Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Generalized Principal Component Analysis

verfasst von : Xiangyu Kong, Changhua Hu, Zhansheng Duan

Erschienen in: Principal Component Analysis Networks and Algorithms

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, as a powerful feature extraction technique, generalized eigen decomposition (GED) has been attracting great attention and been widely used in many fields, e.g., spectral estimation (Huanqun et al. IEEE Trans Acoust Speech Signal Process 34(2), 272–284, 1986), blind source separation (Chang et al. IEEE Trans Acoust Speech Signal Process 48(3), 900–907, 2000), digital mobile communications (Comon and Golub Proc IEEE 78(8), 1327–1343, 1990), and antenna array processing (Choi et al. IEEE Trans Veh Technol 51(5), 808–816, 2002; Morgan IEEE Trans Commun 51(3), 476–488, 2003).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huanqun, C., Sarkar, T. K., Dianat, S. A., & Brule, J. D. (1986). Adaptive spectral estimation by the conjugate gradient method. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 272–284.CrossRef Huanqun, C., Sarkar, T. K., Dianat, S. A., & Brule, J. D. (1986). Adaptive spectral estimation by the conjugate gradient method. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 272–284.CrossRef
2.
Zurück zum Zitat Chang, C., Ding, Z., Yau, S. F., & Chan, F. H. Y. (2000). A matrix pencil approach to blind separation of colored nonstationary signals. IEEE Transactions on Signal Processing, 48(3), 900–907.CrossRef Chang, C., Ding, Z., Yau, S. F., & Chan, F. H. Y. (2000). A matrix pencil approach to blind separation of colored nonstationary signals. IEEE Transactions on Signal Processing, 48(3), 900–907.CrossRef
3.
Zurück zum Zitat Comon, P., & Golub, C. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327–1343.CrossRef Comon, P., & Golub, C. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327–1343.CrossRef
4.
Zurück zum Zitat Choi, S., Choi, J., Im, H. J., & Choi, B. (2002). A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers. IEEE Transactions on Vehicular Technology, 51(5), 808–816.CrossRef Choi, S., Choi, J., Im, H. J., & Choi, B. (2002). A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers. IEEE Transactions on Vehicular Technology, 51(5), 808–816.CrossRef
5.
Zurück zum Zitat Morgan, D. R. (2003). Downlink adaptive array algorithms for cellular mobile communications. IEEE Transactions on Communications, 51(3), 476–488.CrossRef Morgan, D. R. (2003). Downlink adaptive array algorithms for cellular mobile communications. IEEE Transactions on Communications, 51(3), 476–488.CrossRef
6.
Zurück zum Zitat Bunse-Gerstner A. (1984). An algorithm for the symmetric generalized eigenvalue problem. Linear Algebra and its Applications, 58(ARR), 43–68. Bunse-Gerstner A. (1984). An algorithm for the symmetric generalized eigenvalue problem. Linear Algebra and its Applications, 58(ARR), 43–68.
7.
Zurück zum Zitat Shougen, W., & Shuqin, Z. (1991). An algorithm for Ax = λBx with symmetric and positive- definite A and B. SIAM Journal on Matrix Analysis and Applications, 12, 654–660.MathSciNetCrossRefMATH Shougen, W., & Shuqin, Z. (1991). An algorithm for Ax = λBx with symmetric and positive- definite A and B. SIAM Journal on Matrix Analysis and Applications, 12, 654–660.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Auchmuty, G. (1991). Globally and rapidly convergent algorithms for symmetric eigenproblems. SIAM Journal of Matrix Analysis and Applications, 12(4), 690–706.MathSciNetCrossRefMATH Auchmuty, G. (1991). Globally and rapidly convergent algorithms for symmetric eigenproblems. SIAM Journal of Matrix Analysis and Applications, 12(4), 690–706.MathSciNetCrossRefMATH
9.
Zurück zum Zitat Kaufman, L. (1974). The LZ-algorithm to solve the generalized eigenvalue problem. SIAM Journal of Numerical Analysis, 11(5), 997–1024.MathSciNetCrossRefMATH Kaufman, L. (1974). The LZ-algorithm to solve the generalized eigenvalue problem. SIAM Journal of Numerical Analysis, 11(5), 997–1024.MathSciNetCrossRefMATH
10.
Zurück zum Zitat Martin R. S., &Wilkinson J. H. (1968). Reduction of the symmetric eigenproblem Ax = λBx and related problems to standard form. Numerical Mathematics, 11, 99–110. Martin R. S., &Wilkinson J. H. (1968). Reduction of the symmetric eigenproblem Ax = λBx and related problems to standard form. Numerical Mathematics, 11, 99–110.
11.
Zurück zum Zitat Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal of Numerical Analysis, 10(2), 241–256.MathSciNetCrossRefMATH Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal of Numerical Analysis, 10(2), 241–256.MathSciNetCrossRefMATH
12.
Zurück zum Zitat Yang, J., Hu, H., & Xi, H. (2013). Weighted non-linear criterion-based adaptive generalized eigendecomposition. IET Signal Processing, 7(4), 285–295.MathSciNetCrossRef Yang, J., Hu, H., & Xi, H. (2013). Weighted non-linear criterion-based adaptive generalized eigendecomposition. IET Signal Processing, 7(4), 285–295.MathSciNetCrossRef
13.
Zurück zum Zitat Kong, X. Y., Hu, C. H., & Han, C. Z. (2012). A dual purpose principal and minor subspace gradient flow. IEEE Transactions on Signal Processing, 60(1), 197–210.MathSciNetCrossRef Kong, X. Y., Hu, C. H., & Han, C. Z. (2012). A dual purpose principal and minor subspace gradient flow. IEEE Transactions on Signal Processing, 60(1), 197–210.MathSciNetCrossRef
14.
Zurück zum Zitat Mathew, G., & Reddy, V. U. (1996). Aquasi-Newton adaptive algorithm for generalized symmetric eigenvalue problem. IEEE Transactions on Signal Processing, 44(10), 2413–2422.CrossRef Mathew, G., & Reddy, V. U. (1996). Aquasi-Newton adaptive algorithm for generalized symmetric eigenvalue problem. IEEE Transactions on Signal Processing, 44(10), 2413–2422.CrossRef
15.
Zurück zum Zitat Mao, J., & Jain, A. K. (1995). Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2), 296–317.CrossRef Mao, J., & Jain, A. K. (1995). Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2), 296–317.CrossRef
16.
Zurück zum Zitat Rubner, J., & Tavan, P. (1989). A self-organizing network for principal component analysis. Europhysics Letters, 10(7), 693–698.CrossRef Rubner, J., & Tavan, P. (1989). A self-organizing network for principal component analysis. Europhysics Letters, 10(7), 693–698.CrossRef
17.
Zurück zum Zitat Rubner, J., & Tavan, P. (1990). Development of feature detectors by self organization. Biology Cybernetics, 62(62), 193–199.CrossRef Rubner, J., & Tavan, P. (1990). Development of feature detectors by self organization. Biology Cybernetics, 62(62), 193–199.CrossRef
18.
Zurück zum Zitat Chatterjee, C., Roychowdhury, V. P., Ramos, J., & Zoltowski, M. D. (1997). Self-organizing algorithms for generalized eigen-decomposition. IEEE Transactions on Neural Networks, 8(6), 1518–1530.CrossRef Chatterjee, C., Roychowdhury, V. P., Ramos, J., & Zoltowski, M. D. (1997). Self-organizing algorithms for generalized eigen-decomposition. IEEE Transactions on Neural Networks, 8(6), 1518–1530.CrossRef
19.
Zurück zum Zitat Xu, D., Principe, J. C., & Wu, H. C. (1998). Generalized eigendecomposition with an on-line local algorithm. IEEE Signal Processing Letters, 5(11), 298–301.CrossRef Xu, D., Principe, J. C., & Wu, H. C. (1998). Generalized eigendecomposition with an on-line local algorithm. IEEE Signal Processing Letters, 5(11), 298–301.CrossRef
20.
Zurück zum Zitat Diamantaras K.I., & Kung S.Y. (1996). Principal component neural networks, theory and applications. New York: Wiley. Diamantaras K.I., & Kung S.Y. (1996). Principal component neural networks, theory and applications. New York: Wiley.
21.
Zurück zum Zitat Rao, Y. N., Principe, J. C., Wong, T. F., & Abdi, H. (2004). Fast RLS-like algorithm for generalized eigendecomposition and its applications. Journal of VLSI Signal Processing, 37(2–3), 333–344.CrossRefMATH Rao, Y. N., Principe, J. C., Wong, T. F., & Abdi, H. (2004). Fast RLS-like algorithm for generalized eigendecomposition and its applications. Journal of VLSI Signal Processing, 37(2–3), 333–344.CrossRefMATH
22.
Zurück zum Zitat Yang, J., Xi, H., Yang, F., & Yu, Z. (2006). RLS-based adaptive algorithms for generalized eigen -decomposition. IEEE Transactions on Signal Processing, 54(4), 1177–1188.CrossRef Yang, J., Xi, H., Yang, F., & Yu, Z. (2006). RLS-based adaptive algorithms for generalized eigen -decomposition. IEEE Transactions on Signal Processing, 54(4), 1177–1188.CrossRef
23.
Zurück zum Zitat Attallah, S., & Abed-Meraim, K. (2008). A fast adaptive algorithm for the generalized symmetric eigenvalue problem. IEEE Signal Processing Letters, 15, 797–800.CrossRef Attallah, S., & Abed-Meraim, K. (2008). A fast adaptive algorithm for the generalized symmetric eigenvalue problem. IEEE Signal Processing Letters, 15, 797–800.CrossRef
24.
Zurück zum Zitat Tanaka, T. (2009). Fast generalized eigenvector tracking based on the power method. IEEE Signal Processing Letters, 16(11), 969–972.CrossRef Tanaka, T. (2009). Fast generalized eigenvector tracking based on the power method. IEEE Signal Processing Letters, 16(11), 969–972.CrossRef
25.
Zurück zum Zitat Xu, L. (1993). Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 6(5), 627–648.CrossRef Xu, L. (1993). Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 6(5), 627–648.CrossRef
26.
Zurück zum Zitat Yang, J., Zhao, Y., & Xi, H. (2011). Weighted rule based adaptive algorithm for simultaneously extracting generalized eigenvectors. IEEE Transactions on Neural Networks, 22(5), 800–806.CrossRef Yang, J., Zhao, Y., & Xi, H. (2011). Weighted rule based adaptive algorithm for simultaneously extracting generalized eigenvectors. IEEE Transactions on Neural Networks, 22(5), 800–806.CrossRef
27.
Zurück zum Zitat Martinez, A. M., & Zhu, M. (2005). Where are linear feature extraction methods applicable. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1934–1944.CrossRef Martinez, A. M., & Zhu, M. (2005). Where are linear feature extraction methods applicable. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1934–1944.CrossRef
28.
Zurück zum Zitat Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.CrossRef Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.CrossRef
29.
Zurück zum Zitat Bello, L., Cruz, W. L., & Raydan, M. (2010). Residual algorithm for large-scale positive definite generalized eigenvalue problems. Computation Optimization and Applications, 46(2), 217–227.MathSciNetCrossRefMATH Bello, L., Cruz, W. L., & Raydan, M. (2010). Residual algorithm for large-scale positive definite generalized eigenvalue problems. Computation Optimization and Applications, 46(2), 217–227.MathSciNetCrossRefMATH
30.
Zurück zum Zitat Stone, J. V. (2002). Blind deconvolution using temporal predictability. Neurocomputing, 49(1–4), 79–86.CrossRefMATH Stone, J. V. (2002). Blind deconvolution using temporal predictability. Neurocomputing, 49(1–4), 79–86.CrossRefMATH
31.
Zurück zum Zitat Shahbazpanahi, S., Gershman, A. B., Luo, Z., & Wong, K. M. (2003). Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9), 2257–2269.CrossRef Shahbazpanahi, S., Gershman, A. B., Luo, Z., & Wong, K. M. (2003). Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9), 2257–2269.CrossRef
32.
Zurück zum Zitat Ye M., Liu Y., Wu H., & Liu Q. (2008). A few online algorithms for extracting minor generalized eigenvectors. In International Joint Conference on Neural Networks (pp. 1714–1720). Ye M., Liu Y., Wu H., & Liu Q. (2008). A few online algorithms for extracting minor generalized eigenvectors. In International Joint Conference on Neural Networks (pp. 1714–1720).
33.
Zurück zum Zitat Nguyen, T. D., & Yamada, I. (2013). Adaptive normalized quasi-Newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on Signal Processing, 61(61), 1404–1418.MathSciNetCrossRef Nguyen, T. D., & Yamada, I. (2013). Adaptive normalized quasi-Newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on Signal Processing, 61(61), 1404–1418.MathSciNetCrossRef
34.
Zurück zum Zitat Möller, R., & Könies, A. (2004). Coupled principal component analysis. IEEE Transactions on Neural Networks, 15(1), 214–222.CrossRef Möller, R., & Könies, A. (2004). Coupled principal component analysis. IEEE Transactions on Neural Networks, 15(1), 214–222.CrossRef
35.
Zurück zum Zitat Nguyen, T. D., Takahashi, N., & Yamada, I. (2013). An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional System and Signal Processing, 24(3), 457–483.MathSciNetCrossRefMATH Nguyen, T. D., Takahashi, N., & Yamada, I. (2013). An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional System and Signal Processing, 24(3), 457–483.MathSciNetCrossRefMATH
36.
Zurück zum Zitat Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 43(1), 95–107.CrossRef Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 43(1), 95–107.CrossRef
37.
Zurück zum Zitat Davila, C. E. (2000). Efficient, high performance, subspace tracking for time-domain data. IEEE Transactions on Signal Processing, 48(12), 3307–3315.MathSciNetCrossRef Davila, C. E. (2000). Efficient, high performance, subspace tracking for time-domain data. IEEE Transactions on Signal Processing, 48(12), 3307–3315.MathSciNetCrossRef
38.
Zurück zum Zitat Yang, J., Yang, F., & Xi, H. S. (2007). Robust adaptive modified Newton algorithm for generalized eigendecomposition and its application. EURASIP Journal on Advances in Signal Processing, 2007(2), 1–10.MathSciNetMATH Yang, J., Yang, F., & Xi, H. S. (2007). Robust adaptive modified Newton algorithm for generalized eigendecomposition and its application. EURASIP Journal on Advances in Signal Processing, 2007(2), 1–10.MathSciNetMATH
39.
Zurück zum Zitat Cirrincione, G., Cirrincione, M., Hérault, J., & Van Huffel, S. (2002). The MCA EXIN neuron for the minor component analysis. IEEE Transactions on Neural Networks, 13(1), 160–187.CrossRef Cirrincione, G., Cirrincione, M., Hérault, J., & Van Huffel, S. (2002). The MCA EXIN neuron for the minor component analysis. IEEE Transactions on Neural Networks, 13(1), 160–187.CrossRef
40.
Zurück zum Zitat Peng, D., & Zhang, Y. (2006). Convergence analysis of a deterministic discrete time system of feng’s MCA learning algorithm. IEEE Transactions on Signal Processing, 54(9), 3626–3632.CrossRef Peng, D., & Zhang, Y. (2006). Convergence analysis of a deterministic discrete time system of feng’s MCA learning algorithm. IEEE Transactions on Signal Processing, 54(9), 3626–3632.CrossRef
41.
Zurück zum Zitat Peng, D., Zhang, Y., & Luo, W. (2007). Convergence analysis of a simple minor component analysis algorithm. Neural Networks, 20(7), 842–850.CrossRefMATH Peng, D., Zhang, Y., & Luo, W. (2007). Convergence analysis of a simple minor component analysis algorithm. Neural Networks, 20(7), 842–850.CrossRefMATH
42.
Zurück zum Zitat Peng, D., Zhang, Y., & Yong, X. (2008). On the discrete time dynamics of a self-stabilizing MCA learning algorithm. Mathematical and Computer Modeling, 47(9–10), 903–916.MathSciNetCrossRefMATH Peng, D., Zhang, Y., & Yong, X. (2008). On the discrete time dynamics of a self-stabilizing MCA learning algorithm. Mathematical and Computer Modeling, 47(9–10), 903–916.MathSciNetCrossRefMATH
43.
Zurück zum Zitat Lv, J., Zhang, Y., & Tan, K. K. (2006). Convergence analysis of Xu’s LMSER learning algorithm via deterministic discrete time system method. Neurocomputing, 70(1), 362–372. Lv, J., Zhang, Y., & Tan, K. K. (2006). Convergence analysis of Xu’s LMSER learning algorithm via deterministic discrete time system method. Neurocomputing, 70(1), 362–372.
44.
Zurück zum Zitat Ouyang, S., Bao, Z., Liao, G., & Ching, P. C. (2001). Adaptive minor component extraction with modular structure. IEEE Transactions on Signal Processing, 49(9), 2127–2137.CrossRef Ouyang, S., Bao, Z., Liao, G., & Ching, P. C. (2001). Adaptive minor component extraction with modular structure. IEEE Transactions on Signal Processing, 49(9), 2127–2137.CrossRef
45.
Zurück zum Zitat Miao, Y., & Hua, Y. (1998). Fast subspace tracking and neural network learning by a novel information criterion. IEEE Transactions on Signal Processing, 46(7), 1967–1979.CrossRef Miao, Y., & Hua, Y. (1998). Fast subspace tracking and neural network learning by a novel information criterion. IEEE Transactions on Signal Processing, 46(7), 1967–1979.CrossRef
46.
Zurück zum Zitat Kong, X. Y., An, Q. S., Ma, H. G., Han, C. Z., & Zhang, Q. (2012). Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Networks, 36(8), 64–72.CrossRefMATH Kong, X. Y., An, Q. S., Ma, H. G., Han, C. Z., & Zhang, Q. (2012). Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Networks, 36(8), 64–72.CrossRefMATH
47.
Zurück zum Zitat Ouyang, S., & Bao, Z. (2001). Fast principal component extraction by a weighted information criterion. IEEE Transactions on Signal Processing, 50(8), 1994–2002.MathSciNetCrossRef Ouyang, S., & Bao, Z. (2001). Fast principal component extraction by a weighted information criterion. IEEE Transactions on Signal Processing, 50(8), 1994–2002.MathSciNetCrossRef
48.
Zurück zum Zitat Oja, E. (1992). Principal components, minor components and linear neural networks. Neural Networks, 5(6), 927–935.CrossRef Oja, E. (1992). Principal components, minor components and linear neural networks. Neural Networks, 5(6), 927–935.CrossRef
49.
Zurück zum Zitat Magnus, J. R., & Neudecker, H. (1991). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.MATH Magnus, J. R., & Neudecker, H. (1991). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.MATH
50.
Zurück zum Zitat Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.CrossRef Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.CrossRef
51.
Zurück zum Zitat Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural-network node. IEEE Transactions on Neural Networks, 13(6), 1342–1352.CrossRef Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural-network node. IEEE Transactions on Neural Networks, 13(6), 1342–1352.CrossRef
52.
53.
Zurück zum Zitat Zhang, Y., Ye, M., Lv, J., & Tan, K. K. (2005). Convergence analysis of a deterministic discrete time system of Oja’s PCA learning algorithm. IEEE Transactions on Neural Networks, 16(6), 1318–1328.CrossRef Zhang, Y., Ye, M., Lv, J., & Tan, K. K. (2005). Convergence analysis of a deterministic discrete time system of Oja’s PCA learning algorithm. IEEE Transactions on Neural Networks, 16(6), 1318–1328.CrossRef
54.
Zurück zum Zitat Moller, R. (2004). A self-stabilizing learning rule for minor component analysis. International Journal of Neural Systems, 14(1), 1–8.MathSciNetCrossRef Moller, R. (2004). A self-stabilizing learning rule for minor component analysis. International Journal of Neural Systems, 14(1), 1–8.MathSciNetCrossRef
Metadaten
Titel
Generalized Principal Component Analysis
verfasst von
Xiangyu Kong
Changhua Hu
Zhansheng Duan
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2915-8_7