Skip to main content
Erschienen in: Complex & Intelligent Systems 1/2021

Open Access 03.11.2020 | Original Article

Generalized complex q-rung orthopair fuzzy Einstein averaging aggregation operators and their application in multi-attribute decision making

verfasst von: Peide Liu, Zeeshan Ali, Tahir Mahmood

Erschienen in: Complex & Intelligent Systems | Ausgabe 1/2021

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recently proposed q-rung orthopair fuzzy set, which is characterized by a membership degree and a non-membership degree, is effective for handling uncertainty and vagueness. This paper proposes the concept of complex q-rung orthopair fuzzy sets (Cq-ROFS) and their operational laws. A multi-attribute decision making (MADM) method with complex q-rung orthopair fuzzy information is investigated. To aggregate complex q-rung orthopair fuzzy numbers, we extend the Einstein operations to Cq-ROFSs and propose a family of complex q-rung orthopair fuzzy Einstein averaging operators, such as the complex q-rung orthopair fuzzy Einstein weighted averaging operator, the complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator, the generalized complex q-rung orthopair fuzzy Einstein weighted averaging operator, and the generalized complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator. Desirable properties and special cases of the introduced operators are discussed. Further, we develop a novel MADM approach based on the proposed operators in a complex q-rung orthopair fuzzy context. Numerical examples are provided to demonstrate the effectiveness and superiority of the proposed method through a detailed comparison with existing methods.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The intuitionistic fuzzy set (IFS), which was pioneered by Atanassove [1], is a generalization of the fuzzy set (FS) [2]. The IFS is an important tool for coping with unreliable and difficult information. The prominent characteristic of the IFS is that it assigns each element a membership grade and a non-membership grade, whose sum is ≤ 1. Therefore, the IFS has received increasing research attention since it was proposed [3, 4]. However, in many cases, the IFS cannot work effectively, for example, when a decision maker provides information for which the aforementioned sum is > 1. For example, if he/she assigns 0.52 as the membership grade and 0.63 as the non-membership grade, we note that 0.52 + 0.63 \({ \nleqq }1\). To deal with such problems, Yager [5] pioneered the notion of the Pythagorean FS (PFS) as a useful tool to describe uncertain and unreliable information effectively, where the sum of the square of membership grade and the square of the non-membership grade is limited to [0,1]. Sometimes, the PFS cannot work effectively. For example, when a decision maker assigns 0.9 as the membership grade and 0.7 as the non-membership grade, \(0.9^{2} + 0.7^{2} = 0.81 + 0.47 = 1.28 > 1\); thus, the PFS is not applicable. Yager [6] developed the q-rung orthopair FS (q-ROFS) for handling such situations, where the sum of the q-power of the membership grade and the q-power of the non-membership grade is constrained to [0,1]. For this example, we have \(0.9^{4} + 0.7^{4} = 0.66 + 0.24 = 0.9\). Clearly, the q-ROFS is more general than the IFS and PFS (see Fig. 1). Because of its advantages, the q-ROFS is a fundamental tool for processing troublesome fuzzy data, and it is used in the fields of aggregation operators, similarity measures (SMs), hybrid aggregation operators, etc. Various studies have been performed on q-ROFSs, as described below.
1.
Operator-based approaches: According to the aggregation operators, many scholars have successfully developed operators for the q-ROFS environment. For instance, Liu and Wang [7] developed aggregation operators using q-ROFSs. Garg and Chen [8] investigated neutrality aggregation operators for q-ROFSs. Using the new score function, Peng et al. [9] presented exponential and aggregation operators based on q-ROFSs. Xing et al. [10] established point-weighted aggregation operators based on q-ROFSs.
 
2.
Measures-based approaches: The SM is useful for accurately examining the degree of similarity between any two objects. Many scholars have applied SMs in different environments. For example, Wang et al. [11] used a cosine function to evaluate the SMs for q-ROFSs. Du [12] established Makowski-type distance measures based on generalized q-ROFSs. Peng and Liu [13] examined information measures for q-ROFSs.
 
3.
Hybrid operator-based approaches: For investigating the relationships between objects, the hybrid aggregation operators play an essential role in the realistic decision environment. Scholars have investigated various hybrid aggregation operators based on the q-ROFS, for example, Archimedean Bonferroni mean operators [14], Maclaurin symmetric mean operators [15], Muirhead mean operators [16], power Maclaurin symmetric mean operators [17], Heronian mean operators [18], partitioned Bonferroni mean operators [19], partitioned Maclaurin symmetric mean operators [20], and others [2133].
 
Figure 1 presents the geometric representations of the IFSs, PFSs, and q-ROFSs. As shown, the q-ROFSs provide the largest amount of space for expressing the fuzzy information. Ramot et al. [34] introduced the complex FS (CFS), which extended the range of the membership grades from real numbers to complex numbers with unit discs. The CFS is an extension of the FS for coping with uncertainty and unreliability. Additionally, Ramot et al. [35] reintroduced the notion of complex fuzzy logic. However, the CFS is completely different from the complex fuzzy number proposed by Buckley [36]. Furthermore, Alkouri and Salleh [37] developed the complex IFS (CIFS), which extended the range of the membership and non-membership grades from real numbers to complex numbers with a unit disc. In contrast to the IFS, which can process only one-dimensional information, the CIFS can cope with two-dimensional information; hence, information loss can be avoided. Kumar and Bajaj [38] developed complex intuitionistic fuzzy soft sets with distance measures and entropies. Garg and Rani [39, 40] proposed correlation coefficients and aggregation operators based on the CIFS. Rani and Garg [41, 42] introduced distance measures and power aggregation operators based on the CIFS.
Recently, Ullah et al. [43] proposed the complex PFS (CPFS), which is useful for efficiently describing uncertain and unreliable information. A characteristic of CPFS is that the sum of the square of the real part (and imaginary part) of complex membership grade and the square of the real part (and imaginary part) of complex non-membership grade is limited to [0,1]. Sometimes, the CPFS cannot work effectively; for example, when a decision maker provides \(0.9{\text{e}}^{{i2\pi \left( {0.8} \right)}}\) for the complex membership grade and \(0.7{\text{e}}^{{i2\pi \left( {0.7} \right)}}\) for the complex non-membership grade, \(0.9^{2} + 0.7^{2} = 0.81 + 0.47 = 1.28 > 1\) and \(0.8^{2} + 0.6^{2} = 0.64 + 0.49 = 1.13 > 1\), making the CPFS inapplicable. To solve such problems, we developed a complex q-rung orthopair FS (Cq-ROFS) characterized by complex membership and non-membership grades, i.e., \(0.9^{4} + 0.7^{4} = 0.66 + 0.24 = 0.9\) and \(0.8^{4} + 0.7^{4} = 0.41 + 0.24 = 0.65\). In the Cq-ROFS, the sum of the q-power of the real part (and imaginary part) of the complex membership grade and the q-power of the real part (and imaginary part) of the complex non-membership grade is constrained to [0,1]. The Cq-ROFS is more general than the CIFS and CPFS.
Real-life situations involve numerous complex circumstances, and data measures are useful for handling uncertain data. Various data measures, e.g., similitude, separation, and entropy, are used in the decision-making process, for example, in design acknowledgment, clinical determination, and bunching investigation. Some existing MADM methodologies for fuzzy information are based on the PFS and q-ROFS, because they have shortcomings. In the proposed Cq-ROFS, the sum of the q-power of the real part (and imaginary part) of the complex membership grade and the q-power of the real part (and imaginary part) of the complex non-membership grade is constrained to [0,1]. It is more general and can express a wider information scope. Next, the q-ROFS is turned into a fundamental tool to process troublesome fuzzy data. Now, we provide an example. Assume that XYZ Corp. chooses to set up biometric‐based participation gadgets (BBPGs) in all its workplaces throughout the nation. For this, the organization invites a specialist to provide the data with respect to the (i) shows of BBPGs and (ii) creation dates of BBPGs. The organization must select the optimal model of BBPGs with its creation date at the same time. Here, the issue includes two-dimensional information: the BBPG model and the creation date of the BBPGs. Obviously, they cannot be expressed precisely by the q-ROFS, because the q-ROFS cannot handle multiple types of one-dimensional information simultaneously. The sufficiency terms in the Cq-ROFS can be utilized to determine an organization’s choice with regard to the model of the BBPGs, and the stage terms can be utilized to express the organization’s judgment regarding the creation date of the BBPGs.
Keeping the advantages of the Cq-ROFS, the objectives of this study were as follows:
1.
To propose the notion of Cq-ROFS and its operational laws, which was the basis of this study
 
2.
To aggregate complex q-rung orthopair fuzzy numbers (Cq-ROFNs), we extend the Einstein operations (EOs) to Cq-ROFSs and propose a family of complex q-rung orthopair fuzzy Einstein averaging operators, such as the complex q-rung orthopair fuzzy Einstein weighted averaging (Cq-ROFEWA) operator, the complex q-rung orthopair fuzzy Einstein ordered weighted averaging (Cq-ROFEOWA) operator, the generalized complex q-rung orthopair fuzzy Einstein weighted averaging (GCq-ROFEWA) operator, and the generalized complex q-rung orthopair fuzzy Einstein ordered weighted averaging (GCq-ROFEOWA) operator. Desirable properties and special cases of the introduced operators are discussed.
 
3.
To develop a novel MADM approach in the complex q-rung orthopair fuzzy context based on the proposed operators
 
4.
To demonstrate the effectiveness and superiority of the proposed method by comparing numerical results with the results of existing methods
 
The remainder of this paper is organized as follows. In the next section, we briefly review existing concepts such as PYFSs, CPYFSs, q-ROFSs, and their operational laws. In the following section, the concept of the Cq-ROFS and its operational laws are investigated. In the next section, we extend the EOs to Cq-ROFSs and propose a family of complex q-rung orthopair fuzzy Einstein averaging operators, such as the Cq-ROFEWA, Cq-ROFEOWA, GCq-ROFEWA, and GCq-ROFEOWA operators. Desirable properties and special cases of the introduced operators are discussed. In the following section, we develop a novel approach for MADM in the complex q-rung orthopair fuzzy context based on the proposed operators. Finally, a detailed comparison is performed between existing methods and the proposed approach. The conclusions are presented in the last section.

Preliminaries

In this section, we briefly review existing concepts such as PYFSs, CPYFSs, q-ROFSs, and their operational laws. In this study, the finite universal set is denoted as \(X\).
Definition 1
[15] A PYFS \({\mathbb{E}}\) on a finite universal set \(X\) is given by:
$$ {\mathbb{E}} = \left\{ {\left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} \left( X \right),{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} \left( X \right)} \right):X \in X} \right\}, $$
(1)
where \({\mathcal{T}}_{{\mathbb{E}}}^{{\prime}}\) and \({\mathcal{N}}_{{\mathbb{E}}}^{{\prime}}\) represent the membership and non-membership grades, respectively, under the following condition: \(0 \le {\mathcal{T}}_{{\mathbb{E}}}^{\prime 2} + {\mathcal{N}}_{{\mathbb{E}}}^{\prime 2} \le 1\). The hesitancy degree is defined as \({\mathcal{H}}_{{\mathbb{E}}} = \left( {1 - {\mathcal{T}}_{{\mathbb{E}}}^{\prime 2} - {\mathcal{N}}_{{\mathbb{E}}}^{\prime 2} } \right)^{\frac{1}{2}}\). The Pythagorean fuzzy number (PYFN) is given as \({\mathbb{E}} = \left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} ,{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} } \right)\).
Definition 2
[43] A CPYFS \({\mathbb{E}}\) on a finite universal set \(X\) is given as follows:
$$ {\mathbb{E}} = \left\{ {\left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} \left( X \right),{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} \left( X \right)} \right):X \in X} \right\} \to , $$
(2)
where \({\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} = {\mathcal{T}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }} }}\) and \({\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} = {\mathcal{N}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }} }}\) represent the complex-valued membership grade and complex-valued non-membership grade, respectively, under the following conditions: \(0 \le {\mathcal{T}}_{{\mathbb{E}}}^{2} + {\mathcal{N}}_{{\mathbb{E}}}^{2} \le 1 \) and \(0 \le {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }}^{2} + {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }}^{2} \le 1\). Further, the complex-valued hesitancy degree is defined as \({\mathcal{H}}_{{\mathbb{E}}} = \left( {1 - {\mathcal{T}}_{{\mathbb{E}}}^{2} - {\mathcal{N}}_{{\mathbb{E}}}^{2} } \right)^{\frac{1}{2}} {\text{e}}^{{i2\pi \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }}^{2} - {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }}^{2} } \right)^{\frac{1}{2}} }}\). The complex PYFN is given as \({\mathbb{E}} = \left( {{\mathcal{T}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }} }} ,{\mathcal{N}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }} }} } \right)\).
Definition 3
[24] A q-ROFS \({\mathbb{E}}\) on a finite universal set \(X\) is given as:
$$ {\mathbb{E}} = \left\{ {\left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} \left( X \right),{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} \left( X \right)} \right):X \in X} \right\} \to , $$
(3)
where \({\mathcal{T}}_{{\mathbb{E}}}^{{\prime}}\) and \({\mathcal{N}}_{{\mathbb{E}}}^{{\prime}}\) represent the membership and non-membership grades, respectively, under the following condition: \(0 \le {\mathcal{T}}_{{\mathbb{E}}}^{\prime q} + {\mathcal{N}}_{{\mathbb{E}}}^{\prime q} \le 1\). The hesitancy degree is given as \({\mathcal{H}}_{{\mathbb{E}}} = \left( {1 - {\mathcal{T}}_{{\mathbb{E}}}^{\prime q} - {\mathcal{N}}_{{\mathbb{E}}}^{\prime q} } \right)^{\frac{1}{q}}\). The q-rung orthopair fuzzy number (q-ROFN) is given as \({\mathbb{E}} = \left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} ,{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} } \right)\).
Definition 4
[24] For any two q-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1}^{{\prime}} ,{\mathcal{N}}_{1}^{{\prime}} } \right)\) and \({\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2}^{{\prime}} ,{\mathcal{N}}_{2}^{{\prime}} } \right)\) with any \(\delta > 0\),
1.
\({\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} = \left( {\left( {\frac{{{\mathcal{T}}_{1}^{\prime q} + {\mathcal{T}}_{2}^{\prime q} }}{{1 + {\mathcal{T}}_{1}^{\prime q} {\mathcal{T}}_{2}^{\prime q} }}} \right)^{\frac{1}{q}} ,\left( {\frac{{{\mathcal{N}}_{1}^{{\prime}} {\mathcal{N}}_{2}^{{\prime}} }}{{\left( {1 + \left( {1 - {\mathcal{N}}_{1}^{\prime q} } \right)\left( {1 - {\mathcal{N}}_{2}^{\prime q} } \right)} \right)^{\frac{1}{q}} }}} \right)} \right);\)
 
2.
\({\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} = \left( {\left( {\frac{{{\mathcal{T}}_{1}^{{\prime}} {\mathcal{T}}_{2}^{{\prime}} }}{{\left( {1 + \left( {1 - {\mathcal{T}}_{1}^{\prime q} } \right)\left( {1 - {\mathcal{T}}_{2}^{\prime q} } \right)} \right)^{\frac{1}{q}} }}} \right),\left( {\frac{{{\mathcal{N}}_{1}^{\prime q} + {\mathcal{N}}_{2}^{\prime q} }}{{1 + {\mathcal{N}}_{1}^{\prime q} {\mathcal{N}}_{2}^{\prime q} }}} \right)^{\frac{1}{q}} } \right);\)
 
3.
\( \delta {\mathbb{E}}_{1} = \left( {\left( {\frac{{\left( {1 + {\mathcal{T}}_{1}^{{'q}} } \right)^{\delta } - \left( {1 - {\mathcal{T}}_{1}^{{'q}} } \right)^{\delta } }}{{\left( {1 + {\mathcal{T}}_{1}^{{'q}} } \right)^{\delta } + \left( {1 - {\mathcal{T}}_{1}^{{'q}} } \right)^{\delta } }}} \right)^{{\frac{1}{q}}} ,\left( {\frac{{\left( 2 \right)^{{\frac{1}{q}}} {\mathcal{N}}_{1}^{{'\delta }} }}{{\left( {\left( {2 - {\mathcal{N}}_{1}^{{'q}} } \right)^{\delta } + \left( {{\mathcal{N}}_{1}^{{'q}} } \right)^{\delta } } \right)^{{\frac{1}{q}}} }}} \right)} \right);{\text{ and}}\)
 
4.
\( {\mathbb{E}}_{1}^{\delta } = \left( {\left( {\frac{{\left( 2 \right)^{{\frac{1}{q}}} {\mathcal{T}}_{1}^{{'\delta }} }}{{\left( {\left( {2 - {\mathcal{T}}_{1}^{\prime q} } \right)^{\delta } + \left( {{\mathcal{T}}_{1}^{\prime q} } \right)^{\delta } } \right)^{{\frac{1}{q}}} }}} \right),\left( {\frac{{\left( {1 + {\mathcal{N}}_{1}^{\prime q} } \right)^{\delta } - \left( {1 - {\mathcal{N}}_{1}^{\prime q} } \right)^{\delta } }}{{\left( {1 + {\mathcal{N}}_{1}^{\prime q} } \right)^{\delta } + \left( {1 - {\mathcal{N}}_{1}^{\prime q} } \right)^{\delta } }}} \right)^{{\frac{1}{q}}} } \right). \)
 
Definition 5
[24] For any q-ROFN \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1}^{{\prime}} ,{\mathcal{N}}_{1}^{{\prime}} } \right)\), the score function and accuracy function are defined as follows:
$$ {\mathcal{S}}\left( {{\mathbb{E}}_{1} } \right) = {\mathcal{T}}_{1}^{\prime q} - {\mathcal{N}}_{1}^{\prime q} , $$
(4)
$$ {\mathbb{H}}\left( {{\mathbb{E}}_{1} } \right) = {\mathcal{T}}_{1}^{\prime q} + {\mathcal{N}}_{1}^{\prime q} , $$
(5)
where \({\mathcal{S}}\left( {{\mathbb{E}}_{1} } \right) \in \left[ { - 1,1} \right]\) and \({\mathbb{H}}\left( {{\mathbb{E}}_{1} } \right) \in \left[ {0,1} \right]\).

Cq-ROFSs and their operational laws

In this section, we propose the Cq-ROFSs and their operational laws.
Definition 6
A Cq-ROFS \({\mathbb{E}}\) on a finite universal set \(X\) is given as:
$$ {\mathbb{E}} = \left\{ {\left( {{\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} \left( X \right),{\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} \left( X \right)} \right):X \in X} \right\}, $$
(6)
where \({\mathcal{T}}_{{\mathbb{E}}}^{{\prime}} = {\mathcal{T}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }} }}\) and \({\mathcal{N}}_{{\mathbb{E}}}^{{\prime}} = {\mathcal{N}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }} }}\) represent the degrees of the complex-valued membership and complex-valued non-membership, respectively, under the following conditions:\(0 \le {\mathcal{T}}_{{\mathbb{E}}}^{q} + {\mathcal{N}}_{{\mathbb{E}}}^{q} \le 1, 0 \le {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }}^{q} + {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }}^{q} \le 1,\) and \(q \ge 1\). The complex-valued hesitancy degree is given as \({\mathcal{H}}_{{\mathbb{E}}} = \left( {1 - {\mathcal{T}}_{{\mathbb{E}}}^{q} - {\mathcal{N}}_{{\mathbb{E}}}^{q} } \right)^{\frac{1}{q}} {\text{e}}^{{i2\pi \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }}^{q} } \right)^{\frac{1}{q}} }}\). The Cq-ROFN is given as \({\mathbb{E}} = \left( {{\mathcal{T}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{{\mathbb{E}}} }} }} ,{\mathcal{N}}_{{\mathbb{E}}} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{{\mathbb{E}}} }} }} } \right)\).
Definition 7
For any two Cq-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right)\) and \({\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }} ,{\mathcal{N}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }} } \right)\)
1.
$$ {\mathbb{E}}_{1}^{c} = \left( {{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} ,{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} } \right); $$
 
2.
$$ \begin{aligned} {\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} & = \Big( \max \left( {{\mathcal{T}}_{1} ,{\mathcal{T}}_{2} } \right){\text{e}}^{{i2\pi \max \left( {{\mathcal{W}}_{{{\mathcal{T}}_{1} }} ,{\mathcal{W}}_{{{\mathcal{T}}_{2} }} } \right)}} ,\\ &\quad \min \left( {{\mathcal{N}}_{1} ,{\mathcal{N}}_{2} } \right){\text{e}}^{{i2\pi \min \left( {{\mathcal{W}}_{{{\mathcal{N}}_{1} }} ,{\mathcal{W}}_{{{\mathcal{N}}_{2} }} } \right)}} \Big);{\text{ and}} \end{aligned} $$
 
3.
$$ \begin{aligned} {\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} & = \Big( \min \left( {{\mathcal{T}}_{1} ,{\mathcal{T}}_{2} } \right){\text{e}}^{{i2\pi \min \left( {{\mathcal{W}}_{{{\mathcal{T}}_{1} }} ,{\mathcal{W}}_{{{\mathcal{T}}_{2} }} } \right)}} ,\\ &\quad \max \left( {{\mathcal{N}}_{1} ,{\mathcal{N}}_{2} } \right){\text{e}}^{{i2\pi \max \left( {{\mathcal{W}}_{{{\mathcal{N}}_{1} }} ,{\mathcal{W}}_{{{\mathcal{N}}_{2} }} } \right)}} \Big). \end{aligned} $$
 
Next, we investigate Einstein’s operational laws for Cq-ROFNs, which are defined as follows.
Definition 8
For any two Cq-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right)\) and \({\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }} ,{\mathcal{N}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }} } \right)\) with any \(\delta > 0, \)
$$1. \quad{\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} = \left( {\left( {\frac{{{\mathcal{T}}_{1}^{q} + {\mathcal{T}}_{2}^{q} }}{{1 + {\mathcal{T}}_{1}^{q} {\mathcal{T}}_{2}^{q} }}} \right)^{\frac{1}{q}} {\text{e}}^{{i2\pi \left( {\frac{{{\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{2} }}^{q} }}{{1 + {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} {\mathcal{W}}_{{{\mathcal{T}}_{2} }}^{q} }}} \right)^{\frac{1}{q}} }} ,\left( {\frac{{{\mathcal{N}}_{1} {\mathcal{N}}_{2} }}{{\left( {1 + \left( {1 - {\mathcal{N}}_{1}^{q} } \right)\left( {1 - {\mathcal{N}}_{2}^{q} } \right)} \right)^{\frac{1}{q}} }}} \right){\text{e}}^{{i2\pi \left( {\frac{{{\mathcal{W}}_{{{\mathcal{N}}_{1} }} {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }}{{\left( {1 + \left( {1 - {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)\left( {1 - {\mathcal{W}}_{{{\mathcal{N}}_{2} }}^{q} } \right)} \right)^{\frac{1}{q}} }}} \right)}} } \right);$$
$$2. \quad{\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} = \left( {\left( {\frac{{{\mathcal{T}}_{1} {\mathcal{T}}_{2} }}{{\left( {1 + \left( {1 - {\mathcal{T}}_{1}^{q} } \right)\left( {1 - {\mathcal{T}}_{2}^{q} } \right)} \right)^{\frac{1}{q}} }}} \right){\text{e}}^{{i2\pi \left( {\frac{{{\mathcal{W}}_{{{\mathcal{T}}_{1} }} {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }}{{\left( {1 + \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)\left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{2} }}^{q} } \right)} \right)^{\frac{1}{q}} }}} \right)}} ,\left( {\frac{{{\mathcal{N}}_{1}^{q} + {\mathcal{N}}_{2}^{q} }}{{1 + {\mathcal{N}}_{1}^{q} {\mathcal{N}}_{2}^{q} }}} \right)^{\frac{1}{q}} {\text{e}}^{{i2\pi \left( {\frac{{{\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} + {\mathcal{W}}_{{{\mathcal{N}}_{2} }}^{q} }}{{1 + {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} {\mathcal{W}}_{{{\mathcal{N}}_{2} }}^{q} }}} \right)^{\frac{1}{q}} }} } \right);$$
$$3.\quad \delta {\mathbb{E}}_{1} = \left( {\left( {\frac{{\left( {1 + {\mathcal{T}}_{1}^{q} } \right)^{\delta } - \left( {1 - {\mathcal{T}}_{1}^{q} } \right)^{\delta } }}{{\left( {1 + {\mathcal{T}}_{1}^{q} } \right)^{\delta } + \left( {1 - {\mathcal{T}}_{1}^{q} } \right)^{\delta } }}} \right)^{\frac{1}{q}} {\text{e}}^{{i2\pi \left( {\frac{{\left( {1 + {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } - \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } }}{{\left( {1 + {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } + \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } }}} \right)^{\frac{1}{q}} }} ,\left( {\frac{{\left( 2 \right)^{\frac{1}{q}} {\mathcal{N}}_{1}^{\delta } }}{{\left( {\left( {2 - {\mathcal{N}}_{1}^{q} } \right)^{\delta } + \left( {{\mathcal{N}}_{1}^{q} } \right)^{\delta } } \right)^{\frac{1}{q}} }}} \right){\text{e}}^{{i2\pi \left( {\frac{{\left( 2 \right)^{\frac{1}{q}} {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{\delta } }}{{\left( {\left( {2 - {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } + \left( {{\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } } \right)^{\frac{1}{q}} }}} \right)}} } \right);{\text{ and}}$$
$$4. \quad{\mathbb{E}}_{1}^{\delta } = \left( {\left( {\frac{{\left( 2 \right)^{\frac{1}{q}} {\mathcal{T}}_{1}^{\delta } }}{{\left( {\left( {2 - {\mathcal{T}}_{1}^{q} } \right)^{\delta } + \left( {{\mathcal{T}}_{1}^{q} } \right)^{\delta } } \right)^{\frac{1}{q}} }}} \right){\text{e}}^{{i2\pi \left( {\frac{{\left( 2 \right)^{\frac{1}{q}} {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{\delta } }}{{\left( {\left( {2 - {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } + \left( {{\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} } \right)^{\delta } } \right)^{\frac{1}{q}} }}} \right)}} ,\left( {\frac{{\left( {1 + {\mathcal{N}}_{1}^{q} } \right)^{\delta } - \left( {1 - {\mathcal{N}}_{1}^{q} } \right)^{\delta } }}{{\left( {1 + {\mathcal{N}}_{1}^{q} } \right)^{\delta } + \left( {1 - {\mathcal{N}}_{1}^{q} } \right)^{\delta } }}} \right)^{\frac{1}{q}} {\text{e}}^{{i2\pi \left( {\frac{{\left( {1 + {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } - \left( {1 - {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } }}{{\left( {1 + {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } + \left( {1 - {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right)^{\delta } }}} \right)^{\frac{1}{q}} }} } \right).$$
Definition 9
For any q-ROFN \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right), \) the score function and accuracy function are defined as follows:
$$ {\mathcal{S}}\left( {{\mathbb{E}}_{1} } \right) = \frac{1}{2}\left( {{\mathcal{T}}_{1}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} - {\mathcal{N}}_{1}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right), $$
(7)
$$ {\mathbb{H}}\left( {{\mathbb{E}}_{1} } \right) = \frac{1}{2}\left( {{\mathcal{T}}_{1}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{1} }}^{q} + {\mathcal{N}}_{1}^{q} + {\mathcal{W}}_{{{\mathcal{N}}_{1} }}^{q} } \right), $$
(8)
where \({\mathcal{S}}\left( {{\mathbb{E}}_{1} } \right) \in \left[ { - 1,1} \right]\) and \({\mathbb{H}}\left( {{\mathbb{E}}_{1} } \right) \in \left[ {0,1} \right]. \)
Theorem 1
For any two Cq-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right)\) and \({\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }} ,{\mathcal{N}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }} } \right)\) with any \(\delta ,\delta_{1} ,\delta_{2} > 0,\)
1.
\({\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} = {\mathbb{E}}_{2} \oplus {\mathbb{E}}_{1} ;\)
 
2.
\({\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} = {\mathbb{E}}_{2} \otimes {\mathbb{E}}_{1} ;\)
 
3.
\(\delta \left( {{\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} } \right) = \delta {\mathbb{E}}_{1} \oplus \delta {\mathbb{E}}_{2} ;\)
 
4.
\(\left( {{\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} } \right)^{\delta } = {\mathbb{E}}_{1}^{\delta } \otimes {\mathbb{E}}_{2}^{\delta } ;\)
 
5.
\(\delta_{1} {\mathbb{E}}_{1} \oplus \delta_{2} {\mathbb{E}}_{1} = \left( {\delta_{1} + \delta_{2} } \right){\mathbb{E}}_{1} ;{\text{ and}}\)
 
6.
\({\mathbb{E}}_{1}^{{\delta_{1} }} \otimes {\mathbb{E}}_{1}^{{\delta_{2} }} = {\mathbb{E}}_{1}^{{\delta_{1} + \delta_{2} }} .\)
 
The proof of Theorem 1 is presented in the "Appendix".
Theorem 2
For any two Cq-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right)\) and \({\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }} ,{\mathcal{N}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }} } \right), \)
1.
\({\mathbb{E}}_{1}^{c} \vee {\mathbb{E}}_{2}^{c} = \left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right)^{c} ;\)
 
2.
\({\mathbb{E}}_{2}^{c} \wedge {\mathbb{E}}_{1}^{c} = \left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right)^{c} ;\)
 
3.
\({\mathbb{E}}_{1}^{c} \oplus {\mathbb{E}}_{2}^{c} = \left( {{\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} } \right)^{c} ;\)
 
4.
\({\mathbb{E}}_{1}^{c} \otimes {\mathbb{E}}_{2}^{c} = \left( {{\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} } \right)^{c} ;\)
 
5.
\(\left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right) \oplus \left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right) = {\mathbb{E}}_{1} \oplus {\mathbb{E}}_{2} ;{\text{ and}}\)
 
6.
\(\left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right) \otimes \left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right) = {\mathbb{E}}_{1} \otimes {\mathbb{E}}_{2} .\)
 
Proof
Similar to the case of Theorem 1, the proofs are omitted.
Theorem 3
For any three Cq-ROFNs \({\mathbb{E}}_{1} = \left( {{\mathcal{T}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{1} }} }} ,{\mathcal{N}}_{1} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{1} }} }} } \right)\), \( {\mathbb{E}}_{2} = \left( {{\mathcal{T}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{2} }} }} ,{\mathcal{N}}_{2} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{2} }} }} } \right)\), and \({\mathbb{E}}_{3} = \left( {{\mathcal{T}}_{3} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{3} }} }} ,{\mathcal{N}}_{3} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{3} }} }} } \right),\)
1.
\(\left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right) \wedge {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{3} } \right) \vee \left( {{\mathbb{E}}_{2} \wedge {\mathbb{E}}_{3} } \right);\)
 
2.
\(\left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right) \vee {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{3} } \right) \wedge \left( {{\mathbb{E}}_{2} \vee {\mathbb{E}}_{3} } \right);\)
 
3.
\(\left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right) \oplus {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \oplus {\mathbb{E}}_{3} } \right) \vee \left( {{\mathbb{E}}_{2} \oplus {\mathbb{E}}_{3} } \right);\)
 
4.
\(\left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right) \oplus {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \oplus {\mathbb{E}}_{3} } \right) \wedge \left( {{\mathbb{E}}_{2} \oplus {\mathbb{E}}_{3} } \right);\)
 
5.
\(\left( {{\mathbb{E}}_{1} \vee {\mathbb{E}}_{2} } \right) \otimes {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \otimes {\mathbb{E}}_{3} } \right) \vee \left( {{\mathbb{E}}_{2} \otimes {\mathbb{E}}_{3} } \right);{\text{ and}}\)
 
6.
\(\left( {{\mathbb{E}}_{1} \wedge {\mathbb{E}}_{2} } \right) \otimes {\mathbb{E}}_{3} = \left( {{\mathbb{E}}_{1} \otimes {\mathbb{E}}_{3} } \right) \wedge \left( {{\mathbb{E}}_{2} \otimes {\mathbb{E}}_{3} } \right).\)
 
Proof
Similar to the case of Theorem 1, the proofs are omitted.

Complex q-rung orthopair fuzzy Einstein arithmetic aggregation operators

In this section, we propose complex q-rung orthopair fuzzy Einstein aggregation operators.

Complex q-rung orthopair fuzzy Einstein weighted averaging operator

The complex q-rung orthopair fuzzy Einstein weighted averaging operator is investigated, and its properties are discussed.
Definition 10
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the Cq-ROFEWA operator is given as \({\text{Cq-ROFEWA}}:{{\aleph }}^{n}\to {\aleph }\), and defined by:
$$ \begin{aligned} & {\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\\ &\quad ={\omega }_{1}{\mathbb{E}}_{1}\oplus {\omega }_{2}{\mathbb{E}}_{2}\oplus , \cdots , \oplus {\omega }_{n}{\mathbb{E}}_{n}={\oplus }_{i=1}^{n}{\omega }_{i}{\mathbb{E}}_{i} \end{aligned} $$
(9)
Here, the symbol \(\aleph \) represents the family of Cq-ROFNs, and the weight vector is defined as \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\).
Remark 1
By substituting \({\omega }_{i}=\frac{1}{n}\) for all instances of \(i\), the Cq-ROFEWA operator is reduced to the complex q-rung orthopair fuzzy averaging (Cq-ROFA) operator, as follows:
$$ \begin{aligned} {\text{Cq-ROFA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right) & =\frac{1}{n}\left({\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}\oplus , \cdots , \oplus {\mathbb{E}}_{n}\right)\\ & =\frac{1}{n}{\oplus }_{i=1}^{n}{\mathbb{E}}_{i }. \end{aligned} $$
(10)
According to Einstein’s operational laws, we obtain the following result.
Theorem 4
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the aggregating value from Definition 10 is a Cq-ROFN, and:
$${\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{N}}_{i}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{W}}_{{\mathcal{N}}_{i}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right). $$
(11)
The proof of Theorem 4 is presented in the Appendix.
Theorem 5
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right)\in {\text{Cq-ROFN}},i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the relationship between the Cq-ROFEWA and Cq-ROFWA operators is expressed as follows:
$$ \begin{aligned} & {\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\\ &\quad \le {\text{Cq-ROFWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right), \end{aligned} $$
where the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]. \)
The proof of Theorem 5 is presented in the Appendix.
The Cq-ROFEWA operator has the following properties.
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right)\in {\text{Cq-ROFN}},i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs and the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\). Then, we have the following:
1.
Idea: When \({\mathbb{E}}_{i}={\mathbb{E}}_{0}=\left({\mathcal{T}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{0}}},{\mathcal{N}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{0}}}\right),\forall i\), \({\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)={\mathbb{E}}_{0}\).
 
2.
Boundedness: Let \({\mathbb{E}}_{i}^-=\left(\text{min}\left({\mathcal{T}}_{i}\right){\text{e}}^{i2\pi \text{min}\left({\mathcal{W}}_{{\mathcal{T}}_{i}}\right)},\text{max}\left({\mathcal{N}}_{i}\right){\text{e}}^{i2\pi \text{max}\left({\mathcal{W}}_{{\mathcal{N}}_{i}}\right)}\right),{\mathbb{E}}_{i}^{+}=\left(\text{max}\left({\mathcal{T}}_{i}\right){\text{e}}^{i2\pi \text{max}\left({\mathcal{W}}_{{\mathcal{T}}_{i}}\right)},\text{min}\left({\mathcal{N}}_{i}\right){\text{e}}^{i2\pi \text{min}\left({\mathcal{W}}_{{\mathcal{N}}_{i}}\right)}\right)\); then, \({\mathbb{E}}_{i}^-\le {\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\le {\mathbb{E}}_{i}^{+}\).
 
3.
Monotonicity: If \({\mathbb{E}}_{i}\le {\mathbb{E}}_{i}^{{^{\prime}}{^{\prime}}},\forall i\), \({\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\le {\text{Cq-ROFEWA}}\left({\mathbb{E}}_{1}^{{^{\prime}}{^{\prime}}},{\mathbb{E}}_{2}^{{^{\prime}}{^{\prime}}},\ldots,{\mathbb{E}}_{n}^{{^{\prime}}{^{\prime}}}\right)\).
 
Proofs of these properties are presented in the Appendix.

Complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator

Definition 11
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the Cq-ROFEOWA operator is given by \({\text{Cq-ROFEOWA}}:{{\aleph }}^{n}\to {\aleph }\)
$$ \begin{aligned} & {\text{Cq-ROFEOWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)={\omega }_{1}{\mathbb{E}}_{O\left(1\right)} \\ &\quad \oplus {\omega }_{2}{\mathbb{E}}_{O\left(2\right)}\oplus , \cdots , \oplus {\omega }_{n}{\mathbb{E}}_{O\left(n\right)}={\oplus }_{i=1}^{n}{\omega }_{i}{\mathbb{E}}_{O\left(i\right)} \end{aligned} $$
(12)
where the symbol \(\aleph \) represents the family of Cq-ROFNs, and the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\). \(\left(O\left(1\right),O\left(2\right),\ldots,O\left(n\right)\right)\) is a permutation of \(\left(i=\text{1,2},\ldots,n\right)\) such that \({\mathbb{E}}_{O\left(i\right)}\le {\mathbb{E}}_{O\left(i-1\right)}.\)
Remark 2
By substituting \({\omega }_{i}=\frac{1}{n}\) for all instances of \(i\), the Cq-ROFEOWA operator is reduced to the complex q-rung orthopair fuzzy ordered averaging (Cq-ROFOA) operator, as follows:
$$ \begin{aligned} & {\text{Cq-ROFA}}\left( {{\mathbb{E}}_{1} ,{\mathbb{E}}_{2} , \ldots ,{\mathbb{E}}_{n} } \right) \\ &\quad = \frac{1}{n}\left( {{\mathbb{E}}_{{O\left( 1 \right)}} \oplus {\mathbb{E}}_{{O\left( 2 \right)}} \oplus , \cdots , \oplus {\mathbb{E}}_{{O\left( n \right)}} } \right) \\ &\quad = \frac{1}{n} \oplus _{{i = 1}}^{n} {\mathbb{E}}_{{O\left( i \right)}} . \end{aligned} $$
(13)
According to Einstein’s operational laws, we examine the following results.
Theorem 6
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the aggregating value from Definition 11 is a Cq-ROFN, and
$$\text{Cq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{N}}_{O\left(i\right)}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
(14)
where the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\). \(\left(O\left(1\right),O\left(2\right),\ldots,O\left(n\right)\right)\) is a permutation of \(\left(i=\text{1,2},\ldots,n\right)\) such that \({\mathbb{E}}_{O\left(i\right)}\le {\mathbb{E}}_{O\left(i-1\right)}\). When we consider \({\mathcal{N}}_{O\left(i\right)}^{q}=1-{\mathcal{T}}_{O\left(i\right)}^{q}\), Eq. (14) is converted into the following equation:
$${\text{Cq-ROFEOWA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ {\left(1-\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(1-\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}}\end{array}\right).$$
Proof
Similar to the case of Theorem 4, the proof is omitted.
Next, we discuss the properties of this operator.
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right)\in {\text{Cq-ROFN}},i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs and the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\). Then, we have:
1.
Idea: When \({\mathbb{E}}_{i}={\mathbb{E}}_{0}=\left({\mathcal{T}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{0}}},{\mathcal{N}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{0}}}\right),\forall i\), \(\text{Cq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)={\mathbb{E}}_{0}\).
 
2.
Boundedness: Let \({\mathbb{E}}_{i}^-=\left(\text{min}\left({\mathcal{T}}_{i}\right){\text{e}}^{i2\pi \text{min}\left({\mathcal{W}}_{{\mathcal{T}}_{i}}\right)},\text{max}\left({\mathcal{N}}_{i}\right){\text{e}}^{i2\pi \text{max}\left({\mathcal{W}}_{{\mathcal{N}}_{i}}\right)}\right),{\mathbb{E}}_{i}^{+}=\left(\text{max}\left({\mathcal{T}}_{i}\right){\text{e}}^{i2\pi \text{max}\left({\mathcal{W}}_{{\mathcal{T}}_{i}}\right)},\text{min}\left({\mathcal{N}}_{i}\right){\text{e}}^{i2\pi \text{min}\left({\mathcal{W}}_{{\mathcal{N}}_{i}}\right)}\right)\); then, \({\mathbb{E}}_{i}^-\le \text{Cq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\le {\mathbb{E}}_{i}^{+}\).
 
3.
Monotonicity: If \({\mathbb{E}}_{i}\le {\mathbb{E}}_{i}^{{^{\prime}}{^{\prime}}},\forall i\), \(\text{Cq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\le \text{Cq-ROFEOWA}\left({\mathbb{E}}_{1}^{{^{\prime}}{^{\prime}}},{\mathbb{E}}_{2}^{{^{\prime}}{^{\prime}}},\ldots,{\mathbb{E}}_{n}^{{^{\prime}}{^{\prime}}}\right)\).
 

Generalized complex q-rung orthopair fuzzy Einstein weighted averaging operator

Definition 12
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the GCq-ROFEWA operator is given by \({\text{GCq-ROFEWA}}:{{\aleph }}^{n}\to {\aleph }\)
$$ \begin{aligned} & \text{GCq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\\ &\quad ={\left({\omega }_{1}{\mathbb{E}}_{1}^{\delta }\oplus {\omega }_{2}{\mathbb{E}}_{2}^{\delta }\oplus , \cdots , \oplus {\omega }_{n}{\mathbb{E}}_{n}^{\delta }\right)}^{\frac{1}{\delta }}={\left({\oplus }_{i=1}^{n}{\omega }_{i}{\mathbb{E}}_{i}^{\delta }\right)}^{\frac{1}{\delta }}\to \end{aligned} $$
(15)
where the symbol \(\aleph \) represents the family of Cq-ROFNs, and the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\), \(\delta >0\).
Remark 3
By substituting \({\omega }_{i}=\frac{1}{n}\) for all instances of \(i\), the GCq-ROFEWA operator is reduced to the generalized complex q-rung orthopair fuzzy averaging (GCq-ROFA) operator, as follows:
$$ \begin{aligned} & {\text{GCq-ROFA}}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right) \\ &\quad ={\left(\frac{1}{n}\left({\mathbb{E}}_{1}^{\delta }\oplus {\mathbb{E}}_{2}^{\delta }\oplus , \cdots , \oplus {\mathbb{E}}_{n}^{\delta }\right)\right)}^{\frac{1}{\delta }}={\left(\frac{1}{n}{\oplus }_{i=1}^{n}{\mathbb{E}}_{i}^{\delta }\right)}^{\frac{1}{\delta }} \end{aligned} $$
(16)
When \(\delta =1\), the GCq-ROFEWA operator is reduced to the Cq-ROFEWA operator.
Using Einstein’s operational laws, the following result is obtained.
Theorem 7
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the aggregating value from Definition 12 is a Cq-ROFN, and:
$$\begin{aligned}&\text{GCq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\hfill\\ &\quad =\left(\begin{array}{c}\frac{{\left(2\right)}^\frac{1}{q}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{2\delta }}}{{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{i}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{2\delta }}}{{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}^\frac{1}{q}}\right)},\\ {\left(\frac{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}-\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{i}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{i}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}-\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}\right)}^\frac{1}{q}}\end{array}\right).\end{aligned}$$
(17)
Proof
Similar to the case of Theorem 4, the proof is omitted.

Generalized complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator

Definition 13
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the GCq-ROFEOWA operator is given by \(\text{GCq-ROFEOWA}:{{\aleph }}^{n}\to {\aleph }\)
$$ \begin{aligned} & \text{GCq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\\ &\quad ={\left({\omega }_{1}{\mathbb{E}}_{O\left(1\right)}^{\delta }\oplus {\omega }_{2}{\mathbb{E}}_{O\left(2\right)}^{\delta }\oplus , \cdots , \oplus {\omega }_{n}{\mathbb{E}}_{O\left(n\right)}^{\delta }\right)}^{\frac{1}{\delta }}\\ &\quad ={\left({\oplus }_{i=1}^{n}{\omega }_{i}{\mathbb{E}}_{O\left(i\right)}^{\delta }\right)}^{\frac{1}{\delta }}\to \end{aligned} $$
(18)
where the symbol \(\aleph \) represents the family of Cq-ROFNs, and the weight vector is defined by \(\sum_{i=1}^{n}{\omega }_{i}=1,{\omega }_{i}\in [\text{0,1}]\), \(\delta >0\).
Remark 4
By substituting \({\omega }_{i}=\frac{1}{n}\) for all instances of \(i\), the GCq-ROFEOWA operator is reduced to the generalized complex q-rung orthopair fuzzy ordered averaging (GCq-ROFOA) operator, as follows:
$$ \begin{aligned} & \text{GCq-ROFOA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right) \\ &\quad ={\left(\frac{1}{n}\left({\mathbb{E}}_{O\left(1\right)}^{\delta }\oplus {\mathbb{E}}_{O\left(2\right)}^{\delta }\oplus , \cdots , \oplus {\mathbb{E}}_{O\left(n\right)}^{\delta }\right)\right)}^{\frac{1}{\delta }} \\ &\quad ={\left(\frac{1}{n}{\oplus }_{i=1}^{n}{\mathbb{E}}_{O\left(i\right)}^{\delta }\right)}^{\frac{1}{\delta }} \end{aligned} $$
(19)
When \(\delta =1\), the GCq-ROFEOWA operator is reduced to the Cq-ROFEOWA operator.
According to Einstssein’s operational laws, we obtain the following result.
Theorem 8
Suppose that \({\mathbb{E}}_{i}=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right),i=\text{1,2},\ldots,n\) comprise the family of Cq-ROFNs; then, the aggregating value from Definition 13 is a Cq-ROFN, and
$$\begin{aligned} & \text{GCq-ROFEOWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\\ &\quad =\left(\begin{array}{c}\frac{{\left(2\right)}^\frac{1}{q}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{2\delta }}}{{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left({\mathcal{T}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{2\delta }}}{{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(2-{\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{T}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}^\frac{1}{q}}\right)},\\ {\left(\frac{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}-\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }-{\left(1-{\mathcal{N}}_{O\left(i\right)}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}-\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}{\left(\begin{array}{c}{\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}+\\ 3{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}+\\ {\left(\begin{array}{c}{\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }+3{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}-\\ {\prod }_{i=1}^{n}{\left\{{\left(1+{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{N}}_{O\left(i\right)}}^{q}\right)}^{\delta }\right\}}^{{\omega }_{i}}\end{array}\right)}^{\frac{1}{\delta }}\end{array}\right)}\right)}^\frac{1}{q}}\end{array}\right). \end{aligned}$$
(20)
Proof
Similar to the case of Theorem 4, the proof is omitted.
In Eq. (20), \(\delta\) plays a key role in the aggregation of the Cq-ROFNs. The parameter \(\delta\) takes a special number; then, the GCq-ROFEWA operator can be reduced. For example, when \(\delta = 1\), Eq. (20) is converted into Eq. (14).

MAGDM approach based on proposed operators

Description of decision-making problem

Suppose an MAGDM problem in which \(A = \left\{ {x_{1} ,x_{2} , \ldots ,x_{m} } \right\}\) represents the family of alternatives, and \(G = \left\{ {G_{1} ,G_{2} , \ldots ,G_{n} } \right\}\) represents the family of finite attributes with weight vector \(\omega = \left( {\omega_{1} ,\omega_{2} , \ldots ,\omega_{n} } \right)\). The decision matrix \(A = \left( {{\mathbb{E}}_{ij} } \right)_{m \times n}\) is given by decision makers through evaluation of the attribute \({G}_{j}\) under the alternative\({x}_{i}\), which is represented by the Cq-ROFN. The complex q-rung orthopair fuzzy decision matrix is presented in Table 1.
Table 1
Complex q-rung orthopair fuzzy decision matrix
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\(\ldots\ldots\ldots\ldots\)
\({{{G}}}_{{{n}}}\)
\({{{x}}}_{1}\)
\(\left({\mathcal{T}}_{11}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{11}}},{\mathcal{N}}_{11}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{11}}}\right)\)
\(\left({\mathcal{T}}_{12}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{12}}},{\mathcal{N}}_{12}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{12}}}\right)\)
\(\ldots\ldots\ldots\ldots\)
\(\left({\mathcal{T}}_{1n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{1n}}},{\mathcal{N}}_{1n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{1n}}}\right)\)
\({{{x}}}_{2}\)
\(\left({\mathcal{T}}_{21}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{21}}},{\mathcal{N}}_{21}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{21}}}\right)\)
\(\left({\mathcal{T}}_{22}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{22}}},{\mathcal{N}}_{22}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{22}}}\right)\)
\(\ldots\ldots\ldots\ldots\)
\(\left({\mathcal{T}}_{2n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{2n}}},{\mathcal{N}}_{2n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{2n}}}\right)\)
\({{{x}}}_{3}\)
\(\left({\mathcal{T}}_{31}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{31}}},{\mathcal{N}}_{31}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{31}}}\right)\)
\(\left({\mathcal{T}}_{32}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{32}}},{\mathcal{N}}_{32}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{32}}}\right)\)
\(\ldots\ldots\ldots\ldots\)
\(\left({\mathcal{T}}_{3n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{3n}}},{\mathcal{N}}_{3n}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{3n}}}\right)\)
\(\ldots\ldots\)
\(\ldots\ldots\)
\(\ldots\ldots\)
\(\ldots\ldots\)
\(\ldots\ldots\)
\({{{x}}}_{{{m}}}\)
\(\left({\mathcal{T}}_{m1}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{m1}}},{\mathcal{N}}_{m1}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{m1}}}\right)\)
\(\left({\mathcal{T}}_{m2}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{m2}}},{\mathcal{N}}_{m2}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{m2}}}\right)\)
\(\ldots\ldots\ldots\ldots\)
\(\left({\mathcal{T}}_{mn}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{mn}}},{\mathcal{N}}_{mn}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{mn}}}\right)\)
We use the proposed operators to solve this decision-making problem, and the steps are as follows.
Step 1: Normalize the decision matrix with respect to.
$$ {r}_{ij} =\left({\mathcal{T}}_{ij}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{ij}}},{\mathcal{N}}_{ij}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{ij}}}\right)=\left\{\begin{array}{cc}{\mathbb{E}}_{ij}^{c}& j \quad \text{is benefit types}\\ {\mathbb{E}}_{ij}& j \quad \text{is cost types}\end{array}\right.$$
(21)
Step 2: Use Eq. (20) to aggregate the normalized decision matrix.
$${r}_{i}=GCq-ROFO{{W}}A\left({r}_{i1},{r}_{i2},\ldots,{r}_{in}\right),i=\text{1,2},3,\ldots,m$$
Step 3: Use Eq. (7) to examine the score values of the aggregated values obtained in step 2.
Step 4: Rank all the alternatives according to the score values from step 3, and select the best one.
Step 5: End.

Illustrative numerical example

An example was taken from the area of the investment, where the investor wishes to invest money in a standard company. After a careful analysis, five possible alternatives represented by \(A=\left\{{x}_{1},{x}_{2},\ldots,{x}_{m}\right\}\) were considered, as shown in Table 2.
Table 2
Symbols of the alternatives
Symbols
\({{{x}}}_{1}\)
\({{{x}}}_{2}\)
\({{{x}}}_{3}\)
\({{{x}}}_{4}\)
\({{{x}}}_{5}\)
Representations
Computer company
Furniture company
Car company
Chemical company
Food company
Furthermore, these alternatives were evaluated using four attributes represented by \(G=\left\{{G}_{1},{G}_{2},\ldots,{G}_{n}\right\}\), which are presented in Table 3.
Table 3
Representations of the attributes
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\({{{G}}}_{3}\)
\({{{G}}}_{4}\)
Representations
Technical ability
Accepted benefits
Competitive power in market
Management capability
The weight vector for the given attributes was given as \(\omega =\left\{\text{0.25,0.15,0.4,0.2}\right\}\); then, the complex q-rung orthopair fuzzy decision matrix was obtained, as shown in Table 4.
Table 4
Complex q-rung orthopair fuzzy decision matrix
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\({{{G}}}_{3}\)
\({{{G}}}_{4}\)
\({{{x}}}_{1}\)
\(\left(0.22{\text{e}}^{i2\pi \left(0.31\right)},0.4{\text{e}}^{i2\pi \left(0.45\right)}\right)\)
\(\left(0.35{\text{e}}^{i2\pi \left(0.40\right)},0.33{\text{e}}^{i2\pi \left(0.3\right)}\right)\)
\(\left(0.5{\text{e}}^{i2\pi \left(0.45\right)},0.23{\text{e}}^{i2\pi \left(0.11\right)}\right)\)
\(\left(0.21{\text{e}}^{i2\pi \left(0.26\right)},0.19{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\({{{x}}}_{2}\)
\(\left(0.24{\text{e}}^{i2\pi \left(0.31\right)},0.41{\text{e}}^{i2\pi \left(0.46\right)}\right)\)
\(\left(0.36{\text{e}}^{i2\pi \left(0.41\right)},0.34{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.51{\text{e}}^{i2\pi \left(0.46\right)},0.24{\text{e}}^{i2\pi \left(0.12\right)}\right)\)
\(\left(0.22{\text{e}}^{i2\pi \left(0.27\right)},0.20{\text{e}}^{i2\pi \left(0.23\right)}\right)\)
\({{{x}}}_{3}\)
\(\left(0.25{\text{e}}^{i2\pi \left(0.33\right)},0.42{\text{e}}^{i2\pi \left(0.47\right)}\right)\)
\(\left(0.37{\text{e}}^{i2\pi \left(0.42\right)},0.35{\text{e}}^{i2\pi \left(0.32\right)}\right)\)
\(\left(0.52{\text{e}}^{i2\pi \left(0.47\right)},0.25{\text{e}}^{i2\pi \left(0.13\right)}\right)\)
\(\left(0.23{\text{e}}^{i2\pi \left(0.28\right)},0.21{\text{e}}^{i2\pi \left(0.24\right)}\right)\)
\({{{x}}}_{4}\)
\(\left(0.27{\text{e}}^{i2\pi \left(0.34\right)},0.43{\text{e}}^{i2\pi \left(0.48\right)}\right)\)
\(\left(0.38{\text{e}}^{i2\pi \left(0.43\right)},0.36{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\(\left(0.53{\text{e}}^{i2\pi \left(0.48\right)},0.26{\text{e}}^{i2\pi \left(0.14\right)}\right)\)
\(\left(0.24{\text{e}}^{i2\pi \left(0.29\right)},0.22{\text{e}}^{i2\pi \left(0.25\right)}\right)\)
\({{{x}}}_{5}\)
\(\left(0.35{\text{e}}^{i2\pi \left(0.35\right)},0.44{\text{e}}^{i2\pi \left(0.49\right)}\right)\)
\(\left(0.39{\text{e}}^{i2\pi \left(0.44\right)},0.37{\text{e}}^{i2\pi \left(0.34\right)}\right)\)
\(\left(0.54{\text{e}}^{i2\pi \left(0.49\right)},0.27{\text{e}}^{i2\pi \left(0.15\right)}\right)\)
\(\left(0.25{\text{e}}^{i2\pi \left(0.30\right)},0.23{\text{e}}^{i2\pi \left(0.26\right)}\right)\)
The steps of the decision-making process were as follows:
Step 1: Normalize the decision matrix and obtain the results shown in Table 5.
Table 5
Normalized complex q-rung orthopair fuzzy decision matrix
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\({{{G}}}_{3}\)
\({{{G}}}_{4}\)
\({{{x}}}_{1}\)
\(\left(0.4{\text{e}}^{i2\pi \left(0.45\right)},0.22{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.35{\text{e}}^{i2\pi \left(0.40\right)},0.33{\text{e}}^{i2\pi \left(0.3\right)}\right)\)
\(\left(0.5{\text{e}}^{i2\pi \left(0.45\right)},0.23{\text{e}}^{i2\pi \left(0.11\right)}\right)\)
\(\left(0.21{\text{e}}^{i2\pi \left(0.26\right)},0.19{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\({{{x}}}_{2}\)
\(\left(0.41{\text{e}}^{i2\pi \left(0.46\right)},0.24{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.36{\text{e}}^{i2\pi \left(0.41\right)},0.34{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.51{\text{e}}^{i2\pi \left(0.46\right)},0.24{\text{e}}^{i2\pi \left(0.12\right)}\right)\)
\(\left(0.22{\text{e}}^{i2\pi \left(0.27\right)},0.20{\text{e}}^{i2\pi \left(0.23\right)}\right)\)
\({{{x}}}_{3}\)
\(\left(0.42{\text{e}}^{i2\pi \left(0.47\right)},0.25{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\(\left(0.37{\text{e}}^{i2\pi \left(0.42\right)},0.35{\text{e}}^{i2\pi \left(0.32\right)}\right)\)
\(\left(0.52{\text{e}}^{i2\pi \left(0.47\right)},0.25{\text{e}}^{i2\pi \left(0.13\right)}\right)\)
\(\left(0.23{\text{e}}^{i2\pi \left(0.28\right)},0.21{\text{e}}^{i2\pi \left(0.24\right)}\right)\)
\({{{x}}}_{4}\)
\(\left(0.43{\text{e}}^{i2\pi \left(0.48\right)},0.27{\text{e}}^{i2\pi \left(0.34\right)}\right)\)
\(\left(0.38{\text{e}}^{i2\pi \left(0.43\right)},0.36{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\(\left(0.53{\text{e}}^{i2\pi \left(0.48\right)},0.26{\text{e}}^{i2\pi \left(0.14\right)}\right)\)
\(\left(0.24{\text{e}}^{i2\pi \left(0.29\right)},0.22{\text{e}}^{i2\pi \left(0.25\right)}\right)\)
\({{{x}}}_{5}\)
\(\left(0.44{\text{e}}^{i2\pi \left(0.49\right)},0.35{\text{e}}^{i2\pi \left(0.35\right)}\right)\)
\(\left(0.39{\text{e}}^{i2\pi \left(0.44\right)},0.37{\text{e}}^{i2\pi \left(0.34\right)}\right)\)
\(\left(0.54{\text{e}}^{i2\pi \left(0.49\right)},0.27{\text{e}}^{i2\pi \left(0.15\right)}\right)\)
\(\left(0.25{\text{e}}^{i2\pi \left(0.30\right)},0.23{\text{e}}^{i2\pi \left(0.26\right)}\right)\)
Step 2: Obtain the aggregation results using Eq. (20), which are presented in Table 6.
Table 6
Aggregation values of the Cq-ROFNs
Method
Getting values
\( r_{1} = {\text{GCq - ROFOWA}}\left( {r_{{11}} ,r_{{12}} , \ldots ,r_{{1n}} } \right) \)
\(\left(0.317{\text{e}}^{i2\pi \left(0.319\right)},0.082{\text{e}}^{i2\pi \left(0.073\right)}\right)\)
\( r_{2} = {\text{GCq - ROFOWA}}\left( {r_{{21}} ,r_{{22}} , \ldots ,r_{{2n}} } \right) \)
\(\left(0.321{\text{e}}^{i2\pi \left(0.323\right)},0.088{\text{e}}^{i2\pi \left(0.069\right)}\right)\)
\( r_{3} = {\text{GCq - ROFOWA}}\left( {r_{{31}} ,r_{{32}} , \ldots ,r_{{3n}} } \right) \)
\(\left(0.325{\text{e}}^{i2\pi \left(0.327\right)},0.094{\text{e}}^{i2\pi \left(0.075\right)}\right)\)
\( r_{4} = {\text{GCq - ROFOWA}}\left( {r_{{41}} ,r_{{42}} , \ldots ,r_{{4n}} } \right) \)
\(\left(0.329{\text{e}}^{i2\pi \left(0.331\right)},0.1{\text{e}}^{i2\pi \left(0.08\right)}\right)\)
\( r_{5} = {\text{GCq - ROFOWA}}\left( {r_{{51}} ,r_{{52}} , \ldots ,r_{{5n}} } \right) \)
\(\left(0.333{\text{e}}^{i2\pi \left(0.335\right)},0.116{\text{e}}^{i2\pi \left(0.085\right)}\right)\)
Step 3: Obtain the scores of the aggregated values using Eq. (7), which are presented in Table 7.
Table 7
Score values of the Cq-ROFNs
Score values of the alternatives
\(\mathcal{S}\left({{{x}}}_{1}\right)=\mathcal{S}\left({{{r}}}_{1}\right)=\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.241\)
\(\mathcal{S}\left({{{x}}}_{2}\right)=\mathcal{S}\left({{{r}}}_{2}\right)=\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.244\)
\(\mathcal{S}\left({{{x}}}_{3}\right)=\mathcal{S}\left({{{r}}}_{3}\right)=\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.242\)
\(\mathcal{S}\left({{{x}}}_{4}\right)=\mathcal{S}\left({{{r}}}_{4}\right)=\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.239\)
\(\mathcal{S}\left({{{x}}}_{5}\right)=\mathcal{S}\left({{{r}}}_{5}\right)=\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.233\)
Step 4: Rank all the alternatives and select the best one.
$${\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}$$
Hence, the best alternative is \({\mathbb{E}}_{2}\), which represents the furniture company.
Step 5: End.

Effect of parameter \({{\delta}}\)

In this subsection, we examine the effect of the parameter δ on the ranking results. We obtained the ranking results for different values of the parameter δ, as shown in Table 8 (\(q\) was 1).
Table 8
Effect of the parameter \(\updelta \), for \(\text{q}=1\)
Value of \({{\delta}}\)
Score values of the methods
Rankings of the methods
\({{\delta}}=2\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.336,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.339,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.331,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.321,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.295\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
\({{\delta}}=3\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.282,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.284,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.181,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.72,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.23\)
\({\mathbb{E}}_{4}\le {\mathbb{E}}_{5}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
\({{\delta}}=5\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.001,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.002,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.0019,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.002,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.001\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{2}\)
\({{\delta}}=7\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.0026,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.0030,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.0029,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.0029,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.0021\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
\({{\delta}}=10\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.0031,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.0036,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.0036,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.0035,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.0024\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{2}\)
\({{\delta}}=15\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.004,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.003,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.004,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.005,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.008\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
\({{\delta}}=20\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.004,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.004,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.005\)
\(,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.006,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.009\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
As shown in Table 8, the parameter \(\delta \) affected the ranking results. However, the best alternative did not change.

Effect of parameter \({{q}}\)

In this subsection, we examine the effect of the parameter \(q\) on the ranking results. We obtained the ranking results for different values of \(q\), as shown in Table 9 (\(\delta \) was 1).
Table 9
Effect of the parameter \(\text{q}\) for \(\updelta =1\)
Value of \({{q}}\)
Score values of the methods
Rankings of the methods
\({{q}}=2\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.0082,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.0088,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.0084,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.0078,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.0059\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
\({{q}}=3\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.0021,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.0021,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.0025,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.003,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.0039\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
\({{q}}=4\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.00058,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.00053,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.00077,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.00093,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.00095\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
\({{q}}=5\)
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.00020,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.000015,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.00019,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.00024,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.00036\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
As indicated by Table 9, the parameter \(q\) affected the ranking results. However, the best alternative did not change.

Advantages and comparative analysis

The proposed method was compared with existing approaches to highlight its advantages.
We compared Garg and Rani’s method [40] based on the power aggregation operators for the CIFS and Garg and Rani’s method [42] based on the aggregation operators for the CIFS with the proposed method for the CPFS and Cq-ROFS. The results are presented in Table 10 and Fig. 2.
Table 10
Comparison of the proposed method with existing approaches
Methods
Score values of the methods
Rankings of the methods
Garg and Rani [40]
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.231,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.234,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.232,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.229,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.222\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
Rani and Garg [42]
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.251,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.254,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.252,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.249,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.243\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
Proposed Method for CPFS
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.0082,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.0088,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.0084,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.0078,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.0059\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\)
Proposed methods for Cq-ROFS
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.0021,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.0021,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.0025,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.003,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.0039\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{1}\le {\mathbb{E}}_{2}\)
Figure 2 contains five alternatives represented by \({\mathbb{E}}_{i}\left(i=\text{1,2},\text{3,4},5\right)\). To identify the best alternative among them, we adopt four types of operators, whose representations are presented in Table 10. Two of the operators existed previously, and the other two are newly proposed herein.
As indicated by Table 10 and Fig. 2, we obtained the same ranking results for the four methods. This validates the proposed method.
Furthermore, the geometric interpretations of the range of Cq-ROFSs and the existing methods are shown in Fig. 3, which represents the unit disc in a complex plane.
The advantages of the proposed method are explained below.

First numerical example for comparison

An example is taken from the area of the investment, where the investor wishes to invest money in a stranded company. After a careful analysis, we consider the five possible alternatives represented by \(A=\left\{{x}_{1},{x}_{2},\ldots,{x}_{5}\right\}\), as shown in Table 2. The alternatives are evaluated using four attributes represented by \(G=\left\{{G}_{1},{G}_{2},\ldots,{G}_{4}\right\}\), as shown in Table 3. The weight vector for the given attributes is given as \(\omega =\left\{\text{0.25,0.15,0.4,0.2}\right\}\), and the normalized complex q-rung orthopair fuzzy decision matrix is presented in Table 11.
Table 11
Normalized complex q-rung orthopair fuzzy decision matrix
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\({{{G}}}_{3}\)
\({{{G}}}_{4}\)
\({{{x}}}_{1}\)
\(\left(0.7{\text{e}}^{i2\pi \left(0.65\right)},0.22{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.61{\text{e}}^{i2\pi \left(0.7\right)},0.33{\text{e}}^{i2\pi \left(0.3\right)}\right)\)
\(\left(0.8{\text{e}}^{i2\pi \left(0.94\right)},0.23{\text{e}}^{i2\pi \left(0.11\right)}\right)\)
\(\left(0.84{\text{e}}^{i2\pi \left(0.7\right)},0.19{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\({{{x}}}_{2}\)
\(\left(0.71{\text{e}}^{i2\pi \left(0.66\right)},0.24{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.62{\text{e}}^{i2\pi \left(0.71\right)},0.34{\text{e}}^{i2\pi \left(0.31\right)}\right)\)
\(\left(0.81{\text{e}}^{i2\pi \left(0.93\right)},0.24{\text{e}}^{i2\pi \left(0.12\right)}\right)\)
\(\left(0.83{\text{e}}^{i2\pi \left(0.72\right)},0.20{\text{e}}^{i2\pi \left(0.23\right)}\right)\)
\({{{x}}}_{3}\)
\(\left(0.72{\text{e}}^{i2\pi \left(0.67\right)},0.25{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\(\left(0.63{\text{e}}^{i2\pi \left(0.72\right)},0.35{\text{e}}^{i2\pi \left(0.32\right)}\right)\)
\(\left(0.82{\text{e}}^{i2\pi \left(0.92\right)},0.25{\text{e}}^{i2\pi \left(0.13\right)}\right)\)
\(\left(0.82{\text{e}}^{i2\pi \left(0.73\right)},0.21{\text{e}}^{i2\pi \left(0.24\right)}\right)\)
\({{{x}}}_{4}\)
\(\left(0.73{\text{e}}^{i2\pi \left(0.68\right)},0.27{\text{e}}^{i2\pi \left(0.34\right)}\right)\)
\(\left(0.64{\text{e}}^{i2\pi \left(0.73\right)},0.36{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\(\left(0.83{\text{e}}^{i2\pi \left(0.91\right)},0.26{\text{e}}^{i2\pi \left(0.14\right)}\right)\)
\(\left(0.81{\text{e}}^{i2\pi \left(0.74\right)},0.22{\text{e}}^{i2\pi \left(0.25\right)}\right)\)
\({{{x}}}_{5}\)
\(\left(0.74{\text{e}}^{i2\pi \left(0.69\right)},0.35{\text{e}}^{i2\pi \left(0.35\right)}\right)\)
\(\left(0.65{\text{e}}^{i2\pi \left(0.74\right)},0.37{\text{e}}^{i2\pi \left(0.34\right)}\right)\)
\(\left(0.84{\text{e}}^{i2\pi \left(0.9\right)},0.27{\text{e}}^{i2\pi \left(0.15\right)}\right)\)
\(\left(0.8{\text{e}}^{i2\pi \left(0.76\right)},0.23{\text{e}}^{i2\pi \left(0.26\right)}\right)\)
Using Eqs. (20) and (7) for \(\delta =20\), then the score values of the alternatives are obtained, as shown in Table 12 and Fig. 4.
Table 12
Score values of the proposed methods
Score values of the alternatives
\(\mathcal{S}\left({{{x}}}_{1}\right)=\mathcal{S}\left({{{r}}}_{1}\right)=\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.099\)
\(\mathcal{S}\left({{{x}}}_{2}\right)=\mathcal{S}\left({{{r}}}_{2}\right)=\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.096\)
\(\mathcal{S}\left({{{x}}}_{3}\right)=\mathcal{S}\left({{{r}}}_{3}\right)=\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.094\)
\(\mathcal{S}\left({{{x}}}_{4}\right)=\mathcal{S}\left({{{r}}}_{4}\right)=\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.093\)
\(\mathcal{S}\left({{{x}}}_{5}\right)=\mathcal{S}\left({{{r}}}_{5}\right)=\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.089\)
Then, all the alternatives are ranked as follows, and the best one is selected.
$${\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\le {\mathbb{E}}_{1}$$
Hence, the best alternative is \({\mathbb{E}}_{1}\), which represents the furniture company.
The proposed method is compared with existing approaches in Table 13 and Fig. 5.
Table 13
Comparison of the proposed method with existing approaches
Methods
Score values of the methods
Rankings of the methods
Garg and Rani [40]
\(\text{Cannot be Calculated}\)
\(\text{Cannot be Calculated}\)
Rani and Garg [42]
\(\text{Cannot be Calculated}\)
\(\text{Cannot be Calculated}\)
Proposed Method for CPFS
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.069,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.068,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.066\)
\(,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.064,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.061\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\le {\mathbb{E}}_{1}\)
Proposed methods for Cq-ROFS
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=0.099,\mathcal{S}\left({\mathbb{E}}_{2}\right)=0.096,\mathcal{S}\left({\mathbb{E}}_{3}\right)=0.094\)
\(,\mathcal{S}\left({\mathbb{E}}_{4}\right)=0.093,\mathcal{S}\left({\mathbb{E}}_{5}\right)=0.089\)
\({\mathbb{E}}_{5}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{2}\le {\mathbb{E}}_{1}\)
Figure 5 shows five alternatives represented by \({\mathbb{E}}_{i}\left(i=\text{1,2},\text{3,4},5\right)\). Because the two existing methods based on the CIFS [40] and [42] could not solve this problem, they are not included in Fig. 5. In this example, we select the complex Pythagorean fuzzy information form.
Therefore, this example demonstrates the advantages of the proposed method.

Second numerical example for comparison

An example is taken from the area of the investment, where the investor wishes to invest money in a stranded company. After a careful analysis, we consider the five possible alternatives represented by \(A=\left\{{x}_{1},{x}_{2},\ldots,{x}_{5}\right\}\), as shown in Table 2, which are evaluated using four attributes represented by \(G=\left\{{G}_{1},{G}_{2},\ldots,{G}_{4}\right\}\), as shown in Table 3. The weight vector for the given attributes is given as \(\omega =\left\{\text{0.25,0.15,0.4,0.2}\right\}\), and the normalized complex q-rung orthopair fuzzy decision matrix is presented in Table 14.
Table 14
Normalized complex q-rung orthopair fuzzy decision matrix
Symbols
\({{{G}}}_{1}\)
\({{{G}}}_{2}\)
\({{{G}}}_{3}\)
\({{{G}}}_{4}\)
\({{{x}}}_{1}\)
\(\left(0.7{\text{e}}^{i2\pi \left(0.65\right)},0.61{\text{e}}^{i2\pi \left(0.64\right)}\right)\)
\(\left(0.61{\text{e}}^{i2\pi \left(0.7\right)},0.51{\text{e}}^{i2\pi \left(0.69\right)}\right)\)
\(\left(0.8{\text{e}}^{i2\pi \left(0.94\right)},0.79{\text{e}}^{i2\pi \left(0.9\right)}\right)\)
\(\left(0.84{\text{e}}^{i2\pi \left(0.7\right)},0.19{\text{e}}^{i2\pi \left(0.33\right)}\right)\)
\({{{x}}}_{2}\)
\(\left(0.71{\text{e}}^{i2\pi \left(0.66\right)},0.62{\text{e}}^{i2\pi \left(0.65\right)}\right)\)
\(\left(0.62{\text{e}}^{i2\pi \left(0.71\right)},0.52{\text{e}}^{i2\pi \left(0.7\right)}\right)\)
\(\left(0.81{\text{e}}^{i2\pi \left(0.93\right)},0.8{\text{e}}^{i2\pi \left(0.91\right)}\right)\)
\(\left(0.83{\text{e}}^{i2\pi \left(0.72\right)},0.20{\text{e}}^{i2\pi \left(0.23\right)}\right)\)
\({{{x}}}_{3}\)
\(\left(0.72{\text{e}}^{i2\pi \left(0.67\right)},0.63{\text{e}}^{i2\pi \left(0.66\right)}\right)\)
\(\left(0.63{\text{e}}^{i2\pi \left(0.72\right)},0.53{\text{e}}^{i2\pi \left(0.71\right)}\right)\)
\(\left(0.82{\text{e}}^{i2\pi \left(0.92\right)},0.81{\text{e}}^{i2\pi \left(0.92\right)}\right)\)
\(\left(0.82{\text{e}}^{i2\pi \left(0.73\right)},0.21{\text{e}}^{i2\pi \left(0.24\right)}\right)\)
\({{{x}}}_{4}\)
\(\left(0.73{\text{e}}^{i2\pi \left(0.68\right)},0.64{\text{e}}^{i2\pi \left(0.67\right)}\right)\)
\(\left(0.64{\text{e}}^{i2\pi \left(0.73\right)},0.54{\text{e}}^{i2\pi \left(0.72\right)}\right)\)
\(\left(0.83{\text{e}}^{i2\pi \left(0.91\right)},0.82{\text{e}}^{i2\pi \left(0.89\right)}\right)\)
\(\left(0.81{\text{e}}^{i2\pi \left(0.74\right)},0.22{\text{e}}^{i2\pi \left(0.25\right)}\right)\)
\({{{x}}}_{5}\)
\(\left(0.74{\text{e}}^{i2\pi \left(0.69\right)},0.65{\text{e}}^{i2\pi \left(0.68\right)}\right)\)
\(\left(0.65{\text{e}}^{i2\pi \left(0.74\right)},0.55{\text{e}}^{i2\pi \left(073\right)}\right)\)
\(\left(0.84{\text{e}}^{i2\pi \left(0.9\right)},0.83{\text{e}}^{i2\pi \left(0.79\right)}\right)\)
\(\left(0.8{\text{e}}^{i2\pi \left(0.76\right)},0.23{\text{e}}^{i2\pi \left(0.26\right)}\right)\)
Using Eqs. (20) and (7) for \(\delta =20\), the score values of the alternatives are obtained, as shown in Table 15 and Fig. 6.
Table 15
Score values of the proposed method
Score values of the alternatives
\(\mathcal{S}\left({{{x}}}_{1}\right)=\mathcal{S}\left({{{r}}}_{1}\right)=\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.00357\)
\(\mathcal{S}\left({{{x}}}_{2}\right)=\mathcal{S}\left({{{r}}}_{2}\right)=\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.00234\)
\(\mathcal{S}\left({{{x}}}_{3}\right)=\mathcal{S}\left({{{r}}}_{3}\right)=\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.00287\)
\(\mathcal{S}\left({{{x}}}_{4}\right)=\mathcal{S}\left({{{r}}}_{4}\right)=\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.00283\)
\(\mathcal{S}\left({{{x}}}_{5}\right)=\mathcal{S}\left({{{r}}}_{5}\right)=\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.00224\)
Then, all the alternatives are ranked as follows, and the best one is selected.
$${\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{2}\le {\mathbb{E}}_{5}$$
Hence, the best alternative is \({\mathbb{E}}_{5}\), which represents the furniture company.
The proposed method is compared with existing approaches in Table 16 and Fig. 7.
Table 16
Comparison of the proposed method with existing approaches
Methods
Score values of the methods
Rankings of the methods
Garg and Rani [40]
\(\text{Cannot be calculated}\)
\(\text{Cannot be calculated}\)
Rani and Garg [42]
\(\text{Cannot be calculated}\)
\(\text{Cannot be calculated}\)
Proposed Method for CPFS
\(\text{Cannot be calculated}\)
\(\text{Cannot be calculated}\)
Proposed methods for Cq-ROFS
\(\mathcal{S}\left({\mathbb{E}}_{1}\right)=-0.00357,\mathcal{S}\left({\mathbb{E}}_{2}\right)=-0.00234,\mathcal{S}\left({\mathbb{E}}_{3}\right)=-0.00287\)
\(,\mathcal{S}\left({\mathbb{E}}_{4}\right)=-0.00283,\mathcal{S}\left({\mathbb{E}}_{5}\right)=-0.00224\)
\({\mathbb{E}}_{1}\le {\mathbb{E}}_{3}\le {\mathbb{E}}_{4}\le {\mathbb{E}}_{2}\le {\mathbb{E}}_{5}\)
Figure 7 shows five alternatives represented by \({\mathbb{E}}_{i}\left(i=\text{1,2},\text{3,4},5\right)\), as the methods based on the CIFS and CPFS cannot solve this problem. In Fig. 7, only the proposed method is shown, indicating that the proposed method is more general than the other methods.

Defense budget

Next, we discuss the defense budget of Pakistan. Information regarding the defense budget, national saving scheme, deposit and reserves, and development expenditure and revenue account for this country is presented below. According to this information, we discuss the strength and capability of armies or which one is powerful militaries.
1.
The total defense budget of the Pakistan army removes the lion’s share:
  • Pakistan army budget: 0.476%;
  • Pakistan air force budget: 0.21%;
  • Pakistan navy budget: 0.11%;
  • Pakistan’s inter-service budget: 0.20%.
 
2.
The total national saving scheme budget of Pakistan removes the lion’s share:
  • Pakistan investment deposit account budget: 0.8%;
  • Pakistan’s other accounts budget: 0.5%;
  • Pakistan total receipts budget: 0.17%;
  • Pakistan net receipts budget: 0.13%.
 
3.
The total deposit and reserves budget of Pakistan removes the lion’s share:
  • Pakistan zakat collection account budget: 0.25%;
  • Pakistan civil and criminal deposit amount budget: 0.16%;
  • Pakistan’s personal deposit budget: 0.11%;
  • Pakistan’s post office welfare found budget: 0.1%.
 
4.
The total development expenditure and revenue account budget of Pakistan take away the lion’s share:
  • Pakistan health budget: 0.27%;
  • Pakistan culture and religion budget: 0.15%;
  • Pakistan’s social protection budget: 0.17%;
  • Pakistan’s education budget: 0.18%.
 
Using Eq. (11), we obtain the following values: the imaginary part and the non-membership values are considered as zero, with weight vectors (0.2,0.2,0.2,0.3). Then, we have the following:
  • Defense budget of Pakistan: 0.249.
  • National saving scheme of Pakistan: 0.4
  • Deposit and reserves of Pakistan: 0.155.
  • Development expenditure and revenue account for Pakistan: 0.1925.
The ranking values of the foregoing results clearly indicate that the best alternative is the national saving scheme of Pakistan, with a score of 0.4. Similarly, we can analyze the budgets of any country.
The key advantages of the proposed approach are as follows:
1.
The complex q-rung orthopair fuzzy Einstein aggregation operators generalize the existing Einstein aggregation operators.
 
2.
The complex q-rung orthopair fuzzy Einstein aggregation operators take into account the refusal grade compared with complex intuitionistic and complex Pythagorean fuzzy Einstein aggregation operators.
 
3.
The proposed method based on the proposed operators is more general than some existing methods, as the parameters \(\delta \text{and} q \) can be changed.
 
The Cq-ROFS contains two complex-valued functions called the complex-valued membership and complex-valued non-membership grades. Because Cq-ROFN \({\mathbb{E}}=\left({\mathcal{T}}_{\mathbb{E}}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}},{\mathcal{N}}_{\mathbb{E}}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}}\right)\) satisfies the conditions \(0\le {\mathcal{T}}_{\mathbb{E}}^{q}+{\mathcal{N}}_{\mathbb{E}}^{q}\le 1, 0\le {\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}+{\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\le 1, \text{and} q\ge 1\), the CIFSs and CPFSs are clearly special cases of the proposed Cq-ROFS. By setting \(q=1\), the proposed Cq-ROFS is converted into a CIFS, and by setting \(q=2\), the proposed Cq-ROFS is converted into a CPFS. Moreover, the foregoing discussions indicate that the proposed method is more general and accurate than some existing approaches. The proposed method is useful for designing intelligent systems in real applications, such as image recognition.

Conclusion

This paper proposes the Cq-ROFS and its operational laws. An MADM method based on complex q-rung orthopair fuzzy information was investigated. To aggregate the Cq-ROFNs, we extended the EOs to Cq-ROFSs and proposed a family of complex q-rung orthopair fuzzy Einstein averaging operators, such as the Cq-ROFEWA operator, the Cq-ROFEOWA operator, the GCq-ROFEWA operator, and the GCq-ROFEOWA operator. Desirable properties and special cases of the introduced operators were discussed. Additionally, we developed a novel approach for MADM in the complex q-rung orthopair fuzzy context based on the proposed operators. Numerical examples were presented to demonstrate the effectiveness and superiority of the proposed method via comparison with existing methods. The main contributions of this study are as follows:
1.
The concept of the Cq-ROFS was proposed in the form of polar coordinates belonging to a unit disc in a complex plane.
 
2.
Complex q-rung orthopair fuzzy Einstein averaging operators were introduced, such as the Cq-ROFEWA operator, Cq-ROFEOWA operator, GCq-ROFEWA operator, and GCq-ROFEOWA operator. Desirable properties and special cases of the introduced operators were discussed.
 
3.
An MADM method based on the proposed operators was developed, which is more general than some existing methods, as the parameters \(\delta\text{ and}\) \(q\) can be changed.
 
In the future, we will extend the present work to consider (1) aggregation operators for different FSs, e.g., the linguistic neutrosophic set [44], probabilistic linguistic information [45], linguistic D number [46], interval type-2 FS [47], T-spherical FS [48, 49], and others [50], and (2) MADM methods [5159], which will be more flexible for future directs.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Appendix

Proof 1
We know that \(0\le {\mathcal{T}}_{\mathbb{E}}^{q}+{\mathcal{N}}_{\mathbb{E}}^{q}\le 1, 0\le {\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}+{\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\le 1\), then \(0\le {\mathcal{T}}_{\mathbb{E}}^{q}\le 1-{\mathcal{N}}_{\mathbb{E}}^{q}, 0\le {\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}\le 1-{\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\) and \(0\le {\mathcal{N}}_{\mathbb{E}}^{q}\le 1-{\mathcal{T}}_{\mathbb{E}}^{q}, 0\le {\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\le 1-{\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}\) implies that \(0\le {\left({\mathcal{N}}_{\mathbb{E}}^{q}\right)}^{\delta }\le {\left(1-{\mathcal{T}}_{\mathbb{E}}^{q}\right)}^{\delta }, 0\le {\left({\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\right)}^{\delta }\le {\left(1-{\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}\right)}^{\delta }\) implies that
$$ \begin{aligned} & {\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}} \\ & \quad \le {\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left({\mathcal{N}}_{\mathbb{E}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{\mathbb{E}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left({\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{\mathbb{E}}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}} \end{aligned} $$
and
$$ \begin{aligned} & \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)}\\ &\quad \le \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(1+{\mathcal{W}}_{{\mathcal{T}}_{\mathbb{E}}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)} \end{aligned} $$
Thus,
$$ \begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q} \\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}\le 1 \end{aligned} $$
$$\begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta } +{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q}\\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}\le 1 \end{aligned} $$
Moreover,
$$ \begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q}\\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}=0 \end{aligned} $$
$$ \begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q}\\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}=0 \end{aligned} $$
If and only if \({\mathcal{T}}_{1}={\mathcal{N}}_{1}={\mathcal{W}}_{{\mathcal{T}}_{1}}={\mathcal{W}}_{{\mathcal{N}}_{1}}=0\).
$$ \begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q}\\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}=1 \end{aligned} $$
$$ \begin{aligned} & {\left({\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}\right)}^{q}\\ &\quad +{\left(\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)\right)}^{q}=1 \end{aligned} $$
If and only if \({\mathcal{T}}_{1}^{q}+{\mathcal{N}}_{1}^{q}=1,{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}+{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}=1\). Thus, \(\delta {\mathbb{E}}_{1}={\mathbb{E}}_{4}\) is also Cq-ROFNs.
Proof 2
We examine the following parts (1,3,5), and the others is similar with them.
1.
Let us consider the part (1), we have
 
$$\begin{aligned} {\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}&=\left({\left(\frac{{\mathcal{T}}_{1}^{q}+{\mathcal{T}}_{2}^{q}}{1+{\mathcal{T}}_{1}^{q}{\mathcal{T}}_{2}^{q}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}}{1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}}\right)}^\frac{1}{q}},\left(\frac{{\mathcal{N}}_{1}{\mathcal{N}}_{2}}{{\left(1+\left(1-{\mathcal{N}}_{1}^{q}\right)\left(1-{\mathcal{N}}_{2}^{q}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\mathcal{W}}_{{\mathcal{N}}_{1}}{\mathcal{W}}_{{\mathcal{N}}_{2}}}{{\left(1+\left(1-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)\right)}^\frac{1}{q}}\right)}\right)\hfill \\ &=\left({\left(\frac{{\mathcal{T}}_{2}^{q}+{\mathcal{T}}_{1}^{q}}{1+{\mathcal{T}}_{2}^{q}{\mathcal{T}}_{1}^{q}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}}{1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}}\right)}^\frac{1}{q}},\left(\frac{{\mathcal{N}}_{2}{\mathcal{N}}_{1}}{{\left(1+\left(1-{\mathcal{N}}_{2}^{q}\right)\left(1-{\mathcal{N}}_{1}^{q}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\mathcal{W}}_{{\mathcal{N}}_{2}}{\mathcal{W}}_{{\mathcal{N}}_{1}}}{{\left(1+\left(1-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)\right)}^\frac{1}{q}}\right)}\right)\hfill \\& ={\mathbb{E}}_{2}\oplus {\mathbb{E}}_{1}\end{aligned}$$
1.
The proof of part (2) is straightforward.
 
2.
Let us consider the part (3), we have
 
$${\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}=\left({\left(\frac{{\mathcal{T}}_{1}^{q}+{\mathcal{T}}_{2}^{q}}{1+{\mathcal{T}}_{1}^{q}{\mathcal{T}}_{2}^{q}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}}{1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}}\right)}^\frac{1}{q}},\left(\frac{{\mathcal{N}}_{1}{\mathcal{N}}_{2}}{{\left(1+\left(1-{\mathcal{N}}_{1}^{q}\right)\left(1-{\mathcal{N}}_{2}^{q}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\mathcal{W}}_{{\mathcal{N}}_{1}}{\mathcal{W}}_{{\mathcal{N}}_{2}}}{{\left(1+\left(1-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)\right)}^\frac{1}{q}}\right)}\right)$$
Is equivalent to
$${\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}=\left(\begin{array}{c}{\left(\frac{\left(1+{\mathcal{T}}_{1}^{q}\right)\left(1+{\mathcal{T}}_{1}^{q}\right)-\left(1-{\mathcal{T}}_{2}^{q}\right)\left(1-{\mathcal{T}}_{2}^{q}\right)}{\left(1+{\mathcal{T}}_{1}^{q}\right)\left(1+{\mathcal{T}}_{1}^{q}\right)+\left(1-{\mathcal{T}}_{2}^{q}\right)\left(1-{\mathcal{T}}_{2}^{q}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)-\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)+\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}{\mathcal{N}}_{2}}{{\left(\left(2-{\mathcal{N}}_{1}^{q}\right)\left(2-{\mathcal{N}}_{2}^{q}\right)+{\mathcal{N}}_{1}^{q}{\mathcal{N}}_{2}^{q}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}{\mathcal{W}}_{{\mathcal{N}}_{2}}}{{\left(\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)+{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
We will consider for real part \(a=\left(1+{\mathcal{T}}_{1}^{q}\right)\left(1+{\mathcal{T}}_{1}^{q}\right),b=\left(1-{\mathcal{T}}_{2}^{q}\right)\left(1-{\mathcal{T}}_{2}^{q}\right),c={\mathcal{N}}_{1}^{q}{\mathcal{N}}_{2}^{q},d=\left(2-{\mathcal{N}}_{1}^{q}\right)\left(2-{\mathcal{N}}_{2}^{q}\right)\) and similarly for imaginary part \({a}^{{\prime}}=\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right),{b}^{{\prime}}=\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right),{c}^{{\prime}}={\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q},{d}^{{\prime}}=\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)\), then
$${\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}=\left({\left(\frac{a-b}{a+b}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}^{{^{\prime}}}-{b}^{{^{\prime}}}}{{a}^{{^{\prime}}}+{b}^{{^{\prime}}}}\right)}^\frac{1}{q}},\frac{{\left(2c\right)}^\frac{1}{q}}{{\left(d+c\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \frac{{\left(2{c}^{{^{\prime}}}\right)}^\frac{1}{q}}{{\left({d}^{{^{\prime}}}+{c}^{{^{\prime}}}\right)}^\frac{1}{q}}}\right)$$
By Einstein operational laws, we get
$$\begin{aligned} \delta \left({\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}\right)&=\delta \left({\left(\frac{a-b}{a+b}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}^{{\prime}}-{b}^{{\prime}}}{{a}^{{\prime}}+{b}^{{\prime}}}\right)}^\frac{1}{q}},\frac{{\left(2c\right)}^\frac{1}{q}}{{\left(d+c\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \frac{{\left(2{c}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}^{{\prime}}+{c}^{{\prime}}\right)}^\frac{1}{q}}}\right)\hfill\\ &=\left(\begin{array}{c}{\left(\frac{{\left(1+\frac{a-b}{a+b}\right)}^{\delta }-{\left(1-\frac{a-b}{a+b}\right)}^{\delta }}{{\left(1+\frac{a-b}{a+b}\right)}^{\delta }+{\left(1-\frac{a-b}{a+b}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+\frac{{a}^{{\prime}}-{b}^{{\prime}}}{{a}^{{\prime}}+{b}^{{\prime}}}\right)}^{\delta }-{\left(1-\frac{{a}^{{\prime}}-{b}^{{\prime}}}{{a}^{{\prime}}+{b}^{{\prime}}}\right)}^{\delta }}{{\left(1+\frac{{a}^{{\prime}}-{b}^{{\prime}}}{{a}^{{\prime}}+{b}^{{\prime}}}\right)}^{\delta }+{\left(1-\frac{{a}^{{\prime}}-{b}^{{\prime}}}{{a}^{{\prime}}+{b}^{{\prime}}}\right)}^{\delta }}\right)}^\frac{1}{q}},\\ \frac{{\left(2\right)}^\frac{1}{q}{\left(\frac{{\left(2c\right)}^\frac{1}{q}}{{\left(d+c\right)}^\frac{1}{q}}\right)}^{\delta }}{{\left({\left(2-\frac{2c}{d+c}\right)}^{\delta }+{\left(\frac{2c}{d+c}\right)}^{\delta }\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \frac{{\left(2\right)}^\frac{1}{q}{\left(\frac{{\left(2{c}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}^{{\prime}}+{c}^{{\prime}}\right)}^\frac{1}{q}}\right)}^{\delta }}{{\left({\left(2-\frac{2{c}^{{\prime}}}{{d}^{{\prime}}+{c}^{{\prime}}}\right)}^{\delta }+{\left(\frac{2{c}^{{\prime}}}{{d}^{{\prime}}+{c}^{{\prime}}}\right)}^{\delta }\right)}^\frac{1}{q}}}\end{array}\right)\hfill\\ &=\left(\begin{array}{c}{\left(\frac{{a}^{\delta }-{b}^{\delta }}{{a}^{\delta }+{b}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{{a}^{{\prime}}}^{\delta }-{{b}^{{\prime}}}^{\delta }}{{{a}^{{\prime}}}^{\delta }+{{b}^{{\prime}}}^{\delta }}\right)}^\frac{1}{q}},\\ \frac{{\left({2c}^{\delta }\right)}^\frac{1}{q}}{{\left({d}^{\delta }+{c}^{\delta }\right)}^\frac{1}{q}}{\text{e}}^{i2\pi \frac{{\left({{2c}^{{\prime}}}^{\delta }\right)}^\frac{1}{q}}{{\left({{d}^{{\prime}}}^{\delta }+{{c}^{{\prime}}}^{\delta }\right)}^\frac{1}{q}}}\end{array}\right)\hfill\\ & =\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta } {\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta } {\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }{\mathcal{N}}_{2}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }{\left(2-{\mathcal{N}}_{2}^{q}\right)}^{\delta }+{{\mathcal{N}}_{1}^{q}}^{\delta }{{\mathcal{N}}_{2}^{q}}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }{\mathcal{W}}_{{\mathcal{N}}_{2}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta }+{{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}}^{\delta }{{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}}^{\delta }\right)}^\frac{1}{q}}\right)}\end{array}\right)\end{aligned} $$
In other hand, we examine that
$$\begin{aligned}\delta {\mathbb{E}}_{1}&=\left({\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}},\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{1}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)}\right)\hfill \\&=\left({\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{{\prime}}-{b}_{1}^{{\prime}}}{{a}_{1}^{{\prime}}+{b}_{1}^{{\prime}}}\right)}^\frac{1}{q}},\left(\frac{{\left(2{c}_{1}\right)}^\frac{1}{q}}{{\left({d}_{1}+{c}_{1}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{1}^{{\prime}}+{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}\right)}\right)\end{aligned}$$
and
$$\begin{aligned} \delta {\mathbb{E}}_{2}&=\left({\left(\frac{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}},\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{2}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{2}^{q}\right)}^{\delta }+{\left({\mathcal{N}}_{2}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta }+{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta }\right)}^\frac{1}{q}}\right)}\right)\hfill \\&=\left({\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{2}^{{\prime}}-{b}_{2}^{{\prime}}}{{a}_{2}^{{\prime}}+{b}_{2}^{{\prime}}}\right)}^\frac{1}{q}},\left(\frac{{\left(2{c}_{2}\right)}^\frac{1}{q}}{{\left({d}_{2}+{c}_{2}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{2}^{{\prime}}+{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}\right)}\right)\end{aligned}$$
where \({a}_{1}={\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta },{b}_{1}={\left(1-{\mathcal{T}}_{1}^{q}\right)}^{\delta },{c}_{1}={\left({\mathcal{N}}_{1}^{q}\right)}^{\delta },{d}_{1}={\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta },{a}_{2}={\left(1+{\mathcal{T}}_{2}^{q}\right)}^{\delta },{b}_{2}={\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta },{c}_{2}={\left({\mathcal{N}}_{2}^{q}\right)}^{\delta },{d}_{2}={\left(2-{\mathcal{N}}_{2}^{q}\right)}^{\delta },{a}_{1}^{{\prime}}={\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta },{b}_{1}^{{\prime}}={\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta },{c}_{1}^{{\prime}}={\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta },{d}_{1}^{{\prime}}={\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta },{a}_{2}^{{\prime}}={\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta },{b}_{2}^{{\prime}}={\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta },{c}_{2}^{{\prime}}={\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta },{d}_{2}^{{\prime}}={\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta }.\)
$$ \delta {\mathbb{E}}_{1}\oplus \delta {\mathbb{E}}_{2}=\left(\begin{array}{c}{\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{^{\prime}}-{b}_{1}^{^{\prime}}}{{a}_{1}^{^{\prime}}+{b}_{1}^{^{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{1}\right)}^\frac{1}{q}}{{\left({d}_{1}+{c}_{1}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{1}^{^{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{1}^{^{\prime}}+{c}_{1}^{^{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right)\oplus \left(\begin{array}{c}{\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{2}^{^{\prime}}-{b}_{2}^{^{\prime}}}{{a}_{2}^{^{\prime}}+{b}_{2}^{^{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{2}\right)}^\frac{1}{q}}{{\left({d}_{2}+{c}_{2}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{2}^{^{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{2}^{^{\prime}}+{c}_{2}^{^{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$\begin{aligned} &\quad\quad\quad\quad=\left(\begin{array}{c}{\left(\frac{\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}+\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}}{1+\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\frac{{a}_{1}^{^{\prime}}-{b}_{1}^{^{\prime}}}{{a}_{1}^{^{\prime}}+{b}_{1}^{^{\prime}}}+\frac{{a}_{2}^{^{\prime}}-{b}_{2}^{^{\prime}}}{{a}_{2}^{^{\prime}}+{b}_{2}^{^{\prime}}}}{1+\left(\frac{{a}_{1}^{^{\prime}}-{b}_{1}^{^{\prime}}}{{a}_{1}^{^{\prime}}+{b}_{1}^{^{\prime}}}\right)\left(\frac{{a}_{2}^{^{\prime}}-{b}_{2}^{^{\prime}}}{{a}_{2}^{^{\prime}}+{b}_{2}^{^{\prime}}}\right)}\right)}^\frac{1}{q}},\\ \left(\frac{{2\left(\frac{{c}_{1}{c}_{2}}{\left({d}_{1}+{c}_{1}\right)\left({d}_{2}+{c}_{2}\right)}\right)}^\frac{1}{q}}{{\left(1+\left(1-\frac{2{c}_{1}}{{d}_{1}+{c}_{1}}\right)\left(1-\frac{2{c}_{2}}{{d}_{2}+{c}_{2}}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{2\left(\frac{{c}_{1}^{^{\prime}}{c}_{2}^{^{\prime}}}{\left({d}_{1}^{^{\prime}}+{c}_{1}^{^{\prime}}\right)\left({d}_{2}^{^{\prime}}+{c}_{2}^{^{\prime}}\right)}\right)}^\frac{1}{q}}{{\left(1+\left(1-\frac{2{c}_{1}^{^{\prime}}}{{d}_{1}^{^{\prime}}+{c}_{1}^{^{\prime}}}\right)\left(1-\frac{2{c}_{2}^{^{\prime}}}{{d}_{2}^{^{\prime}}+{c}_{2}^{^{\prime}}}\right)\right)}^\frac{1}{q}}\right)}\end{array}\right)\\ &\quad\quad\quad\quad =\left(\begin{array}{c}{\left(\frac{{a}_{1}{a}_{2}-{b}_{1}{b}_{2}}{{a}_{1}{a}_{2}+{b}_{1}{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{^{\prime}}{a}_{2}^{^{\prime}}-{b}_{1}^{^{\prime}}{b}_{2}^{^{\prime}}}{{a}_{1}^{^{\prime}}{a}_{2}^{^{\prime}}+{b}_{1}^{^{\prime}}{b}_{2}^{^{\prime}}}\right)}^\frac{1}{q}},\\ {\left(\frac{2{c}_{1}{c}_{2}}{\left({d}_{1}{d}_{2}+{c}_{1}{c}_{2}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{2{c}_{1}^{^{\prime}}{c}_{2}^{^{\prime}}}{\left({d}_{1}^{^{\prime}}{d}_{2}^{^{\prime}}+{c}_{1}^{^{\prime}}{c}_{2}^{^{\prime}}\right)}\right)}^\frac{1}{q}}\end{array}\right) \end{aligned}$$
$$\quad\quad\quad\quad =\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta } {\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta } {\left(1+{\mathcal{T}}_{1}^{q}\right)}^{\delta }+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{\delta }+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{\delta }}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{\delta }{\mathcal{N}}_{2}^{\delta }}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{\delta }{\left(2-{\mathcal{N}}_{2}^{q}\right)}^{\delta }+{{\mathcal{N}}_{1}^{q}}^{\delta }{{\mathcal{N}}_{2}^{q}}^{\delta }\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{\delta }{\mathcal{W}}_{{\mathcal{N}}_{2}}^{\delta }}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{\delta }{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{\delta }+{{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}}^{\delta }{{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}}^{\delta }\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
Hence \(\delta \left({\mathbb{E}}_{1}\oplus {\mathbb{E}}_{2}\right)=\delta {\mathbb{E}}_{1}\oplus \delta {\mathbb{E}}_{2}\).
3.
The proof of part (4) is straightforward.
 
4.
Let us consider the part (5), we have
 
$${\delta }_{1}{\mathbb{E}}_{1}=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\delta }_{1}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{1}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{1}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\delta }_{1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{1}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$\quad\quad =\left(\begin{array}{c}{\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{{\prime}}-{b}_{1}^{{\prime}}}{{a}_{1}^{{\prime}}+{b}_{1}^{{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{1}\right)}^\frac{1}{q}}{{\left({d}_{1}+{c}_{1}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{1}^{{\prime}}+{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$${\delta }_{2}{\mathbb{E}}_{1}=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{2}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{2}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{2}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{2}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{2}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\delta }_{2}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{2}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{2}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\delta }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{2}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$\quad\quad=\left(\begin{array}{c}{\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{2}^{{\prime}}-{b}_{2}^{{\prime}}}{{a}_{2}^{{\prime}}+{b}_{2}^{{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{2}\right)}^\frac{1}{q}}{{\left({d}_{2}+{c}_{2}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{2}^{{\prime}}+{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
where \({a}_{1}={\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}},{b}_{1}={\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}},{c}_{1}={\left({\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{1}},{d}_{1}={\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{1}},{a}_{2}={\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\delta }_{2}},{b}_{2}={\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\delta }_{2}},{c}_{2}={\left({\mathcal{N}}_{2}^{q}\right)}^{{\delta }_{2}},{d}_{2}={\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\delta }_{2}},{a}_{1}^{{\prime}}={\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}},{b}_{1}^{{\prime}}={\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}},{c}_{1}^{{\prime}}={\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{1}},{d}_{1}^{{\prime}}={\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{1}},{a}_{2}^{{\prime}}={\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\delta }_{2}},{b}_{2}^{{\prime}}={\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\delta }_{2}},{c}_{2}^{{\prime}}={\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\delta }_{2}},{d}_{2}^{{\prime}}={\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\delta }_{2}}\). Then
$$ \begin{aligned} {\delta }_{1}{\mathbb{E}}_{1}\oplus {\delta }_{2}{\mathbb{E}}_{1} & =\left(\begin{array}{c}{\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{{\prime}}-{b}_{1}^{{\prime}}}{{a}_{1}^{{\prime}}+{b}_{1}^{{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{1}\right)}^\frac{1}{q}}{{\left({d}_{1}+{c}_{1}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{1}^{{\prime}}+{c}_{1}^{{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right)\\ &\quad \oplus \left(\begin{array}{c}{\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{2}^{{\prime}}-{b}_{2}^{{\prime}}}{{a}_{2}^{{\prime}}+{b}_{2}^{{\prime}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2{c}_{2}\right)}^\frac{1}{q}}{{\left({d}_{2}+{c}_{2}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}{{\left({d}_{2}^{{\prime}}+{c}_{2}^{{\prime}}\right)}^\frac{1}{q}}\right)}\end{array}\right) \end{aligned}$$
$$\quad =\left(\begin{array}{c}{\left(\frac{\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}+{\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}}}{1+\left(\frac{{a}_{1}-{b}_{1}}{{a}_{1}+{b}_{1}}\right)\left(\frac{{a}_{2}-{b}_{2}}{{a}_{2}+{b}_{2}}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\frac{{a}_{1}^{{\prime}}-{b}_{1}^{{\prime}}}{{a}_{1}^{{\prime}}+{b}_{1}^{{\prime}}}+\frac{{a}_{2}^{{\prime}}-{b}_{2}^{{\prime}}}{{a}_{2}^{{\prime}}+{b}_{2}^{{\prime}}}}{1+\left(\frac{{a}_{1}^{{\prime}}-{b}_{1}^{{\prime}}}{{a}_{1}^{{\prime}}+{b}_{1}^{{\prime}}}\right)\left(\frac{{a}_{2}^{{\prime}}-{b}_{2}^{{\prime}}}{{a}_{2}^{{\prime}}+{b}_{2}^{{\prime}}}\right)}\right)}^\frac{1}{q}},\\ \left(\frac{{2\left(\frac{{c}_{1}{c}_{2}}{\left({d}_{1}+{c}_{1}\right)\left({d}_{2}+{c}_{2}\right)}\right)}^\frac{1}{q}}{{\left(1+\left(1-\frac{2{c}_{1}}{{d}_{1}+{c}_{1}}\right)\left(1-\frac{2{c}_{2}}{{d}_{2}+{c}_{2}}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{2\left(\frac{{c}_{1}^{{\prime}}{c}_{2}^{{\prime}}}{\left({d}_{1}^{{\prime}}+{c}_{1}^{{\prime}}\right)\left({d}_{2}^{{\prime}}+{c}_{2}^{{\prime}}\right)}\right)}^\frac{1}{q}}{{\left(1+\left(1-\frac{2{c}_{1}^{{\prime}}}{{d}_{1}^{{\prime}}+{c}_{1}^{{\prime}}}\right)\left(1-\frac{2{c}_{2}^{{\prime}}}{{d}_{2}^{{\prime}}+{c}_{2}^{{\prime}}}\right)\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$=\left(\begin{array}{c}{\left(\frac{{a}_{1}{a}_{2}-{b}_{1}{b}_{2}}{{a}_{1}{a}_{2}+{b}_{1}{b}_{2}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{a}_{1}^{{\prime}}{a}_{2}^{{\prime}}-{b}_{1}^{{\prime}}{b}_{2}^{{\prime}}}{{a}_{1}^{{\prime}}{a}_{2}^{{\prime}}+{b}_{1}^{{\prime}}{b}_{2}^{{\prime}}}\right)}^\frac{1}{q}},\\ {\left(\frac{2{c}_{1}{c}_{2}}{\left({d}_{1}{d}_{2}+{c}_{1}{c}_{2}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{2{c}_{1}^{{\prime}}{c}_{2}^{{\prime}}}{\left({d}_{1}^{{\prime}}{d}_{2}^{{\prime}}+{c}_{1}^{{\prime}}{c}_{2}^{{\prime}}\right)}\right)}^\frac{1}{q}}\end{array}\right)$$
$$ \begin{aligned} & =\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}} -{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\delta }_{1}+{\delta }_{2}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}+{{\mathcal{N}}_{1}^{q}}^{{\delta }_{1}+{\delta }_{2}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\delta }_{1}+{\delta }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\delta }_{1}+{\delta }_{2}}+{{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}}^{{\delta }_{1}+{\delta }_{2}}\right)}^\frac{1}{q}}\right)}\end{array}\right)\\ &\quad =\left({\delta }_{1}+{\delta }_{2}\right){\mathbb{E}}_{1}. \end{aligned}$$
Hence \({\delta }_{1}{\mathbb{E}}_{1}\oplus {\delta }_{2}{\mathbb{E}}_{1}=\left({\delta }_{1}+{\delta }_{2}\right){\mathbb{E}}_{1}\).
5.
The proof of part (6) is straightforward.
 
Proof 4
Using the process of mathematical induction to prove the Eq. (11), if \(n=2\), then.
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)={\omega }_{1}{\mathbb{E}}_{1}\oplus {\omega }_{2}{\mathbb{E}}_{2}$$
By Theorem 1, the result of \({\omega }_{1}{\mathbb{E}}_{1}\oplus {\omega }_{2}{\mathbb{E}}_{2}\) is also Cq-ROFN, Using the Definition (8), we get
$${\omega }_{1}{\mathbb{E}}_{1}=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$${\omega }_{2}{\mathbb{E}}_{2}=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{2}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
then
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)={\omega }_{1}{\mathbb{E}}_{1}\oplus {\omega }_{2}{\mathbb{E}}_{2}$$
$$ \begin{aligned} & =\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)}\end{array}\right) \\ &\quad \oplus \left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{2}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)}\end{array}\right) \end{aligned} $$
$$=\left(\begin{array}{c}{\left(\frac{\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}+\frac{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}}{1+\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}}\right)\left(\frac{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}\right)}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}+\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}}{1+\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}}\right)\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}\right)}\right)}^\frac{1}{q}},\\ \left(\frac{\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{2}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)}{{\left(1+\left(1-\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{1}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)\left(1-\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{2}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)\left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)}{{\left(1+\left(1-\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\omega }_{1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}\right)}^\frac{1}{q}}\right)\left(1-\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{{\omega }_{2}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}{\left(1+{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{T}}_{1}^{q}\right)}^{{\omega }_{1}}{\left(1-{\mathcal{T}}_{2}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{2}}^{q}\right)}^{{\omega }_{2}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}\left({\mathcal{N}}_{1}^{{\omega }_{1}}{\mathcal{N}}_{2}^{{\omega }_{2}}\right)}{{\left({\left(2-{\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}{\left(2-{\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{N}}_{1}^{q}\right)}^{{\omega }_{1}}{\left({\mathcal{N}}_{2}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{{\omega }_{1}}{\mathcal{W}}_{{\mathcal{N}}_{2}}^{{\omega }_{2}}\right)}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{1}}^{q}\right)}^{{\omega }_{1}}{\left({\mathcal{W}}_{{\mathcal{N}}_{2}}^{q}\right)}^{{\omega }_{2}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
For \(n=2\), the result is kept. We suppose that it is true for \(n=k\), then the Eq. (11), we have
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{k}\right)=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{k}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{k}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k}{\mathcal{N}}_{i}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k}{\mathcal{W}}_{{\mathcal{N}}_{i}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left({\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
We will prove for \(n=k+1\), such that
$$\begin{aligned} Cq-ROFEWA\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{k+1}\right) & =\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{k}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{k}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k}{\mathcal{N}}_{i}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k}{\mathcal{W}}_{{\mathcal{N}}_{i}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k}{\left({\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)\\ &\quad \oplus \left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}-{\left(1-{\mathcal{T}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}}{{\left(1+{\mathcal{T}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}+{\left(1-{\mathcal{T}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{k+1}^{{\omega }_{k+1}}}{{\left({\left(2-{\mathcal{N}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}+{\left({\mathcal{N}}_{k+1}^{q}\right)}^{{\omega }_{k+1}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{k+1}}^{{\omega }_{k+1}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{k+1}}^{q}\right)}^{{\omega }_{k+1}}\right)}^\frac{1}{q}}\right)}\end{array}\right) \end{aligned} $$
$$=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{k+1}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k+1}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k+1}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k+1}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{k+1}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{k+1}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{k+1}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k+1}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k+1}{\mathcal{N}}_{i}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k+1}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k+1}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{k+1}{\mathcal{W}}_{{\mathcal{N}}_{i}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{k+1}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{k+1}{\left({\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
For \(n=k+1\), the result is also kept. Hence the Eq. (11), is kept for all \(n\).
Proof 5
Let \(\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left({\mathcal{T}}_{i}^{q}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}},{\mathcal{N}}_{i}^{q}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}}\right)={\mathbb{E}}_{i}^{q}\) and \(\text{Cq-ROFWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left({\mathcal{T}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{i}}},{\mathcal{N}}_{i}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{i}}}\right)={\mathbb{E}}_{i}\). Firstly, we check for real part of complex-valued membership grades, such that
$$ \begin{aligned} & {\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}} \\ &\quad \le \sum_{i=1}^{n}{\omega }_{i}\left(1+{\mathcal{T}}_{i}^{q}\right)+\sum_{i=1}^{n}{\omega }_{i}\left(1-{\mathcal{T}}_{i}^{q}\right)=2 \end{aligned} $$
then,
$$ \begin{aligned} & {\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}\\ &\quad \le {\left(1-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{i}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}\iff {\mathcal{T}}_{i}^{p}={\mathcal{T}}_{i}\iff {\mathcal{T}}_{1}\\ &\quad ={\mathcal{T}}_{2}=\ldots={\mathcal{T}}_{n}. \end{aligned} $$
At the same time, it is also kept for imaginary part of complex-valued membership grade. Next, we check for real part for non-membership grade, we get
$$\begin{aligned} & \frac{2{\left({\prod }_{i=1}^{n}{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\left({\prod }_{i=1}^{n}{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}}\\ &\quad \ge \frac{2{\prod }_{i=1}^{n}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}}{\sum_{i=1}^{n}{\omega }_{i}\left(2-{\mathcal{N}}_{i}^{q}\right)+\sum_{i=1}^{n}{\omega }_{i}{\mathcal{N}}_{i}^{q}}\ge {\prod }_{i=1}^{n}{\left({\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}} \end{aligned}$$
$$\Rightarrow {\left(\frac{2{\left({\prod }_{i=1}^{n}{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(2-{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}+{\left({\prod }_{i=1}^{n}{\mathcal{N}}_{i}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}\ge {\prod }_{i=1}^{n}{\left({\mathcal{N}}_{i}\right)}^{{\omega }_{i}}$$
$$\Rightarrow {\mathcal{N}}_{i}^{p}\ge {\mathcal{N}}_{i}\iff {\mathcal{N}}_{1}={\mathcal{N}}_{2}=\ldots={\mathcal{N}}_{n}$$
At the same time, it is also kept for imaginary part of complex-valued non-membership grade. Then the score value of the above, such that
$$\begin{aligned} \mathcal{S}\left({\mathbb{E}}_{i}^{p}\right)&=\frac{1}{2}\left({{\mathcal{T}}_{i}^{p}}^{q}+{{\mathcal{W}}_{{\mathcal{T}}_{i}}^{p}}^{q}-{{{\mathcal{N}}_{i}}^{p}}^{q}-{{\mathcal{W}}_{{\mathcal{N}}_{i}}^{p}}^{q}\right)\\ & \le \frac{1}{2}\left({\mathcal{T}}_{i}^{q}+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}-{{\mathcal{N}}_{i}}^{q}-{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)=\mathcal{S}\left({\mathbb{E}}_{i}\right) \end{aligned} $$
When \(\mathcal{S}\left({\mathbb{E}}_{i}^{p}\right)<\mathcal{S}\left({\mathbb{E}}_{i}\right)\), then by definition of score function, we have
$$ \text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right) <\text{Cq-ROFWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right) $$
When \(\mathcal{S}\left({\mathbb{E}}_{i}^{p}\right)=\mathcal{S}\left({\mathbb{E}}_{i}\right)\), then by definition of accuracy function, we have
$$ \begin{aligned} {\mathbb{H}}\left({\mathbb{E}}_{i}^{p}\right) & =\frac{1}{2}\left({{\mathcal{T}}_{1}^{p}}^{q}+{{\mathcal{W}}_{{\mathcal{T}}_{1}}^{p}}^{q}-{{{\mathcal{N}}_{1}}^{p}}^{q}-{{\mathcal{W}}_{{\mathcal{N}}_{1}}^{p}}^{q}\right)\\ & =\frac{1}{2}\left({\mathcal{T}}_{i}^{q}+{\mathcal{W}}_{{\mathcal{T}}_{i}}^{q}+{{\mathcal{N}}_{i}}^{q}+{\mathcal{W}}_{{\mathcal{N}}_{i}}^{q}\right)={\mathbb{H}}\left({\mathbb{E}}_{i}\right) \end{aligned} $$
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\text{Cq-ROFWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)$$
therefore
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)\le \text{Cq-ROFWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)$$
Proof (Property 1: Idempotency)
1.
We know that \({\mathbb{E}}_{0}=\left({\mathcal{T}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{T}}_{0}}},{\mathcal{N}}_{0}{\text{e}}^{i2\pi {\mathcal{W}}_{{\mathcal{N}}_{0}}}\right)\in \text{Cq-ROFN},i=\text{1,2},\ldots,n\), then
 
$$\text{Cq-ROFEWA}\left({\mathbb{E}}_{1},{\mathbb{E}}_{2},\ldots,{\mathbb{E}}_{n}\right)=\left(\begin{array}{c}{\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{0}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{0}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{T}}_{0}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{T}}_{0}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{{\omega }_{i}}-{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{{\omega }_{i}}}{{\prod }_{i=1}^{n}{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{N}}_{0}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{N}}_{0}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{N}}_{0}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\prod }_{i=1}^{n}{\mathcal{W}}_{{\mathcal{N}}_{0}}^{{\omega }_{i}}}{{\left({\prod }_{i=1}^{n}{\left(2-{\mathcal{W}}_{{\mathcal{N}}_{0}}^{q}\right)}^{{\omega }_{i}}+{\prod }_{i=1}^{n}{\left({\mathcal{W}}_{{\mathcal{N}}_{0}}^{q}\right)}^{{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$=\left(\begin{array}{c}{\left(\frac{{\left(1+{\mathcal{T}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}-{\left(1-{\mathcal{T}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}}{{\left(1+{\mathcal{T}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}+{\left(1-{\mathcal{T}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}}\right)}^\frac{1}{q}{\text{e}}^{i2\pi {\left(\frac{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}-{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}}{{\left(1+{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}+{\left(1-{\mathcal{W}}_{{\mathcal{T}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}}\right)}^\frac{1}{q}},\\ \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{N}}_{0}^{\sum_{i=1}^{n}{\omega }_{i}}}{{\left({\left(2-{\mathcal{N}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}+{\left({\mathcal{N}}_{0}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}\right)}^\frac{1}{q}}\right){\text{e}}^{i2\pi \left(\frac{{\left(2\right)}^\frac{1}{q}{\mathcal{W}}_{{\mathcal{N}}_{0}}^{\sum_{i=1}^{n}{\omega }_{i}}}{{\left({\left(2-{\mathcal{W}}_{{\mathcal{N}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}+{\left({\mathcal{W}}_{{\mathcal{N}}_{0}}^{q}\right)}^{\sum_{i=1}^{n}{\omega }_{i}}\right)}^\frac{1}{q}}\right)}\end{array}\right)$$
$$ = \left( {{\mathcal{T}}_{0} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{T}}_{0} }} }} ,{\mathcal{N}}_{0} {\text{e}}^{{i2\pi {\mathcal{W}}_{{{\mathcal{N}}_{0} }} }} } \right) = {\mathbb{E}}_{0} $$
2.
Proof (Property 2: Boundedness)
 
We know that \(f\left( x \right) = \frac{1 - x}{{1 + x}},x \in \left[ {0,1} \right]\), then \(f^{\prime}\left( x \right) = \frac{ - 2}{{\left( {1 + x} \right)^{2} }} < 0\), thus \(f\left( x \right)\) is decreasing function. We check for real part of membership grade, such that \({\mathcal{T}}_{i.min}^{q} \le {\mathcal{T}}_{i}^{q} \le {\mathcal{T}}_{i.max}^{q} \forall i = 1,2, \ldots ,n\), then \(f\left( {{\mathcal{T}}_{i.min}^{q} } \right) \le f\left( {{\mathcal{T}}_{i}^{q} } \right) \le f\left( {{\mathcal{T}}_{i.max}^{q} } \right),\forall i\) implies that \(\frac{{1 - {\mathcal{T}}_{i.max}^{q} }}{{1 + {\mathcal{T}}_{i.max}^{q} }} \le \frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }} \le \frac{{1 - {\mathcal{T}}_{i.min}^{q} }}{{1 + {\mathcal{T}}_{i.min}^{q} }},\forall i\) and the weight vector is discussed above, we have
$$ \begin{aligned} &\left( {\frac{{1 - {\mathcal{T}}_{i.\max }^{q} }}{{1 + {\mathcal{T}}_{i.\max }^{q} }}} \right)^{{\omega_{i} }} \le \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} \le \left( {\frac{{1 - {\mathcal{T}}_{i.\min }^{q} }}{{1 + {\mathcal{T}}_{i.\min }^{q} }}} \right)^{{\omega_{i} }} \hfill \\ &\quad \Rightarrow \mathop \prod \limits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i.\max }^{q} }}{{1 + {\mathcal{T}}_{i.\max }^{q} }}} \right)^{{\omega_{i} }} \le \mathop \prod \limits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} \le \mathop \prod \limits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i.\min }^{q} }}{{1 + {\mathcal{T}}_{i.\min }^{q} }}} \right)^{{\omega_{i} }} \hfill \\ &\quad \Leftrightarrow \left( {\frac{{1 - {\mathcal{T}}_{i.\max }^{q} }}{{1 + {\mathcal{T}}_{i.\max }^{q} }}} \right)^{{\mathop \sum \limits_{i = 1}^{n} \omega_{i} }} \le \mathop \prod \limits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} \le \left( {\frac{{1 - {\mathcal{T}}_{i.\min }^{q} }}{{1 + {\mathcal{T}}_{i.\min }^{q} }}} \right)^{{\mathop \sum \limits_{i = 1}^{n} \omega_{i} }} \hfill \\ &\quad\Leftrightarrow \left( {\frac{2}{{1 + {\mathcal{T}}_{i.\max }^{q} }}} \right) \le 1 + \mathop \prod \limits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} \le \left( {\frac{2}{{1 + {\mathcal{T}}_{i.\min }^{q} }}} \right) \hfill \\ &\quad\Leftrightarrow \left( {\frac{{1 + {\mathcal{T}}_{i.\min }^{q} }}{2}} \right) \le \frac{1}{{1 + \mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} }} \le \left( {\frac{{1 + {\mathcal{T}}_{i.\max }^{q} }}{2}} \right) \hfill \\ &\quad\Leftrightarrow \left( {1 + {\mathcal{T}}_{i.\min }^{q} } \right) \le \frac{2}{{1 + \mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} }} \le \left( {1 + {\mathcal{T}}_{i.\max }^{q} } \right) \hfill \\ &\quad \Leftrightarrow \left( {{\mathcal{T}}_{i.\min }^{q} } \right) \le \frac{2}{{1 + \mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{1 - {\mathcal{T}}_{i}^{q} }}{{1 + {\mathcal{T}}_{i}^{q} }}} \right)^{{\omega_{i} }} }} - 1 \le \left( {{\mathcal{T}}_{i.\max }^{q} } \right) \hfill \\ &\quad \Leftrightarrow \left( {{\mathcal{T}}_{i.\min }^{q} } \right) \le \frac{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} - \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} }}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} + \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} }} \le \left( {{\mathcal{T}}_{i.\max }^{q} } \right) \hfill \\ &\quad \Leftrightarrow {\mathcal{T}}_{i.\min } \le \left( {\frac{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} - \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} }}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} + \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{T}}_{i}^{q} } \right)^{{\omega_{i} }} }}} \right)^{\frac{1}{q}} \le {\mathcal{T}}_{i.\max } \hfill \\ \end{aligned} $$
It is also kept for the imaginary part of membership grade, such that
$$ {\mathcal{W}}_{{{\mathcal{T}}_{i.\min} }} \le \left( {\frac{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} } \right)^{{\omega_{i} }} - \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} } \right)^{{\omega_{i} }} }}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {1 + {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} } \right)^{{\omega_{i} }} + \mathop \prod \nolimits_{i = 1}^{n} \left( {1 - {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} } \right)^{{\omega_{i} }} }}} \right)^{\frac{1}{q}} \le {\mathcal{W}}_{{{\mathcal{T}}_{i.\max} }} $$
Similarly, when we consider \(g\left( y \right) = \frac{2 - y}{y},y \in \left[ {0,1} \right]\), then \(g^{\prime}\left( y \right) = \frac{ - 2}{{y^{2} }} < 0\), then the function is decreasing, so the followings are kept.
$$ {\mathcal{N}}_{i.\min} \le \frac{{\left( 2 \right)^{\frac{1}{q}} \mathop \prod \nolimits_{i = 1}^{n} {\mathcal{N}}_{i}^{{\omega_{i} }} }}{{\left( {\mathop \prod \nolimits_{i = 1}^{n} \left( {2 - {\mathcal{N}}_{i}^{q} } \right)^{{\omega_{i} }} + \mathop \prod \nolimits_{i = 1}^{n} \left( {{\mathcal{N}}_{i}^{q} } \right)^{{\omega_{i} }} } \right)^{\frac{1}{q}} }} \le {\mathcal{N}}_{i.\max} $$
It is also kept for the imaginary part of non-membership grade, such that
$$ {\mathcal{W}}_{{{\mathcal{N}}_{i.\min} }} \le \frac{{\left( 2 \right)^{\frac{1}{q}} \mathop \prod \nolimits_{i = 1}^{n} {\mathcal{W}}_{{{\mathcal{N}}_{i} }}^{{\omega_{i} }} }}{{\left( {\mathop \prod \nolimits_{i = 1}^{n} \left( {2 - {\mathcal{W}}_{{{\mathcal{N}}_{i} }}^{q} } \right)^{{\omega_{i} }} + \mathop \prod \nolimits_{i = 1}^{n} \left( {{\mathcal{W}}_{{{\mathcal{N}}_{i} }}^{q} } \right)^{{\omega_{i} }} } \right)^{\frac{1}{q}} }} \le {\mathcal{W}}_{{{\mathcal{N}}_{i.\max} }} $$
From the above discussion, we get
$$ {\mathcal{T}}_{i.\min} \le {\mathcal{T}}_{i} \le {\mathcal{T}}_{i.\max} $$
$$ {\mathcal{W}}_{{{\mathcal{T}}_{i.\min} }} \le {\mathcal{W}}_{{{\mathcal{T}}_{i} }} \le {\mathcal{W}}_{{{\mathcal{T}}_{i.\max} }} $$
$$ {\mathcal{N}}_{i.\min} \le {\mathcal{N}}_{i} \le {\mathcal{N}}_{i.\max} $$
$$ {\mathcal{W}}_{{{\mathcal{N}}_{i.\min} }} \le {\mathcal{W}}_{{{\mathcal{N}}_{i} }} \le {\mathcal{W}}_{{{\mathcal{N}}_{i.\max} }} $$
So, \({\mathcal{S}}\left( {{\mathbb{E}}_{i} } \right) = \frac{1}{2}\left( {{\mathcal{T}}_{i}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} - {\mathcal{N}}_{i}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{i} }}^{q} } \right) \le \frac{1}{2}\left( {{\mathcal{T}}_{i.max}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{i.max} }}^{q} - {\mathcal{N}}_{i.min}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{i.min} }}^{q} } \right) = {\mathcal{S}}\left( {{\mathbb{E}}_{i}^{ + } } \right)\) and \({\mathcal{S}}\left( {{\mathbb{E}}_{i} } \right) = \frac{1}{2}\left( {{\mathcal{T}}_{i}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{i} }}^{q} - {\mathcal{N}}_{i}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{i} }}^{q} } \right) \ge \frac{1}{2}\left( {{\mathcal{T}}_{i.min}^{q} + {\mathcal{W}}_{{{\mathcal{T}}_{i.min} }}^{q} - {\mathcal{N}}_{i.max}^{q} - {\mathcal{W}}_{{{\mathcal{N}}_{i.max} }}^{q} } \right) = {\mathcal{S}}\left( {{\mathbb{E}}_{i}^{ - } } \right)\), then we get
$$ {\mathbb{E}}_{i}^{ - } \le \text{Cq-ROFEWA}\left( {{\mathbb{E}}_{1} ,{\mathbb{E}}_{2} , \ldots ,{\mathbb{E}}_{n} } \right) \le {\mathbb{E}}_{i}^{ + }. $$
3.
The proof of property 3 is similar to property 2.
 
Literatur
1.
Zurück zum Zitat Atanassov KT (1999) Intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Physica, Heidelberg, pp 1–137 Atanassov KT (1999) Intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Physica, Heidelberg, pp 1–137
2.
Zurück zum Zitat Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353MATH Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353MATH
3.
Zurück zum Zitat Atanassov KT (1999) Interval valued intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Physica, Heidelberg, pp 139–177 Atanassov KT (1999) Interval valued intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Physica, Heidelberg, pp 139–177
4.
Zurück zum Zitat Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249MathSciNetMATH Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249MathSciNetMATH
5.
Zurück zum Zitat Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 57–61 Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 57–61
6.
Zurück zum Zitat Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25(5):1222–1230 Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25(5):1222–1230
7.
Zurück zum Zitat Fei L, Deng Y (2020) Multi-criteria decision making in Pythagorean fuzzy environment. Appl Intell 50(2):537–561 Fei L, Deng Y (2020) Multi-criteria decision making in Pythagorean fuzzy environment. Appl Intell 50(2):537–561
8.
Zurück zum Zitat Akram M, Ilyas F, Garg H (2020) Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Comput 24(5):3425–3453 Akram M, Ilyas F, Garg H (2020) Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Comput 24(5):3425–3453
9.
Zurück zum Zitat Zhou Q, Mo H, Deng Y (2020) A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis. Mathematics 8(1):142 Zhou Q, Mo H, Deng Y (2020) A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis. Mathematics 8(1):142
10.
Zurück zum Zitat Athira TM, John SJ, Garg H (2020) A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Math 5(2):1050MathSciNet Athira TM, John SJ, Garg H (2020) A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Math 5(2):1050MathSciNet
11.
Zurück zum Zitat Oztaysi B, Cevik Onar S, Kahraman C (2020) Social open innovation platform design for science teaching by using pythagorean fuzzy analytic hierarchy process. J Intell Fuzzy Syst 38(1):809–819 Oztaysi B, Cevik Onar S, Kahraman C (2020) Social open innovation platform design for science teaching by using pythagorean fuzzy analytic hierarchy process. J Intell Fuzzy Syst 38(1):809–819
12.
Zurück zum Zitat Song P, Li L, Huang D, Wei Q, Chen X (2020) Loan risk assessment based on Pythagorean fuzzy analytic hierarchy process. J Phys Conf Ser 1437(1):012101 Song P, Li L, Huang D, Wei Q, Chen X (2020) Loan risk assessment based on Pythagorean fuzzy analytic hierarchy process. J Phys Conf Ser 1437(1):012101
13.
Zurück zum Zitat Liu P, Wang P (2018) Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int J Intell Syst 33(2):259–280 Liu P, Wang P (2018) Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int J Intell Syst 33(2):259–280
14.
Zurück zum Zitat Garg H, Chen SM (2020) Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Inf Sci 517:427–447MathSciNet Garg H, Chen SM (2020) Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Inf Sci 517:427–447MathSciNet
15.
Zurück zum Zitat Peng X, Dai J, Garg H (2018) Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int J Intell Syst 33(11):2255–2282 Peng X, Dai J, Garg H (2018) Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int J Intell Syst 33(11):2255–2282
16.
Zurück zum Zitat Xing Y, Zhang R, Zhou Z, Wang J (2019) Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making. Soft Comput 23(22):11627–11649MATH Xing Y, Zhang R, Zhou Z, Wang J (2019) Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making. Soft Comput 23(22):11627–11649MATH
17.
Zurück zum Zitat Wang P, Wang J, Wei G, Wei C (2019) Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 7(4):340 Wang P, Wang J, Wei G, Wei C (2019) Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 7(4):340
18.
Zurück zum Zitat Du WS (2018) Minkowski-type distance measures for generalized orthopair fuzzy sets. Int J Intell Syst 33(4):802–817 Du WS (2018) Minkowski-type distance measures for generalized orthopair fuzzy sets. Int J Intell Syst 33(4):802–817
19.
Zurück zum Zitat Liu D, Chen X, Peng D (2019) Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int J Intell Syst 34(7):1572–1587 Liu D, Chen X, Peng D (2019) Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int J Intell Syst 34(7):1572–1587
20.
Zurück zum Zitat Peng X, Liu L (2019) Information measures for q-rung orthopair fuzzy sets. Int J Intell Syst 34(8):1795–1834 Peng X, Liu L (2019) Information measures for q-rung orthopair fuzzy sets. Int J Intell Syst 34(8):1795–1834
21.
Zurück zum Zitat Liu P, Wang P (2018) Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans Fuzzy Syst 27(5):834–848 Liu P, Wang P (2018) Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans Fuzzy Syst 27(5):834–848
22.
Zurück zum Zitat Wei G, Wei C, Wang J, Gao H, Wei Y (2019) Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. Int J Intell Syst 34(1):50–81 Wei G, Wei C, Wang J, Gao H, Wei Y (2019) Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. Int J Intell Syst 34(1):50–81
23.
Zurück zum Zitat Wang J, Wei G, Wei C, Wei Y (2019) Dual hesitant q-Rung Orthopair fuzzy Muirhead mean operators in multiple attribute decision making. IEEE Access 7:67139–67166 Wang J, Wei G, Wei C, Wei Y (2019) Dual hesitant q-Rung Orthopair fuzzy Muirhead mean operators in multiple attribute decision making. IEEE Access 7:67139–67166
24.
Zurück zum Zitat Liu P, Chen SM, Wang P (2020) Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans Syst Man Cybern Syst 50(10):3741–3756 Liu P, Chen SM, Wang P (2020) Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans Syst Man Cybern Syst 50(10):3741–3756
25.
Zurück zum Zitat Wei G, Gao H, Wei Y (2018) Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int J Intell Syst 33(7):1426–1458 Wei G, Gao H, Wei Y (2018) Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int J Intell Syst 33(7):1426–1458
26.
Zurück zum Zitat Yang W, Pang Y (2019) New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int J Intell Syst 34(3):439–476 Yang W, Pang Y (2019) New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int J Intell Syst 34(3):439–476
27.
Zurück zum Zitat Bai K, Zhu X, Wang J, Zhang R (2018) Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making. Symmetry 10(9):383MATH Bai K, Zhu X, Wang J, Zhang R (2018) Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making. Symmetry 10(9):383MATH
28.
Zurück zum Zitat Wang J, Wei G, Lu J, Alsaadi FE, Hayat T, Wei C, Zhang Y (2019) Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and their application to enterprise resource planning systems selection. Int J Intell Syst 34(10):2429–2458 Wang J, Wei G, Lu J, Alsaadi FE, Hayat T, Wei C, Zhang Y (2019) Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and their application to enterprise resource planning systems selection. Int J Intell Syst 34(10):2429–2458
29.
Zurück zum Zitat Xing Y, Zhang R, Wang J, Bai K, Xue J (2020) A new multi-criteria group decision-making approach based on q-rung orthopair fuzzy interaction Hamy mean operators. Neural Comput Appl 32(7):7465–7488 Xing Y, Zhang R, Wang J, Bai K, Xue J (2020) A new multi-criteria group decision-making approach based on q-rung orthopair fuzzy interaction Hamy mean operators. Neural Comput Appl 32(7):7465–7488
30.
Zurück zum Zitat Liu P, Liu W (2019) Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int J Intell Syst 34(8):1755–1794 Liu P, Liu W (2019) Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int J Intell Syst 34(8):1755–1794
31.
Zurück zum Zitat Ju Y, Luo C, Ma J, Wang A (2019) A novel multiple-attribute group decision-making method based on q-rung orthopair fuzzy generalized power weighted aggregation operators. Int J Intell Syst 34(9):2077–2103 Ju Y, Luo C, Ma J, Wang A (2019) A novel multiple-attribute group decision-making method based on q-rung orthopair fuzzy generalized power weighted aggregation operators. Int J Intell Syst 34(9):2077–2103
32.
Zurück zum Zitat Wang L, Garg H, Li N (2019) Interval-valued q-rung orthopair 2-tuple linguistic aggregation operators and their applications to decision making process. IEEE Access 7:131962–131977 Wang L, Garg H, Li N (2019) Interval-valued q-rung orthopair 2-tuple linguistic aggregation operators and their applications to decision making process. IEEE Access 7:131962–131977
33.
Zurück zum Zitat Wang J, Wei G, Wei C, Wei Y (2020) MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Def Technol 16(1):208–216 Wang J, Wei G, Wei C, Wei Y (2020) MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Def Technol 16(1):208–216
34.
Zurück zum Zitat Ramot D, Milo R, Friedman M, Kandel A (2002) Complex fuzzy sets. IEEE Trans Fuzzy Syst 10(2):171–186 Ramot D, Milo R, Friedman M, Kandel A (2002) Complex fuzzy sets. IEEE Trans Fuzzy Syst 10(2):171–186
35.
Zurück zum Zitat Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450–461 Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450–461
37.
Zurück zum Zitat Alkouri AMJS, Salleh AR (2012) Complex intuitionistic fuzzy sets. AIP Conf Proc 1482(1):464–470 Alkouri AMJS, Salleh AR (2012) Complex intuitionistic fuzzy sets. AIP Conf Proc 1482(1):464–470
39.
Zurück zum Zitat Garg H, Rani D (2019) A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making. Appl Intell 49(2):496–512 Garg H, Rani D (2019) A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making. Appl Intell 49(2):496–512
40.
Zurück zum Zitat Garg H, Rani D (2019) Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process. Arab J Sci Eng 44(3):2679–2698 Garg H, Rani D (2019) Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process. Arab J Sci Eng 44(3):2679–2698
41.
Zurück zum Zitat Rani D, Garg H (2017) Distance measures between the complex intuitionistic fuzzy sets and their applications to the decision-making process. Int J Uncertain Quant 7(5):423–439MathSciNet Rani D, Garg H (2017) Distance measures between the complex intuitionistic fuzzy sets and their applications to the decision-making process. Int J Uncertain Quant 7(5):423–439MathSciNet
42.
Zurück zum Zitat Rani D, Garg H (2018) Complex intuitionistic fuzzy power aggregation operators and their applications in multicriteria decision-making. Expert Syst 35(6):e12325 Rani D, Garg H (2018) Complex intuitionistic fuzzy power aggregation operators and their applications in multicriteria decision-making. Expert Syst 35(6):e12325
43.
Zurück zum Zitat Ullah K, Mahmood T, Ali Z, Jan N (2020) On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex Intell Syst 6(1):15–27 Ullah K, Mahmood T, Ali Z, Jan N (2020) On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex Intell Syst 6(1):15–27
44.
Zurück zum Zitat Liu P, You X (2020) Linguistic neutrosophic partitioned Maclaurin symmetric mean operators based on clustering algorithm and their application to multi-criteria group decision-making. Artif Intell Rev 53(3):2131–2170 Liu P, You X (2020) Linguistic neutrosophic partitioned Maclaurin symmetric mean operators based on clustering algorithm and their application to multi-criteria group decision-making. Artif Intell Rev 53(3):2131–2170
45.
Zurück zum Zitat Liu P, Li Y (2019) Multi-attribute decision making method based on generalized maclaurin symmetric mean aggregation operators for probabilistic linguistic information. Comput Ind Eng 131:282–294 Liu P, Li Y (2019) Multi-attribute decision making method based on generalized maclaurin symmetric mean aggregation operators for probabilistic linguistic information. Comput Ind Eng 131:282–294
46.
Zurück zum Zitat Liu P, Zhang X (2019) A multicriteria decision-making approach with linguistic D numbers based on the Choquet integral. Cogn Comput 11(4):560–575 Liu P, Zhang X (2019) A multicriteria decision-making approach with linguistic D numbers based on the Choquet integral. Cogn Comput 11(4):560–575
47.
Zurück zum Zitat Liu P, Gao H, Ma J (2019) Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Inf Sci 490:292–316 Liu P, Gao H, Ma J (2019) Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Inf Sci 490:292–316
48.
Zurück zum Zitat Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053 Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053
49.
Zurück zum Zitat Ullah K, Mahmood T, Jan N (2018) Similarity measures for T-spherical fuzzy sets with applications in pattern recognition. Symmetry 10(6):193MATH Ullah K, Mahmood T, Jan N (2018) Similarity measures for T-spherical fuzzy sets with applications in pattern recognition. Symmetry 10(6):193MATH
50.
Zurück zum Zitat Liu P, Ali Z, Mahmood T (2020) The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making. J Intell Fuzzy Syst 39(3):3351–3374 Liu P, Ali Z, Mahmood T (2020) The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making. J Intell Fuzzy Syst 39(3):3351–3374
51.
Zurück zum Zitat Mhetre NA, Deshpande AV, Mahalle PN (2016) Trust management model based on fuzzy approach for ubiquitous computing. Int J Ambient Comput Intell (IJACI) 7(2):33–46 Mhetre NA, Deshpande AV, Mahalle PN (2016) Trust management model based on fuzzy approach for ubiquitous computing. Int J Ambient Comput Intell (IJACI) 7(2):33–46
52.
Zurück zum Zitat Elhosseini MA (2020) Using fuzzy logic to control combined cycle gas turbine during ambient computing environment. Int J Ambient Comput Intell (IJACI) 11(3):106–130 Elhosseini MA (2020) Using fuzzy logic to control combined cycle gas turbine during ambient computing environment. Int J Ambient Comput Intell (IJACI) 11(3):106–130
53.
Zurück zum Zitat Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053 Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053
54.
Zurück zum Zitat Ullah K, Garg H, Mahmood T, Jan N, Ali Z (2020) Correlation coefficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making. Soft Comput 24(3):1647–1659MATH Ullah K, Garg H, Mahmood T, Jan N, Ali Z (2020) Correlation coefficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making. Soft Comput 24(3):1647–1659MATH
55.
Zurück zum Zitat Liu P, Khan Q, Mahmood T, Hassan N (2019) T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making. IEEE Access 7:22613–22632 Liu P, Khan Q, Mahmood T, Hassan N (2019) T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making. IEEE Access 7:22613–22632
56.
Zurück zum Zitat Jan N, Zedam L, Mahmood T, Rak E, Ali Z (2020) Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications. Soft Computing. 6(1):545–558 Jan N, Zedam L, Mahmood T, Rak E, Ali Z (2020) Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications. Soft Computing. 6(1):545–558
57.
Zurück zum Zitat Zedam L, Jan N, Rak E, Mahmood T, Ullah K (2018) An approach towards decision-making and shortest path problems based on T-spherical fuzzy information. Int. J. Fuzzy Syst. 22(5):1521–1534 Zedam L, Jan N, Rak E, Mahmood T, Ullah K (2018) An approach towards decision-making and shortest path problems based on T-spherical fuzzy information. Int. J. Fuzzy Syst. 22(5):1521–1534
58.
Zurück zum Zitat Ullah K, Ali Z, Jan N, Mahmood T, Maqsood S (2018) Multi-attribute decision making based on averaging aggregation operators for picture hesitant fuzzy sets. Tech J 23(04):84–95 Ullah K, Ali Z, Jan N, Mahmood T, Maqsood S (2018) Multi-attribute decision making based on averaging aggregation operators for picture hesitant fuzzy sets. Tech J 23(04):84–95
59.
Zurück zum Zitat Jan N, Ali Z, Mahmood T, Ullah K (2019) Some generalized distance and similarity measures for picture hesitant fuzzy sets and their applications in building material recognition and multi-attribute decision making. Punjab Univ J Math 51(7):51–70MathSciNet Jan N, Ali Z, Mahmood T, Ullah K (2019) Some generalized distance and similarity measures for picture hesitant fuzzy sets and their applications in building material recognition and multi-attribute decision making. Punjab Univ J Math 51(7):51–70MathSciNet
Metadaten
Titel
Generalized complex q-rung orthopair fuzzy Einstein averaging aggregation operators and their application in multi-attribute decision making
verfasst von
Peide Liu
Zeeshan Ali
Tahir Mahmood
Publikationsdatum
03.11.2020
Verlag
Springer International Publishing
Erschienen in
Complex & Intelligent Systems / Ausgabe 1/2021
Print ISSN: 2199-4536
Elektronische ISSN: 2198-6053
DOI
https://doi.org/10.1007/s40747-020-00197-6

Weitere Artikel der Ausgabe 1/2021

Complex & Intelligent Systems 1/2021 Zur Ausgabe