, Anson FC, Nocera DG (2000) Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin. Chem Commun 15:1355–1356
41.
Zurück zum Zitat Collman J (1997) A functional model related to Cytochrome c oxidase and its electrocatalytic four-electron reduction of O2. Science 275(5302):949–951 Collman J (1997) A functional model related to Cytochrome c oxidase and its electrocatalytic four-electron reduction of O2. Science 275(5302):949–951
42.
Zurück zum Zitat Collman J, Elliott CM, Halbert TR, Tovrog BS (1977) Synthesis and characterization of “face-to-face” porphyrins (biometallic ligands/metal-metal interactions/electron spin resonance/dioxygen reduction/dinitrogen reduction). Proc Natl Acad Sci U S A 74(1):18–22 Collman J, Elliott CM, Halbert TR, Tovrog BS (1977) Synthesis and characterization of “face-to-face” porphyrins (biometallic ligands/metal-metal interactions/electron spin resonance/dioxygen reduction/dinitrogen reduction). Proc Natl Acad Sci U S A 74(1):18–22
43.
Zurück zum Zitat Collman J, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036 Collman J, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036
44.
Zurück zum Zitat Shigehara K, Anson FC (1982) Electrocatalytic activity of three iron porphyrins in the reduction of dioxygen and hydrogen peroxide at graphite cathodes. J Phys Chem 86(14):2776–2783 Shigehara K, Anson FC (1982) Electrocatalytic activity of three iron porphyrins in the reduction of dioxygen and hydrogen peroxide at graphite cathodes. J Phys Chem 86(14):2776–2783
45.
Zurück zum Zitat Chang CK, Liu HY, Abdalmuhdi I (1984) Electroreduction of oxygen by pillared cobalt(II) cofacial diporphyrin catalysts. J Am Chem Soc 106(9):2725–2726 Chang CK, Liu HY, Abdalmuhdi I (1984) Electroreduction of oxygen by pillared cobalt(II) cofacial diporphyrin catalysts. J Am Chem Soc 106(9):2725–2726
46.
Zurück zum Zitat Shi C, Mak KW, Chan KS, Anson FC (1995) Enhancement by surfactants of the activity and stability of iridium octaethyl porphyrin as an electrocatalyst for the four-electron reduction of dioxygen. J Electroanal Chem 397(1–2):321–324 Shi C, Mak KW, Chan KS, Anson FC (1995) Enhancement by surfactants of the activity and stability of iridium octaethyl porphyrin as an electrocatalyst for the four-electron reduction of dioxygen. J Electroanal Chem 397(1–2):321–324
47.
Zurück zum Zitat Collman J, Chng LL, Tyvoll DA (1995) Electrocatalytic Reduction of Dioxygen to Water by Iridium Porphyrins Adsorbed on Edge Plane Graphite Electrodes Inorg Chem 34(6):1311–1324 Collman J, Chng LL, Tyvoll DA (1995) Electrocatalytic Reduction of Dioxygen to Water by Iridium Porphyrins Adsorbed on Edge Plane Graphite Electrodes Inorg Chem 34(6):1311–1324
48.
Zurück zum Zitat Chang CJ, Loh Z, Shi C, Anson FC, Nocera DG (2004) Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J Am Chem Soc 126(32):10013–10020 Chang CJ, Loh Z, Shi C, Anson FC, Nocera DG (2004) Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J Am Chem Soc 126(32):10013–10020
49.
Zurück zum Zitat Liu HY, Abdalmuhdi I, Chang CK et al (1985) Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin. J Phys Chem 89(4):665–670 Liu HY, Abdalmuhdi I, Chang CK et al (1985) Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin. J Phys Chem 89(4):665–670
50.
Zurück zum Zitat Collman J, Wagenknecht PS, Hutchison JE (1994) Molecular catalysts for multielectron redox reactions of small molecules—the cofacial metallodiporphyrin approach. Angew Chem Int Ed 33(15–16):1537–1554 Collman J, Wagenknecht PS, Hutchison JE (1994) Molecular catalysts for multielectron redox reactions of small molecules—the cofacial metallodiporphyrin approach. Angew Chem Int Ed 33(15–16):1537–1554
51.
Zurück zum Zitat Durand RR, Bencosme CS, Collman J, Anson FC (1983) Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J Am Chem Soc 105(9):2710–2718 Durand RR, Bencosme CS, Collman J, Anson FC (1983) Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J Am Chem Soc 105(9):2710–2718
52.
Zurück zum Zitat Anson FC, Shi C, Steiger B (1997) Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Acc Chem Res 30(11):437–444 Anson FC, Shi C, Steiger B (1997) Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Acc Chem Res 30(11):437–444
53.
Zurück zum Zitat Collman J, Hendricks NH, Kim K, Bencosme CS (1987) The role of Lewis acids in promoting the electrocatalytic four-electron reduction of dioxygen. Chem Commun (20):1537 Collman J, Hendricks NH, Kim K, Bencosme CS (1987) The role of Lewis acids in promoting the electrocatalytic four-electron reduction of dioxygen. Chem Commun (20):1537
54.
Zurück zum Zitat Ni CL, Abdalmuhdi I, Chang CK, Anson FC (1987) Behavior of four anthracene-linked dimeric metalloporphyrins as electrocatalysts for the reduction of dioxygen. J Phys Chem 91(5):1158–1166 Ni CL, Abdalmuhdi I, Chang CK, Anson FC (1987) Behavior of four anthracene-linked dimeric metalloporphyrins as electrocatalysts for the reduction of dioxygen. J Phys Chem 91(5):1158–1166
55.
Zurück zum Zitat Collman J, Kim K (1986) Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite. J Am Chem Soc 108(24):7847–7849 Collman J, Kim K (1986) Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite. J Am Chem Soc 108(24):7847–7849
56.
Zurück zum Zitat Bouwkamp-Wijnoltz AL, Visscher W, van Veen J (1994) Oxygen reduction catalysed by carbon supported iridium-chelates. Electrochim Acta 39(11–12):1641–1645 Bouwkamp-Wijnoltz AL, Visscher W, van Veen J (1994) Oxygen reduction catalysed by carbon supported iridium-chelates. Electrochim Acta 39(11–12):1641–1645
57.
Zurück zum Zitat Shi C, Steiger B, Yuasa M, Anson FC (1997) Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg Chem 36(20):4294–4295 Shi C, Steiger B, Yuasa M, Anson FC (1997) Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg Chem 36(20):4294–4295
58.
Zurück zum Zitat Zagal JH, Griveau S, Ozoemena KI, Nyokong T, Bedioui F (2009) Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis. J Nanosci Nanotechnol 9(4):2201–2214 Zagal JH, Griveau S, Ozoemena KI, Nyokong T, Bedioui F (2009) Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis. J Nanosci Nanotechnol 9(4):2201–2214
59.
Zurück zum Zitat Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes. Electrochim Acta 54(7):1954–1960 Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes. Electrochim Acta 54(7):1954–1960
60.
Zurück zum Zitat Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N (2010) Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid. J Mater Chem 20(47):10705 Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N (2010) Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid. J Mater Chem 20(47):10705
61.
Zurück zum Zitat Mamuru SA, Ozoemena KI (2010) Iron (II) tetrakis(diaquaplatinum) octacarboxyphthalocyanine supported on multi-walled carbon nanotubes as effective electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochem Commun 12(11):1539–1542 Mamuru SA, Ozoemena KI (2010) Iron (II) tetrakis(diaquaplatinum) octacarboxyphthalocyanine supported on multi-walled carbon nanotubes as effective electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochem Commun 12(11):1539–1542
62.
Zurück zum Zitat Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J Mol Catal A: Chem 335(1–2):89–96 Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J Mol Catal A: Chem 335(1–2):89–96
63.
Zurück zum Zitat Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Biores Technol 102(10):5849–5854 Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Biores Technol 102(10):5849–5854
64.
Zurück zum Zitat Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49(14):4839–4847 Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49(14):4839–4847
65.
Zurück zum Zitat Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55(22):6367–6375 Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55(22):6367–6375
66.
Zurück zum Zitat Mamuru SA, Ozoemena KI (2010) Heterogeneous electron transfer and oxygen reduction reaction at nanostructured Iron(II) phthalocyanine and its MWCNTs nanocomposites. Electroanalysis 22(9):985–994 Mamuru SA, Ozoemena KI (2010) Heterogeneous electron transfer and oxygen reduction reaction at nanostructured Iron(II) phthalocyanine and its MWCNTs nanocomposites. Electroanalysis 22(9):985–994
67.
Zurück zum Zitat Maxakato NW, Mamuru SA, Ozoemena KI (2011) Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform. Electroanalysis 23(2):325–329 Maxakato NW, Mamuru SA, Ozoemena KI (2011) Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform. Electroanalysis 23(2):325–329
68.
Zurück zum Zitat Damos FS, Luz RC, Tanaka AA, Kubota LT (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host–guest supramolecular interactions. Anal Chim Acta 664(2):144–150 Damos FS, Luz RC, Tanaka AA, Kubota LT (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host–guest supramolecular interactions. Anal Chim Acta 664(2):144–150
69.
Zurück zum Zitat Duarte J, Luz R, Damos F, Tanaka AA, Kubota LT (2008) A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers. Anal Chim Acta 612(1):29–36 Duarte J, Luz R, Damos F, Tanaka AA, Kubota LT (2008) A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers. Anal Chim Acta 612(1):29–36
70.
Zurück zum Zitat D’Souza F, Hsieh Y, Deviprasad GR (1998) Four-electron electrocatalytic reduction of dioxygen to water by an ion-pair cobalt porphyrin dimer adsorbed on a glassy carbon electrode. Chem Commun 9:1027–1028 D’Souza F, Hsieh Y, Deviprasad GR (1998) Four-electron electrocatalytic reduction of dioxygen to water by an ion-pair cobalt porphyrin dimer adsorbed on a glassy carbon electrode. Chem Commun 9:1027–1028
71.
Zurück zum Zitat Liu S, Xu J, Sun H, Li D-M (2000) meso-Tetrakis(4-N-benzylpyridyl)porphyrin and its supramolecular complexes formed with anionic metal–oxo cluster: spectroscopy and electrocatalytic reduction of dioxygen. Inorg Chim Acta 306(1):87–93 Liu S, Xu J, Sun H, Li D-M (2000) meso-Tetrakis(4-N-benzylpyridyl)porphyrin and its supramolecular complexes formed with anionic metal–oxo cluster: spectroscopy and electrocatalytic reduction of dioxygen. Inorg Chim Acta 306(1):87–93
72.
Zurück zum Zitat Araki K, Toma HE (2006) Supramolecular Porphyrins as Electrocatalysts. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 255–314 Araki K, Toma HE (2006) Supramolecular Porphyrins as Electrocatalysts. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 255–314
73.
Zurück zum Zitat Shi C, Anson FC (1991) Multiple intramolecular electron transfer in the catalysis of the reduction of dioxygen by cobalt meso-tetrakis(4-pyridyl)porphyrin to which four Ru(NH3)5 groups are coordinated. J Am Chem Soc 113(25):9564–9570 Shi C, Anson FC (1991) Multiple intramolecular electron transfer in the catalysis of the reduction of dioxygen by cobalt meso-tetrakis(4-pyridyl)porphyrin to which four Ru(NH3)5 groups are coordinated. J Am Chem Soc 113(25):9564–9570
74.
Zurück zum Zitat Shi C, Anson FC (1992) Electrocatalysis of the reduction of molecular oxygen to water by tetraruthenated cobalt meso-tetrakis(4-pyridyl)porphyrin adsorbed on graphite electrodes. Inorg Chem 31(24):5078–5083 Shi C, Anson FC (1992) Electrocatalysis of the reduction of molecular oxygen to water by tetraruthenated cobalt meso-tetrakis(4-pyridyl)porphyrin adsorbed on graphite electrodes. Inorg Chem 31(24):5078–5083
75.
Zurück zum Zitat Steiger B, Anson FC (1997) [5,10,15,20-tetrakis(4-((pentaammineruthenio)-cyano)phenyl)porphyrinato]cobalt(II) immobilized on graphite electrodes catalyzes the electroreduction of O2 to H2O, but the corresponding 4-cyano-2,6-dimethylphenyl derivative catalyzes the reduction only to H2O2. Inorg Chem 36(18):4138–4140 Steiger B, Anson FC (1997) [5,10,15,20-tetrakis(4-((pentaammineruthenio)-cyano)phenyl)porphyrinato]cobalt(II) immobilized on graphite electrodes catalyzes the electroreduction of O2 to H2O, but the corresponding 4-cyano-2,6-dimethylphenyl derivative catalyzes the reduction only to H2O2. Inorg Chem 36(18):4138–4140
76.
Zurück zum Zitat Shi C, Anson FC (1996) Cobalt meso- tetrakis(N-methyl-4-pyridiniumyl)porphyrin becomes a catalyst for the electroreduction of O2 by four electrons when [(NH3)5Os]n+ (n = 2, 3) groups are coordinated to the porphyrin ring. Inorg Chem 35(26):7928–7931 Shi C, Anson FC (1996) Cobalt meso- tetrakis(N-methyl-4-pyridiniumyl)porphyrin becomes a catalyst for the electroreduction of O2 by four electrons when [(NH3)5Os]n+ (n = 2, 3) groups are coordinated to the porphyrin ring. Inorg Chem 35(26):7928–7931
77.
Zurück zum Zitat Zagal JH, Páez M, Sturm J, Ureta-Zanartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181(1–2):295–300 Zagal JH, Páez M, Sturm J, Ureta-Zanartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181(1–2):295–300
78.
Zurück zum Zitat Dobrzeniecka A, Zeradjanin A, Masa J, Stroka J, Goral M, Schuhmann W, Kulesza PJ (2011) ECS Trans 35:33–44 Dobrzeniecka A, Zeradjanin A, Masa J, Stroka J, Goral M, Schuhmann W, Kulesza PJ (2011) ECS Trans 35:33–44
79.
Zurück zum Zitat Forshey PA, Kuwana T (1983) Electrochemistry of oxygen reduction. 4. Oxygen to water conversion by iron(II)(tetrakis(N-methyl-4-pyridyl)porphyrin) via hydrogen peroxide. Inorg Chem 22(5):699–707 Forshey PA, Kuwana T (1983) Electrochemistry of oxygen reduction. 4. Oxygen to water conversion by iron(II)(tetrakis(N-methyl-4-pyridyl)porphyrin) via hydrogen peroxide. Inorg Chem 22(5):699–707
80.
Zurück zum Zitat Elbaz L, Korin E, Soifer L, Bettelheim A (2008) Electrocatalytic oxygen reduction by Co(III) porphyrins incorporated in aerogel carbon electrodes. J Electroanal Chem 621(1):91–96 Elbaz L, Korin E, Soifer L, Bettelheim A (2008) Electrocatalytic oxygen reduction by Co(III) porphyrins incorporated in aerogel carbon electrodes. J Electroanal Chem 621(1):91–96
81.
Zurück zum Zitat Zagal JH, Páez MA, Silva JF (2006) Fundamental Aspects on the Catalytic Activity of Metallomacrocyclics for the Electrochemical Reduction of O2. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-Macrocyclic Metal Complexes. Springer, New York, pp 41–82 Zagal JH, Páez MA, Silva JF (2006) Fundamental Aspects on the Catalytic Activity of Metallomacrocyclics for the Electrochemical Reduction of O2. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-Macrocyclic Metal Complexes. Springer, New York, pp 41–82
82.
Zurück zum Zitat Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136 Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136
83.
Zurück zum Zitat Zagal JH (2003) Macrocycles. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol. 2, Part 5. Wiley, Chichester Zagal JH (2003) Macrocycles. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol. 2, Part 5. Wiley, Chichester
84.
Zurück zum Zitat Tse Y, Janda P, Lam H, Zhang J, Pietro WJ, Lever ABP (1997) Monomeric and polymeric tetra-aminophthalocyanatocobalt(II) modified electrodes: electrocatalytic reduction of oxygen. J Porphyrins Phthalocyanines 1(1):3–16 Tse Y, Janda P, Lam H, Zhang J, Pietro WJ, Lever ABP (1997) Monomeric and polymeric tetra-aminophthalocyanatocobalt(II) modified electrodes: electrocatalytic reduction of oxygen. J Porphyrins Phthalocyanines 1(1):3–16
85.
Zurück zum Zitat Pavez J, Paez M, Ringuede BF, Zagal JH (2005) Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films. J Solid State Electrochem 9(1):21–29 Pavez J, Paez M, Ringuede BF, Zagal JH (2005) Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films. J Solid State Electrochem 9(1):21–29
86.
Zurück zum Zitat Ramírez G, Trollund E, Isaacs M, Armijo F, Zagal JH, Costamagna J, Aguirre MJ (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 14(7–8):540–545 Ramírez G, Trollund E, Isaacs M, Armijo F, Zagal JH, Costamagna J, Aguirre MJ (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 14(7–8):540–545
87.
Zurück zum Zitat Lalande G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? Electrochim Acta 42(9):1379–1388 Lalande G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? Electrochim Acta 42(9):1379–1388
88.
Zurück zum Zitat Bouwkamp-Wijnoltz A, Visscher W, van Veen J (1998) The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon. Electrochim Acta 43(21–22):3141–3152 Bouwkamp-Wijnoltz A, Visscher W, van Veen J (1998) The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon. Electrochim Acta 43(21–22):3141–3152
89.
Zurück zum Zitat Lefevre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106(34):8705–8713 Lefevre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106(34):8705–8713
90.
Zurück zum Zitat Lefèvre M (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760 Lefèvre M (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760
91.
Zurück zum Zitat Schilling T, Okunola A, Masa J, Schuhmann W, Bron M (2010) Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochim Acta 55(26):7597–7602 Schilling T, Okunola A, Masa J, Schuhmann W, Bron M (2010) Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochim Acta 55(26):7597–7602
92.
Zurück zum Zitat Bouwkamp-Wijnoltz AL, Visscher W, van Veen JA (2002) On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mossbauer study. J Phys Chem B 106(50):12993–13001 Bouwkamp-Wijnoltz AL, Visscher W, van Veen JA (2002) On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mossbauer study. J Phys Chem B 106(50):12993–13001
93.
Zurück zum Zitat Kobayashi N, Nevin WA (1996) Electrocatalytic reduction of oxygen using water-soluble iron and cobalt phthalocyanines and porphyrins. Appl Organomet Chem 10(8):579–590 Kobayashi N, Nevin WA (1996) Electrocatalytic reduction of oxygen using water-soluble iron and cobalt phthalocyanines and porphyrins. Appl Organomet Chem 10(8):579–590
94.
Zurück zum Zitat Zagal JH, Aguirre MJ, Basaez L, Pavez J, Padilla L, Toro-Labbé A (1995) Possible explanations for the volcano-shaped plots for the electrocatalytic reduction of O2 on electrodes modified with N-4 macrocycles. In: Adzic RR, Anson FC, Kinoshita K (eds) Proceedings of the symposium on oxygen electrochemistry, 95–26. The Electrochemical Society Symposium Inc., Pennington, NJ, p 89 Zagal JH, Aguirre MJ, Basaez L, Pavez J, Padilla L, Toro-Labbé A (1995) Possible explanations for the volcano-shaped plots for the electrocatalytic reduction of O2 on electrodes modified with N-4 macrocycles. In: Adzic RR, Anson FC, Kinoshita K (eds) Proceedings of the symposium on oxygen electrochemistry, 95–26. The Electrochemical Society Symposium Inc., Pennington, NJ, p 89
95.
Zurück zum Zitat Bytheway I, Hall MB (1994) Theoretical calculations of metal-dioxygen complexes. Chem Rev 94(3):639–658 Bytheway I, Hall MB (1994) Theoretical calculations of metal-dioxygen complexes. Chem Rev 94(3):639–658
96.
Zurück zum Zitat Wang G, Ramesh N, Hsu A, Deryn C, Rongrong C (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simul 34(10–15):1051–1056 Wang G, Ramesh N, Hsu A, Deryn C, Rongrong C (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simul 34(10–15):1051–1056
97.
Zurück zum Zitat Scherson DA, Palencsár A, Tolmachev Y, Stefan I (2008) Transition metal macrocycles as electrocatalysts for dioxygen reduction. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Electrochemical surface modification: thin films, functionalization and characterization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany Scherson DA, Palencsár A, Tolmachev Y, Stefan I (2008) Transition metal macrocycles as electrocatalysts for dioxygen reduction. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Electrochemical surface modification: thin films, functionalization and characterization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
98.
Zurück zum Zitat Zecevic S, Simic-Glavaski B, Yeager E, Lever ABP, Minor PC (1985) Spectroscopic and electrochemical studies of transition metal tetrasulfonated phthalocyanines. Part V. Voltammetric studies of adsorbed tetrasulfonated phthalocyanines (MTsPc) in aqueous solutions. J Electroanal Chem 196(2):339–358 Zecevic S, Simic-Glavaski B, Yeager E, Lever ABP, Minor PC (1985) Spectroscopic and electrochemical studies of transition metal tetrasulfonated phthalocyanines. Part V. Voltammetric studies of adsorbed tetrasulfonated phthalocyanines (MTsPc) in aqueous solutions. J Electroanal Chem 196(2):339–358
99.
Zurück zum Zitat Zagal JH, Griveau S, Francisco Silva J, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254(23–24):2755–2791 Zagal JH, Griveau S, Francisco Silva J, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254(23–24):2755–2791
100.
Zurück zum Zitat Kim S, Scherson DA (1992) In situ UV–visible reflection absorption wavelength modulation spectroscopy of species irreversibly adsorbed on electrode surfaces. Anal Chem 64(24):3091–3095 Kim S, Scherson DA (1992) In situ UV–visible reflection absorption wavelength modulation spectroscopy of species irreversibly adsorbed on electrode surfaces. Anal Chem 64(24):3091–3095
101.
Zurück zum Zitat Stefan IC, Mo Y, Ha SY, Scherson D (2003) In situ Fe K-edge X-ray absorption fine structure of a nitrosyl adduct of iron phthalocyanine irreversibly adsorbed on a high area carbon electrode in an acidic electrolyte. Inorg Chem 42(14):4316–4321 Stefan IC, Mo Y, Ha SY, Scherson D (2003) In situ Fe K-edge X-ray absorption fine structure of a nitrosyl adduct of iron phthalocyanine irreversibly adsorbed on a high area carbon electrode in an acidic electrolyte. Inorg Chem 42(14):4316–4321
102.
Zurück zum Zitat Zagal JH, Bedioui F, Dodelet JP (eds) (2006) N4-macrocyclic metal complexes. Springer, New York Zagal JH, Bedioui F, Dodelet JP (eds) (2006) N4-macrocyclic metal complexes. Springer, New York
103.
Zurück zum Zitat Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22(3–4):457–475 Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22(3–4):457–475
104.
Zurück zum Zitat van Veen J (1979) Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim Acta 24(9):921–928 van Veen J (1979) Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim Acta 24(9):921–928
105.
Zurück zum Zitat van Veen JA, van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte. 1. Activity. Phys Chem Chem Phys 85(8):693–700 van Veen JA, van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte. 1. Activity. Phys Chem Chem Phys 85(8):693–700
106.
Zurück zum Zitat Zagal JH, Gulppi M, Isaacs M, Cárdenas-Jirón G, Aguirre MJ (1998) Linear versus volcano correlations between electrocatalytic activity and redox and electronic properties of metallophthalocyanines. Electrochim Acta 44(8–9):1349–1357 Zagal JH, Gulppi M, Isaacs M, Cárdenas-Jirón G, Aguirre MJ (1998) Linear versus volcano correlations between electrocatalytic activity and redox and electronic properties of metallophthalocyanines. Electrochim Acta 44(8–9):1349–1357
107.
Zurück zum Zitat Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15(7–8):1811–1832 Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15(7–8):1811–1832
108.
Zurück zum Zitat Cardenas-Jiron GI, Gulppi MA, Caro CA et al (2001) Reactivity of electrodes modified with substituted metallophthalocyanines. Correlations with redox potentials, Hammett parameters and donor–acceptor intermolecular hardness. Electrochim Acta 46(20–21):3227–3235 Cardenas-Jiron GI, Gulppi MA, Caro CA et al (2001) Reactivity of electrodes modified with substituted metallophthalocyanines. Correlations with redox potentials, Hammett parameters and donor–acceptor intermolecular hardness. Electrochim Acta 46(20–21):3227–3235
109.
Zurück zum Zitat Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595(2):161–167 Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595(2):161–167
110.
Zurück zum Zitat Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9(26):3383–3396 Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9(26):3383–3396
111.
Zurück zum Zitat Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated metal-Nx/C macrocycles for O2 reduction in terms of formal potentials of the catalyst. Electrochem Solid-State Lett 15(6):B1–B3 Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated metal-Nx/C macrocycles for O2 reduction in terms of formal potentials of the catalyst. Electrochem Solid-State Lett 15(6):B1–B3
112.
Zurück zum Zitat Jaouen F, Herranz J, Lefèvre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1(8):1623–1639 Jaouen F, Herranz J, Lefèvre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1(8):1623–1639
113.
Zurück zum Zitat Schlettwein D, Yoshida T (1998) Electrochemical reduction of substituted cobalt phthalocyanines adsorbed on graphite. J Electroanal Chem 441(1–2):139–146 Schlettwein D, Yoshida T (1998) Electrochemical reduction of substituted cobalt phthalocyanines adsorbed on graphite. J Electroanal Chem 441(1–2):139–146
114.
Zurück zum Zitat Zagal JH, Cárdenas-Jirón GI (2000) Reactivity of immobilized cobalt phthalocyanines for the electroreduction of molecular oxygen in terms of molecular hardness. J Electroanal Chem 489(1–2):96–100 Zagal JH, Cárdenas-Jirón GI (2000) Reactivity of immobilized cobalt phthalocyanines for the electroreduction of molecular oxygen in terms of molecular hardness. J Electroanal Chem 489(1–2):96–100
115.
Zurück zum Zitat Cardenas-Jiron GI, Zagal JH (2001) Donor–acceptor intermolecular hardness on charge transfer reactions of substituted cobalt phthalocyanines. J Electroanal Chem 497(1–2):55–60 Cardenas-Jiron GI, Zagal JH (2001) Donor–acceptor intermolecular hardness on charge transfer reactions of substituted cobalt phthalocyanines. J Electroanal Chem 497(1–2):55–60
116.
Zurück zum Zitat Zagal JH, Gulppi MA, Cárdenas-Jirón G (2000) Metal-centered redox chemistry of substituted cobalt phthalocyanines adsorbed on graphite and correlations with MO calculations and Hammett parameters. Electrocatalytic reduction of a disulfide. Polyhedron 19(22–23):2255–2260 Zagal JH, Gulppi MA, Cárdenas-Jirón G (2000) Metal-centered redox chemistry of substituted cobalt phthalocyanines adsorbed on graphite and correlations with MO calculations and Hammett parameters. Electrocatalytic reduction of a disulfide. Polyhedron 19(22–23):2255–2260
117.
Zurück zum Zitat Newton MD (1991) Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91(5):767–792 Newton MD (1991) Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91(5):767–792
118.
Zurück zum Zitat Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441 Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441
119.
Zurück zum Zitat Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516 Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516
120.
Zurück zum Zitat Ulstrup J (1977) Catalysis of the electrochemical reduction of molecular dioxygen by metal phthalocyanines. J Electroanal Chem 79(1):191–197 Ulstrup J (1977) Catalysis of the electrochemical reduction of molecular dioxygen by metal phthalocyanines. J Electroanal Chem 79(1):191–197
121.
Zurück zum Zitat Rosa A, Baerends EJ (1994) Metal-macrocycle interaction in phthalocyanines: density functional calculations of ground and excited states. Inorg Chem 33(3):584–595 Rosa A, Baerends EJ (1994) Metal-macrocycle interaction in phthalocyanines: density functional calculations of ground and excited states. Inorg Chem 33(3):584–595
122.
Zurück zum Zitat Hipps KW, Lu X, Wang XD, Mazur U (1996) Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J Phys Chem 100(27):11207–11210 Hipps KW, Lu X, Wang XD, Mazur U (1996) Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J Phys Chem 100(27):11207–11210
123.
Zurück zum Zitat Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112(5):526 Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112(5):526
124.
Zurück zum Zitat Yeager E (1984) Electrocatalysis for O2 reduction. Electrochim Acta 29(11):1527–1537 Yeager E (1984) Electrocatalysis for O2 reduction. Electrochim Acta 29(11):1527–1537
125.
Zurück zum Zitat Hinnen C, Coowar F, Savy M (1989) Oxygen reduction in acid media investigations by electroreflectance on adsorbed iron phthalocyanine and naphthalocyanine layers. J Electroanal Chem 264(1–2):167–180 Hinnen C, Coowar F, Savy M (1989) Oxygen reduction in acid media investigations by electroreflectance on adsorbed iron phthalocyanine and naphthalocyanine layers. J Electroanal Chem 264(1–2):167–180
126.
Zurück zum Zitat van den Ham D, Hinnen C, Magner G, Savy M (1987) Electrocatalytic oxygen reduction: the role of oxygen bridges as a structural factor in the activity of transition-metal phthalocyanines. J Phys Chem 91(18):4743–4748 van den Ham D, Hinnen C, Magner G, Savy M (1987) Electrocatalytic oxygen reduction: the role of oxygen bridges as a structural factor in the activity of transition-metal phthalocyanines. J Phys Chem 91(18):4743–4748
127.
Zurück zum Zitat Coowar F, Contamin O, Savy M, Scarbeck G (1988) Electrocatalysis of O2 reduction to water in different acid media by iron naphthalocyanines. J Electroanal Chem 246(1):119–138 Coowar F, Contamin O, Savy M, Scarbeck G (1988) Electrocatalysis of O2 reduction to water in different acid media by iron naphthalocyanines. J Electroanal Chem 246(1):119–138
128.
Zurück zum Zitat Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The cathodic reduction of oxygen at metal tetrasulfonato-phthalocyanines: influence of adsorption conditions on electrocatalysis. J Electroanal Chem 233(1–2):99–112 Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The cathodic reduction of oxygen at metal tetrasulfonato-phthalocyanines: influence of adsorption conditions on electrocatalysis. J Electroanal Chem 233(1–2):99–112
129.
Zurück zum Zitat Fierro CA, Mohan M, Scherson DA (1990) In situ Moessbauer spectroscopy of a species irreversibly adsorbed on an electrode surface. Langmuir 6(8):1338–1342 Fierro CA, Mohan M, Scherson DA (1990) In situ Moessbauer spectroscopy of a species irreversibly adsorbed on an electrode surface. Langmuir 6(8):1338–1342
130.
Zurück zum Zitat Ouyang J, Shigehara K, Yamada A, Anson FC (1991) Hexadecafluoro- and octacyano phthalocyanines as electrocatalysts for the reduction of dioxygen. J Electroanal Chem 297(2):489–498 Ouyang J, Shigehara K, Yamada A, Anson FC (1991) Hexadecafluoro- and octacyano phthalocyanines as electrocatalysts for the reduction of dioxygen. J Electroanal Chem 297(2):489–498
131.
Zurück zum Zitat van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533 van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533
132.
Zurück zum Zitat Song C, Zhang L, Zhang J (2006) Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem 587(2):293–298 Song C, Zhang L, Zhang J (2006) Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem 587(2):293–298
133.
Zurück zum Zitat Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports. Chem Eng Technol 23(9):803–807 Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports. Chem Eng Technol 23(9):803–807
134.
Zurück zum Zitat Coutanceau C, Rakotondrainibe A, Crouigneau P, Léger JM, Lamy C (1995) Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine: application to the study of oxygen reduction at such electrodes. J Electroanal Chem 386(1–2):173–182 Coutanceau C, Rakotondrainibe A, Crouigneau P, Léger JM, Lamy C (1995) Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine: application to the study of oxygen reduction at such electrodes. J Electroanal Chem 386(1–2):173–182
135.
Zurück zum Zitat Elzing A, van der Putten A, Visscher W, Barendrecht E (1990) Spectroscopic measurements on metal tetrasulphonato-phthalocyanines. J Electroanal Chem 279(1–2):137–156 Elzing A, van der Putten A, Visscher W, Barendrecht E (1990) Spectroscopic measurements on metal tetrasulphonato-phthalocyanines. J Electroanal Chem 279(1–2):137–156
136.
Zurück zum Zitat Phougat N, Vasudevan P (1997) Electrocatalytic activity of some metal phthalocyanine compounds for oxygen reduction in phosphoric acid. J Power Sources 69(1–2):161–163 Phougat N, Vasudevan P (1997) Electrocatalytic activity of some metal phthalocyanine compounds for oxygen reduction in phosphoric acid. J Power Sources 69(1–2):161–163
137.
Zurück zum Zitat Ponce I, Silva JF, Oñate R, Rezende MC, Páez MA, Pavez J, Zagal JH (2011) Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem Commun 13(11):1182–1185 Ponce I, Silva JF, Oñate R, Rezende MC, Páez MA, Pavez J, Zagal JH (2011) Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem Commun 13(11):1182–1185
138.
Zurück zum Zitat Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York
139.
Zurück zum Zitat van den Brink F, Barendrecht E, Visscher W (1980) The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl Trav Chim Pays-Bas 99:253–262 van den Brink F, Barendrecht E, Visscher W (1980) The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl Trav Chim Pays-Bas 99:253–262
140.
Zurück zum Zitat Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233(1–2):113–123 Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233(1–2):113–123
141.
Zurück zum Zitat van den Brink F, Visscher W, Barendrecht E (1984) Electrocatalysis of cathodic oxygen reduction by metal phthalocyanines. Part III. Iron phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem 172(1–2):301–325 van den Brink F, Visscher W, Barendrecht E (1984) Electrocatalysis of cathodic oxygen reduction by metal phthalocyanines. Part III. Iron phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem 172(1–2):301–325
142.
Zurück zum Zitat Baranton S, Coutanceau C, Garnier E, Léger J-M (2006) How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J Electroanal Chem 590(1):100–110 Baranton S, Coutanceau C, Garnier E, Léger J-M (2006) How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J Electroanal Chem 590(1):100–110
143.
Zurück zum Zitat Ikeda O, Fukuda H, Tamura H (1986) The effect of heat treatment on group VIIIB porphyrins as electrocatalysts in the cathodic reduction of oxygen. J Chem Soc Faraday Trans 1 82(5):1561 Ikeda O, Fukuda H, Tamura H (1986) The effect of heat treatment on group VIIIB porphyrins as electrocatalysts in the cathodic reduction of oxygen. J Chem Soc Faraday Trans 1 82(5):1561
144.
Zurück zum Zitat Anderson AB, Sidik RA (2004) Oxygen electroreduction on Fe II and Fe III coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J Phys Chem B 108(16):5031–5035 Anderson AB, Sidik RA (2004) Oxygen electroreduction on Fe II and Fe III coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J Phys Chem B 108(16):5031–5035
145.
Zurück zum Zitat Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook. Academic, San Diego, Calif, London Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook. Academic, San Diego, Calif, London
146.
Zurück zum Zitat Magner G (1981) Effects of substitution of iron by molybdenum in the naphthalocyanine structures upon their electrocatalytic properties for O2 reduction and evolution in alkaline media. J Electrochem Soc 128(8):1674 Magner G (1981) Effects of substitution of iron by molybdenum in the naphthalocyanine structures upon their electrocatalytic properties for O2 reduction and evolution in alkaline media. J Electrochem Soc 128(8):1674
147.
Zurück zum Zitat Baker R, Wilkinson D, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919 Baker R, Wilkinson D, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919
148.
Zurück zum Zitat Zhang L, Song C, Zhang J, Wang H, Wilkinson DP (2005) Temperature and pH dependence of oxygen reduction catalyzed by iron fluoroporphyrin adsorbed on a graphite electrode. J Electrochem Soc 152(12):A2421 Zhang L, Song C, Zhang J, Wang H, Wilkinson DP (2005) Temperature and pH dependence of oxygen reduction catalyzed by iron fluoroporphyrin adsorbed on a graphite electrode. J Electrochem Soc 152(12):A2421
149.
Zurück zum Zitat Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2605 Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2605
150.
Zurück zum Zitat Mirica LM, Ottenwaelder X, Stack TD (2004) Structure and spectroscopy of copper-dioxygen complexes. Chem Rev 104(2):1013–1045 Mirica LM, Ottenwaelder X, Stack TD (2004) Structure and spectroscopy of copper-dioxygen complexes. Chem Rev 104(2):1013–1045
151.
Zurück zum Zitat Schweiger H, Vayner E, Anderson AB (2005) Why is there such a small overpotential for O2 electroreduction by copper laccase? Electrochem Solid-State Lett 8(11):A585 Schweiger H, Vayner E, Anderson AB (2005) Why is there such a small overpotential for O2 electroreduction by copper laccase? Electrochem Solid-State Lett 8(11):A585
152.
Zurück zum Zitat Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23(8):1229–1235 Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23(8):1229–1235
153.
Zurück zum Zitat Vayner E, Schweiger H, Anderson AB (2007) Four-electron reduction of O2 over multiple Cu–I centers: quantum theory. J Electroanal Chem 607(1–2):90–100 Vayner E, Schweiger H, Anderson AB (2007) Four-electron reduction of O2 over multiple Cu–I centers: quantum theory. J Electroanal Chem 607(1–2):90–100
154.
Zurück zum Zitat Sugiyama K, Aoki K (1989) Catalytic reactions of bis(1,10-phenanthroline) cuprous complex with hydrogen-peroxide at glassy-carbon and pyrolytic-graphite electrodes. J Electroanal Chem 262(1–2):211–219 Sugiyama K, Aoki K (1989) Catalytic reactions of bis(1,10-phenanthroline) cuprous complex with hydrogen-peroxide at glassy-carbon and pyrolytic-graphite electrodes. J Electroanal Chem 262(1–2):211–219
155.
Zurück zum Zitat Zagal JH, Paez C, Aguirre MJ, Garcia AM, Zamudio W (1993) Catalytic electroreduction of molecular-oxygen on Cu(II)bisdipyridyl and Cu(II)bisphenanthroline complexes adsorbed on a graphite electrode. Bol Soc Chil Quim 38(3):191–199 Zagal JH, Paez C, Aguirre MJ, Garcia AM, Zamudio W (1993) Catalytic electroreduction of molecular-oxygen on Cu(II)bisdipyridyl and Cu(II)bisphenanthroline complexes adsorbed on a graphite electrode. Bol Soc Chil Quim 38(3):191–199
156.
Zurück zum Zitat Zhang JJ, Anson FC (1993) Electrocatalysts for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand. Electrochim Acta 38(16):2423–2429 Zhang JJ, Anson FC (1993) Electrocatalysts for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand. Electrochim Acta 38(16):2423–2429
157.
Zurück zum Zitat Zhang JJ, Anson FC (1993) Complexes of Cu(II) with electroactive chelating ligands adsorbed on graphite-electrodes - Surface coordination chemistry and electrocatalysis. J Electroanal Chem 348(1–2):81–97 Zhang JJ, Anson FC (1993) Complexes of Cu(II) with electroactive chelating ligands adsorbed on graphite-electrodes - Surface coordination chemistry and electrocatalysis. J Electroanal Chem 348(1–2):81–97
158.
Zurück zum Zitat Lei YB, Anson FC (1994) Mechanistic aspects of the electroreduction of as catalyzed by copper-phenanthroline complexes adsorbed on graphite-electrodes. Inorg Chem 33(22):5003–5009 Lei YB, Anson FC (1994) Mechanistic aspects of the electroreduction of as catalyzed by copper-phenanthroline complexes adsorbed on graphite-electrodes. Inorg Chem 33(22):5003–5009
159.
Zurück zum Zitat Lei YB, Anson FC (1995) Dynamics of the Coordination equilibria in solutions containing copper(II), copper(I), and 2,9-dimethyl-1,10-phenanthroline and their effect on the reduction of O2 by Cu(I). Inorg Chem 34(5):1083–1089 Lei YB, Anson FC (1995) Dynamics of the Coordination equilibria in solutions containing copper(II), copper(I), and 2,9-dimethyl-1,10-phenanthroline and their effect on the reduction of O2 by Cu(I). Inorg Chem 34(5):1083–1089
160.
Zurück zum Zitat Marques AL, Zhang JJ, Lever AB (1995) Poisoning effect of SCN-, H2S and HCN on the reduction of O2 and H2O2 catalyzed by a 1:1 surface complex of Cu-1,10-phenanthroline adsorbed on graphite electrodes, and its possible application in chemical analysis. J Electroanal Chem 392(1–2):43–53 Marques AL, Zhang JJ, Lever AB (1995) Poisoning effect of SCN-, H2S and HCN on the reduction of O2 and H2O2 catalyzed by a 1:1 surface complex of Cu-1,10-phenanthroline adsorbed on graphite electrodes, and its possible application in chemical analysis. J Electroanal Chem 392(1–2):43–53
161.
Zurück zum Zitat Losada J, del Peso I, Beyer L (2001) Electrochemical and spectroelectrochemical properties of copper(II) Schiff-base complexes. Inorg Chim Acta 321(1–2):107–115 Losada J, del Peso I, Beyer L (2001) Electrochemical and spectroelectrochemical properties of copper(II) Schiff-base complexes. Inorg Chim Acta 321(1–2):107–115
162.
Zurück zum Zitat Dias VL, Fernandes EN, da Silva LSM, Marques EP, Zhang J, Marques ALB (2005) Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)-2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. J Power Sources 142(1–2):10–17 Dias VL, Fernandes EN, da Silva LSM, Marques EP, Zhang J, Marques ALB (2005) Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)-2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. J Power Sources 142(1–2):10–17
163.
Zurück zum Zitat Weng YC, Fan FR, Bard AJ (2005) Combinatorial biomimetics. Optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy. J Am Chem Soc 127(50):17576–17577 Weng YC, Fan FR, Bard AJ (2005) Combinatorial biomimetics. Optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy. J Am Chem Soc 127(50):17576–17577
164.
Zurück zum Zitat Wang M, Xu X, Gao J, Jia N, Cheng Y (2006) Electrocatalytic reduction O2 at pyrolytic graphite electrode modified by a novel copper(II) complex with 2-[bis(2-aminoethyl)amino]ethanol and imidazole ligands. Russ J Electrochem 42(8):878–881 Wang M, Xu X, Gao J, Jia N, Cheng Y (2006) Electrocatalytic reduction O2 at pyrolytic graphite electrode modified by a novel copper(II) complex with 2-[bis(2-aminoethyl)amino]ethanol and imidazole ligands. Russ J Electrochem 42(8):878–881
165.
Zurück zum Zitat Pichon C, Mialane P, Dolbecq A, Marrot J, Riviere E, Keita B, Nadjo SF (2007) Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg Chem 46(13):5292–5301 Pichon C, Mialane P, Dolbecq A, Marrot J, Riviere E, Keita B, Nadjo SF (2007) Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg Chem 46(13):5292–5301
166.
Zurück zum Zitat Hermann A, Silva LS, Peixoto CRM, Oliveira ABD, Bordinhão J, Hörner M (2008) Electrochemical properties of Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2, a tetranuclear Copper(II) complex with 1-phenyltriazenido-2-phenyltriazene-benzene as ligand. Eclet Quím 33(3):43–46 Hermann A, Silva LS, Peixoto CRM, Oliveira ABD, Bordinhão J, Hörner M (2008) Electrochemical properties of Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2, a tetranuclear Copper(II) complex with 1-phenyltriazenido-2-phenyltriazene-benzene as ligand. Eclet Quím 33(3):43–46
167.
Zurück zum Zitat Thorum MS, Yadav J, Gewirth AA (2009) Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. Angew Chem Int Ed 48(1):165–167 Thorum MS, Yadav J, Gewirth AA (2009) Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. Angew Chem Int Ed 48(1):165–167
168.
Zurück zum Zitat McCrory CCL, Ottenwaelder X, Stack TDP, Chidsey CED (2007) Kinetic and mechanistic studies of the electrocatalytic reduction of O2 to H2O with mononuclear Cu complexes of substituted 1,10-phenanthrolines. J Phys Chem A 111(49):12641–12650 McCrory CCL, Ottenwaelder X, Stack TDP, Chidsey CED (2007) Kinetic and mechanistic studies of the electrocatalytic reduction of O2 to H2O with mononuclear Cu complexes of substituted 1,10-phenanthrolines. J Phys Chem A 111(49):12641–12650
169.
Zurück zum Zitat McCrory CCL, Devadoss A, Ottenwaelder X, Lowe RD, Stack TDP, Chidsey CED (2011) Electrocatalytic O2 reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J Am Chem Soc 133(11):3696–3699 McCrory CCL, Devadoss A, Ottenwaelder X, Lowe RD, Stack TDP, Chidsey CED (2011) Electrocatalytic O2 reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J Am Chem Soc 133(11):3696–3699
170.
Zurück zum Zitat Zhang JJ, Anson FC (1992) Electrochemistry of the Cu(II) complex of 4,7-diphenyl-1,10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2. J Electroanal Chem 341(1–2):323–341 Zhang JJ, Anson FC (1992) Electrochemistry of the Cu(II) complex of 4,7-diphenyl-1,10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2. J Electroanal Chem 341(1–2):323–341
171.
Zurück zum Zitat Masa J, Ozoemena K, Schuhmann ZJH (2012) Oxygen reduction reaction using N4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16(7):761 Masa J, Ozoemena K, Schuhmann ZJH (2012) Oxygen reduction reaction using N4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16(7):761
172.
Zurück zum Zitat Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 123(24):5802–5803 Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 123(24):5802–5803
173.
Zurück zum Zitat Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) Electroreduction of O2 to water on the “Wired” Laccase Cathode. J Phys Chem B 105(47):11917–11921 Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) Electroreduction of O2 to water on the “Wired” Laccase Cathode. J Phys Chem B 105(47):11917–11921
174.
Zurück zum Zitat Soukharev V, Mano N, Heller A (2004) A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126(27):8368–8369 Soukharev V, Mano N, Heller A (2004) A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126(27):8368–8369
175.
Zurück zum Zitat Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells Part I: The cathode challenges. Platinum Metals Rev 46(1):3–14 Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells Part I: The cathode challenges. Platinum Metals Rev 46(1):3–14
176.
Zurück zum Zitat Hu X, Liu C, Wu Y, Zhang Z (2011) Structure–reactivity relationships of metalloporphyrin modified by ionic liquid and its analogue. J Phys Chem C 115(48):23913–23921 Hu X, Liu C, Wu Y, Zhang Z (2011) Structure–reactivity relationships of metalloporphyrin modified by ionic liquid and its analogue. J Phys Chem C 115(48):23913–23921
177.
Zurück zum Zitat Masa J, Schilling T, Bron M, Schuhmann W (2011) Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim Acta 60:410–418 Masa J, Schilling T, Bron M, Schuhmann W (2011) Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim Acta 60:410–418
178.
Zurück zum Zitat Xia W, Masa J, Bron M, Schuhmann W, Muhler M (2011) Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochem Commun 13(6):593–596 Xia W, Masa J, Bron M, Schuhmann W, Muhler M (2011) Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochem Commun 13(6):593–596
179.
Zurück zum Zitat Masa J, Bordoloi A, Muhler M, Schuhmann W, Xia W (2012) Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions. ChemSusChem 5:523–525 Masa J, Bordoloi A, Muhler M, Schuhmann W, Xia W (2012) Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions. ChemSusChem 5:523–525
180.
Zurück zum Zitat Mittasch A, Frankenburg W (1950) Early studies of multicomponent catalysts. Adv Catal 2:81–104 Mittasch A, Frankenburg W (1950) Early studies of multicomponent catalysts. Adv Catal 2:81–104
181.
Zurück zum Zitat Dembinska B, Kulesza PJ (2009) Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium. Electrochim Acta 54(20):4682–4687 Dembinska B, Kulesza PJ (2009) Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium. Electrochim Acta 54(20):4682–4687
182.
Zurück zum Zitat Baranton S, Coutanceau C, Roux C et al (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234 Baranton S, Coutanceau C, Roux C et al (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234
183.
Zurück zum Zitat Lu Y, Reddy R (2007) The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochim Acta 52(7):2562–2569 Lu Y, Reddy R (2007) The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochim Acta 52(7):2562–2569
Metadaten
Titel
Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2
verfasst von
Justus Masa
Kenneth I. Ozoemena
Wolfgang Schuhmann
José H. Zagal
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4911-8_7