Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2016

01.01.2016 | Research Paper

Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia

verfasst von: André F. Alves, Sofia G. Mendo, Liliana P. Ferreira, Maria Helena Mendonça, Paula Ferreira, Margarida Godinho, Maria Margarida Cruz, Maria Deus Carvalho

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetite nanoparticles were synthesized by the co-precipitation method exploring the use of gelatine and agar as additives. For comparison, magnetite nanoparticles were also prepared by standard co-precipitation, by co-precipitation with the addition of a surfactant (sodium dodecyl sulphate) and by the thermal decomposition method. The structure and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction and transmission electron microscopy. Their magnetic properties were studied by SQUID magnetometry and 57Fe Mössbauer spectroscopy. The nanoparticles potential for applications in magnetic hyperthermia was evaluated through heating efficiency under alternating magnetic field. The results show that all synthesis methods produce Fe3−xO4 nanoparticles with similar sizes. The nanoparticles synthesized in the gelatine medium display the narrowest particle size distribution, the lowest oxidation degree, one of the highest saturation magnetization values and the best hyperthermia efficiency, proving that this gelatine-assisted synthesis is an efficient, environmental friendly, and low-cost method to produce magnetite nanoparticles.

Graphical Abstract

A new gelatine-assisted method is an efficient and low-cost way to synthesize magnetite nanoparticles with enhanced magnetic hyperthermia.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Belaid S, Laurent S, Vermeersch M, Elst LV, Perez-Morga D, Muller RN (2013) A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Nanotechnology 24:055705CrossRef Belaid S, Laurent S, Vermeersch M, Elst LV, Perez-Morga D, Muller RN (2013) A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Nanotechnology 24:055705CrossRef
Zurück zum Zitat Blanco-Andujar C, Ortega D, Southern P, Pankhurst QA, Thanh NTK (2015) The adoption of magnetic high performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7:1768CrossRef Blanco-Andujar C, Ortega D, Southern P, Pankhurst QA, Thanh NTK (2015) The adoption of magnetic high performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7:1768CrossRef
Zurück zum Zitat Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanoparticle Res 14:1100CrossRef Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanoparticle Res 14:1100CrossRef
Zurück zum Zitat Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921CrossRef Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921CrossRef
Zurück zum Zitat Carvalho M, Henriques F, Ferreira L, Godinho M, Cruz MM (2013) Iron oxide nanoparticles: the influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 201:144–152CrossRef Carvalho M, Henriques F, Ferreira L, Godinho M, Cruz MM (2013) Iron oxide nanoparticles: the influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 201:144–152CrossRef
Zurück zum Zitat Connord V, Mehdaoui B, Tan RP, Carrey J, Respaud M (2014) An air-cooled litz wire coil for measuring the high frequency hysteresis loops of magnetic samples. A useful setup for magnetic hyperthermia applications. Rev Sci Instrum 85:093904CrossRef Connord V, Mehdaoui B, Tan RP, Carrey J, Respaud M (2014) An air-cooled litz wire coil for measuring the high frequency hysteresis loops of magnetic samples. A useful setup for magnetic hyperthermia applications. Rev Sci Instrum 85:093904CrossRef
Zurück zum Zitat Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in 2 iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45:195001CrossRef Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in 2 iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45:195001CrossRef
Zurück zum Zitat De Sousa ME, Ferna MB, Raap V, Rivas PC, Mendoza P, Girardin P, Pasquevich GA, Alessandrini JL, Muraca D, Sa FH (2013) Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C 117:5436–5445CrossRef De Sousa ME, Ferna MB, Raap V, Rivas PC, Mendoza P, Girardin P, Pasquevich GA, Alessandrini JL, Muraca D, Sa FH (2013) Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C 117:5436–5445CrossRef
Zurück zum Zitat Dutz S, Hergt R, Murbe J, Muller R, Zeisberger M, Andra W, Töpfer J, Bellemann M (2007) Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 308:305–312CrossRef Dutz S, Hergt R, Murbe J, Muller R, Zeisberger M, Andra W, Töpfer J, Bellemann M (2007) Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 308:305–312CrossRef
Zurück zum Zitat Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos EI, Wang Y, Zamboulis YD, Tendeloo GV (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C 118:16209–16217CrossRef Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos EI, Wang Y, Zamboulis YD, Tendeloo GV (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C 118:16209–16217CrossRef
Zurück zum Zitat Frimpong RA, Dou J, Pechan M, Hilt JZ (2010) Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 322:326–333CrossRef Frimpong RA, Dou J, Pechan M, Hilt JZ (2010) Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater 322:326–333CrossRef
Zurück zum Zitat Gaihre B, Khil MS, Lee DR, Kim HY (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365:180–189CrossRef Gaihre B, Khil MS, Lee DR, Kim HY (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365:180–189CrossRef
Zurück zum Zitat Garaio E, Sandre O, Collantes JM, Garcia JA, Mornet S, Plazaola F (2015) Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology 26:015704CrossRef Garaio E, Sandre O, Collantes JM, Garcia JA, Mornet S, Plazaola F (2015) Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology 26:015704CrossRef
Zurück zum Zitat Gonzalez-Fernandez M, Torres T, Andres-Verges M, Costo R, de la Presa P, Serna C, Morales M, Marquina C, Ibarra M, Goya G (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182:2779–2784CrossRef Gonzalez-Fernandez M, Torres T, Andres-Verges M, Costo R, de la Presa P, Serna C, Morales M, Marquina C, Ibarra M, Goya G (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182:2779–2784CrossRef
Zurück zum Zitat Goya GF, Berqu TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef Goya GF, Berqu TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef
Zurück zum Zitat Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18:S2919 Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18:S2919
Zurück zum Zitat Hergt R, Dutz S, Roder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20:385214 Hergt R, Dutz S, Roder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20:385214
Zurück zum Zitat Hermanto S, Sumarlin LO, Fatimah W (2013) Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J Food Pharm Sci 1:68–73 Hermanto S, Sumarlin LO, Fatimah W (2013) Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J Food Pharm Sci 1:68–73
Zurück zum Zitat Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef
Zurück zum Zitat Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Philos Trans R Soc Lond Ser A 368:4439–4451CrossRef Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Philos Trans R Soc Lond Ser A 368:4439–4451CrossRef
Zurück zum Zitat Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef
Zurück zum Zitat Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef
Zurück zum Zitat Lima E Jr, Torres T, Rossi L, Rechenberg H, Berquo T, Ibarra A, Marquina C, Ibarra M, Goya G (2013) Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanoparticle Res 15:1654CrossRef Lima E Jr, Torres T, Rossi L, Rechenberg H, Berquo T, Ibarra A, Marquina C, Ibarra M, Goya G (2013) Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanoparticle Res 15:1654CrossRef
Zurück zum Zitat Liu Z, Wang X, Yao K, Du G, Lu Q, Ding Z, Tao J, Ning Q, Luo X, Tian D, Xi D (2004) Synthesis of magnetite nanoparticles in w/o microemulsion. J Mater Sci 39:2633–2636CrossRef Liu Z, Wang X, Yao K, Du G, Lu Q, Ding Z, Tao J, Ning Q, Luo X, Tian D, Xi D (2004) Synthesis of magnetite nanoparticles in w/o microemulsion. J Mater Sci 39:2633–2636CrossRef
Zurück zum Zitat Lu AH, Salabas E, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef Lu AH, Salabas E, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef
Zurück zum Zitat Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles: synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215CrossRef Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles: synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215CrossRef
Zurück zum Zitat Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549CrossRef Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549CrossRef
Zurück zum Zitat Mendo SG, Alves AF, Ferreira LP, Cruz MM, Mendonca MH, Godinho M, Carvalho MD (2015) Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton. New J Chem 39:7182–7193CrossRef Mendo SG, Alves AF, Ferreira LP, Cruz MM, Mendonca MH, Godinho M, Carvalho MD (2015) Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton. New J Chem 39:7182–7193CrossRef
Zurück zum Zitat Muller R, Dutz S, Neeb A, Cato A, Zeisberger M (2013) Magnetic heating effect of nanoparticles with different sizes and size distributions. J Magn Magn Mater 328:80–85CrossRef Muller R, Dutz S, Neeb A, Cato A, Zeisberger M (2013) Magnetic heating effect of nanoparticles with different sizes and size distributions. J Magn Magn Mater 328:80–85CrossRef
Zurück zum Zitat Oh S, Cook D, Townsend H (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–66CrossRef Oh S, Cook D, Townsend H (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–66CrossRef
Zurück zum Zitat Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJ (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228CrossRef Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJ (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228CrossRef
Zurück zum Zitat Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192CrossRef Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192CrossRef
Zurück zum Zitat Ramimoghadam D, Hussein MZB, Taufiq-Yap HT (2012) The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int J Mol Sci 13:13275–13293CrossRef Ramimoghadam D, Hussein MZB, Taufiq-Yap HT (2012) The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int J Mol Sci 13:13275–13293CrossRef
Zurück zum Zitat Rasband W (1997–2014) Imagej, version 1.48 Rasband W (1997–2014) Imagej, version 1.48
Zurück zum Zitat Rashad M, El-Sayed H, Rasly M, Nasr M (2012) Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia. J Magn Magn Mater 324:4019–4023CrossRef Rashad M, El-Sayed H, Rasly M, Nasr M (2012) Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia. J Magn Magn Mater 324:4019–4023CrossRef
Zurück zum Zitat Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783CrossRef Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783CrossRef
Zurück zum Zitat Rodríguez-Carvajal J (2001) Recent developments of the program FullProf. IUCr Comm Powder Diffr Newsl 26:12–19 Rodríguez-Carvajal J (2001) Recent developments of the program FullProf. IUCr Comm Powder Diffr Newsl 26:12–19
Zurück zum Zitat Salado J, Insausti M, Lezama L, Gil de Muro I, Goikolea E, Rojo T (2011) Preparation and characterization of monodisperse Fe3O4 nanoparticles: an electron magnetic resonance study. Chem Mater 23:2879–2885CrossRef Salado J, Insausti M, Lezama L, Gil de Muro I, Goikolea E, Rojo T (2011) Preparation and characterization of monodisperse Fe3O4 nanoparticles: an electron magnetic resonance study. Chem Mater 23:2879–2885CrossRef
Zurück zum Zitat Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int 40:1519–1524CrossRef Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int 40:1519–1524CrossRef
Zurück zum Zitat Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef
Zurück zum Zitat Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M=Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRef Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M=Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRef
Zurück zum Zitat Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197CrossRef Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197CrossRef
Zurück zum Zitat Taylor RM (1984) Influence of chloride on the formation of iron oxides from Fe(II) chloride. I. Effect of [Cl]/[Fe] on the formation of magnetite. Clays Clay Miner 32:167–174CrossRef Taylor RM (1984) Influence of chloride on the formation of iron oxides from Fe(II) chloride. I. Effect of [Cl]/[Fe] on the formation of magnetite. Clays Clay Miner 32:167–174CrossRef
Zurück zum Zitat Taylor RM, Schwertmann U (1974) Maghemite in soils and its origin, II. Maghemite syntheses at ambient temperature and pH 7. Clay Miner 10:299310CrossRef Taylor RM, Schwertmann U (1974) Maghemite in soils and its origin, II. Maghemite syntheses at ambient temperature and pH 7. Clay Miner 10:299310CrossRef
Zurück zum Zitat Vandenberghe R, De Grave E (2013) Application of Mössbauer spectroscopy in earth sciences. In: Yoshida Y, Langouche G (eds) Mössbauer spectroscopy. Springer, Berlin, pp 91–185CrossRef Vandenberghe R, De Grave E (2013) Application of Mössbauer spectroscopy in earth sciences. In: Yoshida Y, Langouche G (eds) Mössbauer spectroscopy. Springer, Berlin, pp 91–185CrossRef
Zurück zum Zitat Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef
Zurück zum Zitat Zhang L, He R, Gu H-C (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611CrossRef Zhang L, He R, Gu H-C (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611CrossRef
Metadaten
Titel
Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia
verfasst von
André F. Alves
Sofia G. Mendo
Liliana P. Ferreira
Maria Helena Mendonça
Paula Ferreira
Margarida Godinho
Maria Margarida Cruz
Maria Deus Carvalho
Publikationsdatum
01.01.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2016
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3327-z

Weitere Artikel der Ausgabe 1/2016

Journal of Nanoparticle Research 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.