Skip to main content
Erschienen in: Strength of Materials 3/2018

28.08.2018

General Case of Nonlinear Deformation-Strength Model of Reinforced Concrete Structures

verfasst von: V. M. Karpyuk, A. I. Kostyuk, Yu. A. Semina

Erschienen in: Strength of Materials | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper considers a nonlinear deformation-strength model of a rebar structure. Within framework of the reinforced concrete mechanics, it allows one to take into account the specific features of the joint operation of concrete and reinforcement components at all loading stages, including failure, in the structure cross sections under the general stressed state conditions. The model is found to be instrumental in practical applications due to the possibility of its application to the design or strengthening of beams, cross-bars, columns, elements of girder frames with the rectangle cross section, as well as to verification of bearing capacity of existing reinforced concrete bar structures, which operate under conditions of complex stress-strain state, including low-cycle pulse loading. The assessment algorithm of the bearing capacity of a reinforced concrete bar (rebar) cross sections under multiaxial stress conditions is proposed. The general physical dependencies for such cross section are reduced to the stiffness matrix. The proposed algorithm includes the input data block, main block, supplementary subprograms of load vector increment check and exhaustion of the bearing capacity, as well as the output data printout block. At each computation stage, all iterations are executed until the accuracy of determining all components of strain vector reaches a certain preset value. The variation patterns of normal and tangential stresses, generalized linear and angular strains are considered. The equilibrium equations of a concrete rebar operating under multiaxial stress conditions are derived.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd edn, McGraw-Hill, New York (1970). S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd edn, McGraw-Hill, New York (1970).
2.
Zurück zum Zitat I. A. Birger and J. G. Panovko, Strength, Steadiness, and Fluctuations [in Russian], in 3 volumes, Mashinostroenie, Moscow (1968). I. A. Birger and J. G. Panovko, Strength, Steadiness, and Fluctuations [in Russian], in 3 volumes, Mashinostroenie, Moscow (1968).
3.
Zurück zum Zitat M. I. Bezukhov, Bases of the Theory of Elasticity, Plasticity, and Creep [in Russian], Vysshaya Shkola, Moscow (1956). M. I. Bezukhov, Bases of the Theory of Elasticity, Plasticity, and Creep [in Russian], Vysshaya Shkola, Moscow (1956).
4.
Zurück zum Zitat Yu. A. Shkola, “Stress state of beams under constrained torsion,” Stroit. Konstr., 1, No. 52, 208–213 (2000). Yu. A. Shkola, “Stress state of beams under constrained torsion,” Stroit. Konstr., 1, No. 52, 208–213 (2000).
5.
Zurück zum Zitat N. I. Karpenko, General Models of Reinforced Concrete Mechanics [in Russian], Stroiizdat, Moscow (1996). N. I. Karpenko, General Models of Reinforced Concrete Mechanics [in Russian], Stroiizdat, Moscow (1996).
6.
Zurück zum Zitat V. M. Kruglov, “Phenomenological criterion of concrete strength at triaxial stress state,” Izv. Vuzov, 2, No. 6, 6–11 (1986). V. M. Kruglov, “Phenomenological criterion of concrete strength at triaxial stress state,” Izv. Vuzov, 2, No. 6, 6–11 (1986).
7.
Zurück zum Zitat V. M. Kruglov, “Nonlinear relationships and the strength criterion for concrete at triaxial stress state,” Stroit. Mekh. Rasch. Sooruzh., 2, No. 4, 40–44 (1987). V. M. Kruglov, “Nonlinear relationships and the strength criterion for concrete at triaxial stress state,” Stroit. Mekh. Rasch. Sooruzh., 2, No. 4, 40–44 (1987).
8.
Zurück zum Zitat D. I. Bezushko, Nonlinear Materials Model for Calculation of Reinforced Concrete Bend Structures by Finite Elements Method [in Ukrainian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Odessa (2008). D. I. Bezushko, Nonlinear Materials Model for Calculation of Reinforced Concrete Bend Structures by Finite Elements Method [in Ukrainian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Odessa (2008).
9.
Zurück zum Zitat V. M. Bondarenko and V. I. Kolchunov, Computational Models of Force Resistance of Reinforced Concrete [in Russian], Moscow (2004). V. M. Bondarenko and V. I. Kolchunov, Computational Models of Force Resistance of Reinforced Concrete [in Russian], Moscow (2004).
10.
Zurück zum Zitat G. A. Geniev, V. N. Kissyuk, and G. A. Tyupin, Plasticity Theory of Concrete and Reinforced Concrete [in Russian], Stroiizdat, Moscow (1974). G. A. Geniev, V. N. Kissyuk, and G. A. Tyupin, Plasticity Theory of Concrete and Reinforced Concrete [in Russian], Stroiizdat, Moscow (1974).
11.
Zurück zum Zitat Yu. A. Shkola, Bearing Capacity and Deformability of Reinforced Concrete Rod Elements at Complex Stress State [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Odessa (2002). Yu. A. Shkola, Bearing Capacity and Deformability of Reinforced Concrete Rod Elements at Complex Stress State [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Odessa (2002).
12.
Zurück zum Zitat H. G. Hahn, Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, B. G. Teubner, Stuttgart (1985). H. G. Hahn, Elastizitätstheorie. Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, B. G. Teubner, Stuttgart (1985).
13.
Zurück zum Zitat Î. F. Yaremenko and Yu. O. Shkola, “Physical relations for cross sections of reinforced concrete rod elements in general stress state case,” Visn. Nats. Univ. “Lvivska Politekhnika”, 3, No. 60, 339–344 (2007). Î. F. Yaremenko and Yu. O. Shkola, “Physical relations for cross sections of reinforced concrete rod elements in general stress state case,” Visn. Nats. Univ. “Lvivska Politekhnika”, 3, No. 60, 339–344 (2007).
14.
Zurück zum Zitat V. M. Karpyuk, Calculated Models of Power Resistance of Span Reinforced Concrete Structures at General Stress State Case [in Ukrainian], ODABA, Odesa (2014). V. M. Karpyuk, Calculated Models of Power Resistance of Span Reinforced Concrete Structures at General Stress State Case [in Ukrainian], ODABA, Odesa (2014).
Metadaten
Titel
General Case of Nonlinear Deformation-Strength Model of Reinforced Concrete Structures
verfasst von
V. M. Karpyuk
A. I. Kostyuk
Yu. A. Semina
Publikationsdatum
28.08.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9990-9

Weitere Artikel der Ausgabe 3/2018

Strength of Materials 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.