Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Generating the Fancy Protein Basket with De Novo and Combinatorial Approaches

verfasst von : Krishna Mohan Poluri, Khushboo Gulati

Erschienen in: Protein Engineering Techniques

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Under the umbrella of computational techniques, de novo approach occupies a unique role as this method is involved in designing the proteins from scratch. In the first part of the current chapter, we will discuss the principles and applications of the de novo approach along with negative designing technique. In the second part, we will elucidate the combinatorial approach of protein engineering, i.e., a hybrid approach to engineer proteins using both the experimental methods such as directed evolution techniques along with rational and de novo computational techniques. Furthermore, we will discuss various examples that glared the field of protein engineering under combinatorial approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Samish, I., MacDermaid, C.M., Perez-Aguilar, J.M., Saven, J.G.: Theoretical and computational protein design. Ann. Rev. Phys. Chem. 62, 129–149 (2011)CrossRef Samish, I., MacDermaid, C.M., Perez-Aguilar, J.M., Saven, J.G.: Theoretical and computational protein design. Ann. Rev. Phys. Chem. 62, 129–149 (2011)CrossRef
2.
Zurück zum Zitat Woolfson, D.N., Bartlett, G.J., Burton, A.J., et al.: De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015)CrossRef Woolfson, D.N., Bartlett, G.J., Burton, A.J., et al.: De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015)CrossRef
3.
Zurück zum Zitat Lombardi, A., Summa, C.M., Geremia, S., Randaccio, L., Pavone, V., DeGrado, W.F.: Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl. Acad. Sci. USA. 97, 6298–6305 (2000)CrossRef Lombardi, A., Summa, C.M., Geremia, S., Randaccio, L., Pavone, V., DeGrado, W.F.: Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl. Acad. Sci. USA. 97, 6298–6305 (2000)CrossRef
4.
Zurück zum Zitat Weber, P.C., Salemme, F.R.: Structural and functional diversity in 4-alpha-helical proteins. Nature 287, 82–84 (1980)CrossRef Weber, P.C., Salemme, F.R.: Structural and functional diversity in 4-alpha-helical proteins. Nature 287, 82–84 (1980)CrossRef
5.
Zurück zum Zitat Murzin, A.G., Lesk, A.M., Chothia, C.: Principles determining the structure of beta-sheet barrels in proteins. I. A theoretical analysis. J. Mol. Biol. 236, 1369–1381 (1994)CrossRef Murzin, A.G., Lesk, A.M., Chothia, C.: Principles determining the structure of beta-sheet barrels in proteins. I. A theoretical analysis. J. Mol. Biol. 236, 1369–1381 (1994)CrossRef
6.
Zurück zum Zitat Offredi, F., Dubail, F., Kischel, P., et al.: De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J. Mol. Biol. 325, 163–174 (2003)CrossRef Offredi, F., Dubail, F., Kischel, P., et al.: De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J. Mol. Biol. 325, 163–174 (2003)CrossRef
7.
Zurück zum Zitat Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein L. J. Mol. Biol. 315, 471–477 (2002)CrossRef Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein L. J. Mol. Biol. 315, 471–477 (2002)CrossRef
8.
Zurück zum Zitat Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef
9.
Zurück zum Zitat Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997)CrossRef Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997)CrossRef
10.
Zurück zum Zitat Koga, N., Tatsumi-Koga, R., Liu, G., et al.: Principles for designing ideal protein structures. Nature 491, 222–227 (2012)CrossRef Koga, N., Tatsumi-Koga, R., Liu, G., et al.: Principles for designing ideal protein structures. Nature 491, 222–227 (2012)CrossRef
11.
Zurück zum Zitat Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)CrossRef Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)CrossRef
12.
Zurück zum Zitat Butterfoss, G.L., Kuhlman, B.: Computer-based design of novel protein structures. Ann. Rev. Biophys. Biomol. Struct. 35, 49–65 (2006)CrossRef Butterfoss, G.L., Kuhlman, B.: Computer-based design of novel protein structures. Ann. Rev. Biophys. Biomol. Struct. 35, 49–65 (2006)CrossRef
13.
Zurück zum Zitat Lin, Y.R., Koga, N., Tatsumi-Koga, R., et al.: Control over overall shape and size in de novo designed proteins. Proc. Natl. Acad. Sci. U.S.A. 112, E5478–E5485 (2015)CrossRef Lin, Y.R., Koga, N., Tatsumi-Koga, R., et al.: Control over overall shape and size in de novo designed proteins. Proc. Natl. Acad. Sci. U.S.A. 112, E5478–E5485 (2015)CrossRef
14.
Zurück zum Zitat Huang, P.S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D.A., Hocker, B., Baker, D.: De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. (2015) Huang, P.S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D.A., Hocker, B., Baker, D.: De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. (2015)
15.
Zurück zum Zitat Mendes, J., Guerois, R., Serrano, L.: Energy estimation in protein design. Curr. Opin. Struct. Biol. 12, 441–446 (2002)CrossRef Mendes, J., Guerois, R., Serrano, L.: Energy estimation in protein design. Curr. Opin. Struct. Biol. 12, 441–446 (2002)CrossRef
16.
Zurück zum Zitat Schrauber, H., Eisenhaber, F., Argos, P.: Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol. 230, 592–612 (1993)CrossRef Schrauber, H., Eisenhaber, F., Argos, P.: Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol. 230, 592–612 (1993)CrossRef
17.
Zurück zum Zitat Dunbrack Jr., R.L.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431–440 (2002)CrossRef Dunbrack Jr., R.L.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431–440 (2002)CrossRef
18.
Zurück zum Zitat Xiang, Z., Honig, B.: Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001)CrossRef Xiang, Z., Honig, B.: Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001)CrossRef
19.
Zurück zum Zitat Lassila, J.K., Privett, H.K., Allen, B.D., Mayo, S.L.: Combinatorial methods for small-molecule placement in computational enzyme design. Proc. Natl. Acad. Sci. USA. 103, 16710–16715 (2006)CrossRef Lassila, J.K., Privett, H.K., Allen, B.D., Mayo, S.L.: Combinatorial methods for small-molecule placement in computational enzyme design. Proc. Natl. Acad. Sci. USA. 103, 16710–16715 (2006)CrossRef
20.
Zurück zum Zitat Fung, H.K., William, J.W., Floudas, C.A.: Computational De Novo peptide and protein design: rigid template versus flexible templates. Ind. Eng. Chem. Res. 47, 993–1001 (2008)CrossRef Fung, H.K., William, J.W., Floudas, C.A.: Computational De Novo peptide and protein design: rigid template versus flexible templates. Ind. Eng. Chem. Res. 47, 993–1001 (2008)CrossRef
21.
Zurück zum Zitat Desjarlais, J.R., Clarke, N.D.: Computer search algorithms in protein modification and design. Curr. Opin. Struct. Biol. 8, 471–475 (1998)CrossRef Desjarlais, J.R., Clarke, N.D.: Computer search algorithms in protein modification and design. Curr. Opin. Struct. Biol. 8, 471–475 (1998)CrossRef
22.
Zurück zum Zitat Kloppmann, E., Ullmann, G.M., Becker, T.: An extended dead-end elimination algorithm to determine gap-free lists of low energy states. J. Comput. Chem. 28, 2325–2335 (2007)CrossRef Kloppmann, E., Ullmann, G.M., Becker, T.: An extended dead-end elimination algorithm to determine gap-free lists of low energy states. J. Comput. Chem. 28, 2325–2335 (2007)CrossRef
23.
Zurück zum Zitat Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J. Comput. Chem. 29, 1527–1542 (2008)MATHCrossRef Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J. Comput. Chem. 29, 1527–1542 (2008)MATHCrossRef
24.
Zurück zum Zitat Hong, E.J., Lippow, S.M., Tidor, B., Lozano-Perez, T.: Rotamer optimization for protein design through MAP estimation and problem-size reduction. J. Comput. Chem. 30, 1923–1945 (2009)CrossRef Hong, E.J., Lippow, S.M., Tidor, B., Lozano-Perez, T.: Rotamer optimization for protein design through MAP estimation and problem-size reduction. J. Comput. Chem. 30, 1923–1945 (2009)CrossRef
25.
Zurück zum Zitat Lazaridis, T., Karplus, M.: Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 10, 139–145 (2000)CrossRef Lazaridis, T., Karplus, M.: Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 10, 139–145 (2000)CrossRef
26.
Zurück zum Zitat Boas, F.E., Harbury, P.B.: Potential energy functions for protein design. Curr. Opin. Struct. Biol. 17, 199–204 (2007)CrossRef Boas, F.E., Harbury, P.B.: Potential energy functions for protein design. Curr. Opin. Struct. Biol. 17, 199–204 (2007)CrossRef
27.
Zurück zum Zitat Dahiyat, B.I., Mayo, S.L.: Probing the role of packing specificity in protein design. Proc. Natl. Acad. Sci. USA. 94, 10172–10177 (1997)CrossRef Dahiyat, B.I., Mayo, S.L.: Probing the role of packing specificity in protein design. Proc. Natl. Acad. Sci. USA. 94, 10172–10177 (1997)CrossRef
28.
Zurück zum Zitat Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)CrossRef Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)CrossRef
29.
Zurück zum Zitat Pokala, N., Handel, T.M.: Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J. Mol. Biol. 347, 203–227 (2005)CrossRef Pokala, N., Handel, T.M.: Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J. Mol. Biol. 347, 203–227 (2005)CrossRef
30.
Zurück zum Zitat Liang, S., Grishin, N.V.: Side-chain modeling with an optimized scoring function. Protein Sci. 11, 322–331 (2002)CrossRef Liang, S., Grishin, N.V.: Side-chain modeling with an optimized scoring function. Protein Sci. 11, 322–331 (2002)CrossRef
31.
Zurück zum Zitat Liang, S., Grishin, N.V.: Effective scoring function for protein sequence design. Proteins 54, 271–281 (2004)CrossRef Liang, S., Grishin, N.V.: Effective scoring function for protein sequence design. Proteins 54, 271–281 (2004)CrossRef
32.
Zurück zum Zitat Mohanty, D., Dominy, B.N., Kolinski, A., Brooks III, C.L., Skolnick, J.: Correlation between knowledge-based and detailed atomic potentials: application to the unfolding of the GCN4 leucine zipper. Proteins 35, 447–452 (1999)CrossRef Mohanty, D., Dominy, B.N., Kolinski, A., Brooks III, C.L., Skolnick, J.: Correlation between knowledge-based and detailed atomic potentials: application to the unfolding of the GCN4 leucine zipper. Proteins 35, 447–452 (1999)CrossRef
33.
Zurück zum Zitat Sippl, M.J.: Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883 (1990)CrossRef Sippl, M.J.: Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883 (1990)CrossRef
34.
Zurück zum Zitat Dahiyat, B.I., Mayo, S.L.: De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef Dahiyat, B.I., Mayo, S.L.: De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef
35.
Zurück zum Zitat Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA. 97, 10383–10388 (2000)CrossRef Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA. 97, 10383–10388 (2000)CrossRef
36.
Zurück zum Zitat Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326, 1239–1259 (2003)CrossRef Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326, 1239–1259 (2003)CrossRef
37.
Zurück zum Zitat Desjarlais, J.R., Handel, T.M.: Side-chain and backbone flexibility in protein core design. J. Mol. Biol. 290, 305–318 (1999)CrossRef Desjarlais, J.R., Handel, T.M.: Side-chain and backbone flexibility in protein core design. J. Mol. Biol. 290, 305–318 (1999)CrossRef
38.
Zurück zum Zitat Keating, A.E., Malashkevich, V.N., Tidor, B., Kim, P.S.: Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Proc. Natl. Acad. Sci. USA. 98, 14825–14830 (2001)CrossRef Keating, A.E., Malashkevich, V.N., Tidor, B., Kim, P.S.: Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Proc. Natl. Acad. Sci. USA. 98, 14825–14830 (2001)CrossRef
39.
Zurück zum Zitat Kraemer-Pecore, C.M., Lecomte, J.T., Desjarlais, J.R.: A de novo redesign of the WW domain. Protein Sci. 12, 2194–2205 (2003)CrossRef Kraemer-Pecore, C.M., Lecomte, J.T., Desjarlais, J.R.: A de novo redesign of the WW domain. Protein Sci. 12, 2194–2205 (2003)CrossRef
40.
Zurück zum Zitat Harbury, P.B., Plecs, J.J., Tidor, B., Alber, T., Kim, P.S.: High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998)CrossRef Harbury, P.B., Plecs, J.J., Tidor, B., Alber, T., Kim, P.S.: High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998)CrossRef
41.
Zurück zum Zitat Plecs, J.J., Harbury, P.B., Kim, P.S., Alber, T.: Structural test of the parameterized-backbone method for protein design. J. Mol. Biol. 342, 289–297 (2004)CrossRef Plecs, J.J., Harbury, P.B., Kim, P.S., Alber, T.: Structural test of the parameterized-backbone method for protein design. J. Mol. Biol. 342, 289–297 (2004)CrossRef
42.
Zurück zum Zitat Klepeis, J.L., Floudas, C.A., Morikis, D., et al.: Integrated computational and experimental approach for lead optimization and design of compstatin variants with improved activity. J. Am. Chem. Soc. 125, 8422–8423 (2003)CrossRef Klepeis, J.L., Floudas, C.A., Morikis, D., et al.: Integrated computational and experimental approach for lead optimization and design of compstatin variants with improved activity. J. Am. Chem. Soc. 125, 8422–8423 (2003)CrossRef
43.
Zurück zum Zitat Eswar, N., Webb, B., Marti-Renom, M.A. et al.: Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. (2007) (Chap. 2, Unit) Eswar, N., Webb, B., Marti-Renom, M.A. et al.: Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. (2007) (Chap. 2, Unit)
44.
Zurück zum Zitat Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)CrossRef Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)CrossRef
45.
Zurück zum Zitat Hecht, M.H., Richardson, J.S., Richardson, D.C., Ogden, R.C.: De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science 249, 884–891 (1990)CrossRef Hecht, M.H., Richardson, J.S., Richardson, D.C., Ogden, R.C.: De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science 249, 884–891 (1990)CrossRef
46.
Zurück zum Zitat Havranek, J.J., Harbury, P.B.: Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003)CrossRef Havranek, J.J., Harbury, P.B.: Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003)CrossRef
47.
Zurück zum Zitat Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S.: De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Structure 11, 581–590 (2003)CrossRef Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S.: De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Structure 11, 581–590 (2003)CrossRef
48.
Zurück zum Zitat Summa, C.M., Rosenblatt, M.M., Hong, J.K., Lear, J.D., DeGrado, W.F.: Computational de novo design, and characterization of an A(2)B(2) diiron protein. J. Mol. Biol. 321, 923–938 (2002)CrossRef Summa, C.M., Rosenblatt, M.M., Hong, J.K., Lear, J.D., DeGrado, W.F.: Computational de novo design, and characterization of an A(2)B(2) diiron protein. J. Mol. Biol. 321, 923–938 (2002)CrossRef
49.
Zurück zum Zitat Liang, H., Chen, H., Fan, K., et al.: De novo design of a beta alpha beta motif. Angew. Chem. Int. Ed. Engl. 48, 3301–3303 (2009)CrossRef Liang, H., Chen, H., Fan, K., et al.: De novo design of a beta alpha beta motif. Angew. Chem. Int. Ed. Engl. 48, 3301–3303 (2009)CrossRef
50.
Zurück zum Zitat Wood, C.W., Bruning, M., Ibarra, A.A., et al.: CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30, 3029–3035 (2014)CrossRef Wood, C.W., Bruning, M., Ibarra, A.A., et al.: CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30, 3029–3035 (2014)CrossRef
51.
Zurück zum Zitat Grigoryan, G., DeGrado, W.F.: Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011)CrossRef Grigoryan, G., DeGrado, W.F.: Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011)CrossRef
52.
Zurück zum Zitat Grigoryan, G., Kim, Y.H., Acharya, R., et al.: Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332, 1071–1076 (2011)CrossRef Grigoryan, G., Kim, Y.H., Acharya, R., et al.: Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332, 1071–1076 (2011)CrossRef
53.
Zurück zum Zitat Zhang, Y., Bartz, R., Grigoryan, G., et al.: Computational design and experimental characterization of peptides intended for pH-dependent membrane insertion and pore formation. ACS Chem. Biol. 10, 1082–1093 (2015)CrossRef Zhang, Y., Bartz, R., Grigoryan, G., et al.: Computational design and experimental characterization of peptides intended for pH-dependent membrane insertion and pore formation. ACS Chem. Biol. 10, 1082–1093 (2015)CrossRef
54.
Zurück zum Zitat Joh, N.H., Wang, T., Bhate, M.P., et al.: De novo design of a transmembrane Zn(2)(+)-transporting four-helix bundle. Science 346, 1520–1524 (2014)CrossRef Joh, N.H., Wang, T., Bhate, M.P., et al.: De novo design of a transmembrane Zn(2)(+)-transporting four-helix bundle. Science 346, 1520–1524 (2014)CrossRef
55.
Zurück zum Zitat Fletcher, J.M., Boyle, A.L., Bruning, M., et al.: A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth. Biol. 1, 240–250 (2012)CrossRef Fletcher, J.M., Boyle, A.L., Bruning, M., et al.: A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth. Biol. 1, 240–250 (2012)CrossRef
56.
Zurück zum Zitat Voet, A.R., Noguchi, H., Addy, C., et al.: Computational design of a self-assembling symmetrical beta-propeller protein. Proc. Natl. Acad. Sci. USA. 111, 15102–15107 (2014)CrossRef Voet, A.R., Noguchi, H., Addy, C., et al.: Computational design of a self-assembling symmetrical beta-propeller protein. Proc. Natl. Acad. Sci. USA. 111, 15102–15107 (2014)CrossRef
57.
Zurück zum Zitat Park, K., Shen, B.W., Parmeggiani, F., Huang, P.S., Stoddard, B.L., Baker, D.: Control of repeat-protein curvature by computational protein design. Nat. Struct. Mol. Biol. 22, 167–174 (2015)CrossRef Park, K., Shen, B.W., Parmeggiani, F., Huang, P.S., Stoddard, B.L., Baker, D.: Control of repeat-protein curvature by computational protein design. Nat. Struct. Mol. Biol. 22, 167–174 (2015)CrossRef
58.
Zurück zum Zitat Ramisch, S., Weininger, U., Martinsson, J., Akke, M., Andre, I.: Computational design of a leucine-rich repeat protein with a predefined geometry. Proc. Natl. Acad. Sci. USA. 111, 17875–17880 (2014)CrossRef Ramisch, S., Weininger, U., Martinsson, J., Akke, M., Andre, I.: Computational design of a leucine-rich repeat protein with a predefined geometry. Proc. Natl. Acad. Sci. USA. 111, 17875–17880 (2014)CrossRef
59.
Zurück zum Zitat Dantas, G., Corrent, C., Reichow, S.L., et al.: High-resolution structural and thermodynamic analysis of extreme stabilization of human procarboxypeptidase by computational protein design. J. Mol. Biol. 366, 1209–1221 (2007)CrossRef Dantas, G., Corrent, C., Reichow, S.L., et al.: High-resolution structural and thermodynamic analysis of extreme stabilization of human procarboxypeptidase by computational protein design. J. Mol. Biol. 366, 1209–1221 (2007)CrossRef
60.
Zurück zum Zitat Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J. Mol. Biol. 332, 449–460 (2003)CrossRef Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J. Mol. Biol. 332, 449–460 (2003)CrossRef
61.
Zurück zum Zitat Nanda, V., Rosenblatt, M.M., Osyczka, A., et al.: De novo design of a redox-active minimal rubredoxin mimic. J. Am. Chem. Soc. 127, 5804–5805 (2005)CrossRef Nanda, V., Rosenblatt, M.M., Osyczka, A., et al.: De novo design of a redox-active minimal rubredoxin mimic. J. Am. Chem. Soc. 127, 5804–5805 (2005)CrossRef
62.
Zurück zum Zitat Tiwari, M.K., Singh, R., Singh, R.K., Kim, I.W., Lee, J.K.: Computational approaches for rational design of proteins with novel functionalities. Comput. Struct. Biotechnol. J 2, e201209002 (2012) Tiwari, M.K., Singh, R., Singh, R.K., Kim, I.W., Lee, J.K.: Computational approaches for rational design of proteins with novel functionalities. Comput. Struct. Biotechnol. J 2, e201209002 (2012)
63.
Zurück zum Zitat Pinto, A.L., Hellinga, H.W., Caradonna, J.P.: Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc. Natl. Acad. Sci. USA. 94, 5562–5567 (1997)CrossRef Pinto, A.L., Hellinga, H.W., Caradonna, J.P.: Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc. Natl. Acad. Sci. USA. 94, 5562–5567 (1997)CrossRef
64.
Zurück zum Zitat Flower, D.R.: Designing immunogenic peptides. Nat. Chem. Biol. 9, 749–753 (2013)CrossRef Flower, D.R.: Designing immunogenic peptides. Nat. Chem. Biol. 9, 749–753 (2013)CrossRef
65.
Zurück zum Zitat Firth, A.E., Patrick, W.M.: Statistics of protein library construction. Bioinformatics 21, 3314–3315 (2005)CrossRef Firth, A.E., Patrick, W.M.: Statistics of protein library construction. Bioinformatics 21, 3314–3315 (2005)CrossRef
66.
Zurück zum Zitat Lane, M.D., Seelig, B.: Advances in the directed evolution of proteins. Curr. Opin. Chem. Biol. 22, 129–136 (2014)CrossRef Lane, M.D., Seelig, B.: Advances in the directed evolution of proteins. Curr. Opin. Chem. Biol. 22, 129–136 (2014)CrossRef
67.
Zurück zum Zitat Verma, R., Schwaneberg, U., Roccatano, D.: Computer-Aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotechnol J 2, e201209008 (2012) Verma, R., Schwaneberg, U., Roccatano, D.: Computer-Aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotechnol J 2, e201209008 (2012)
68.
Zurück zum Zitat Wong, T.S., Roccatano, D., Zacharias, M., Schwaneberg, U.: A statistical analysis of random mutagenesis methods used for directed protein evolution. J. Mol. Biol. 355, 858–871 (2006)CrossRef Wong, T.S., Roccatano, D., Zacharias, M., Schwaneberg, U.: A statistical analysis of random mutagenesis methods used for directed protein evolution. J. Mol. Biol. 355, 858–871 (2006)CrossRef
69.
Zurück zum Zitat Verma, R., Schwaneberg, U., Roccatano, D.: MAP(2.0)3D: a sequence/structure based server for protein engineering. ACS Synth. Biol. 1, 139–150 (2012)CrossRef Verma, R., Schwaneberg, U., Roccatano, D.: MAP(2.0)3D: a sequence/structure based server for protein engineering. ACS Synth. Biol. 1, 139–150 (2012)CrossRef
70.
Zurück zum Zitat Silberg, J.J., Endelman, J.B., Arnold, F.H.: SCHEMA-guided protein recombination. Methods Enzymol. 388, 35–42 (2004)CrossRef Silberg, J.J., Endelman, J.B., Arnold, F.H.: SCHEMA-guided protein recombination. Methods Enzymol. 388, 35–42 (2004)CrossRef
71.
Zurück zum Zitat Meyer, M.M., Hochrein, L., Arnold, F.H.: Structure-guided SCHEMA recombination of distantly related beta-lactamases. Protein Eng. Des. Sel. 19, 563–570 (2006)CrossRef Meyer, M.M., Hochrein, L., Arnold, F.H.: Structure-guided SCHEMA recombination of distantly related beta-lactamases. Protein Eng. Des. Sel. 19, 563–570 (2006)CrossRef
72.
Zurück zum Zitat Otey, C.R., Landwehr, M., Endelman, J.B., Hiraga, K., Bloom, J.D., Arnold, F.H.: Structure-guided recombination creates an artificial family of cytochromes P450. PLoS. Biol. 4, e112 (2006) Otey, C.R., Landwehr, M., Endelman, J.B., Hiraga, K., Bloom, J.D., Arnold, F.H.: Structure-guided recombination creates an artificial family of cytochromes P450. PLoS. Biol. 4, e112 (2006)
73.
Zurück zum Zitat Heinzelman, P., Snow, C.D., Wu, I., et al.: A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA. 106, 5610–5615 (2009)CrossRef Heinzelman, P., Snow, C.D., Wu, I., et al.: A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA. 106, 5610–5615 (2009)CrossRef
74.
Zurück zum Zitat Romero, P.A., Stone, E., Lamb, C., et al.: SCHEMA-designed variants of human Arginase I and II reveal sequence elements important to stability and catalysis. ACS Synth. Biol. 1, 221–228 (2012)CrossRef Romero, P.A., Stone, E., Lamb, C., et al.: SCHEMA-designed variants of human Arginase I and II reveal sequence elements important to stability and catalysis. ACS Synth. Biol. 1, 221–228 (2012)CrossRef
75.
Zurück zum Zitat Saraf, M.C., Horswill, A.R., Benkovic, S.J., Maranas, C.D.: FamClash: a method for ranking the activity of engineered enzymes. Proc. Natl. Acad. Sci. USA. 101, 4142–4147 (2004)CrossRef Saraf, M.C., Horswill, A.R., Benkovic, S.J., Maranas, C.D.: FamClash: a method for ranking the activity of engineered enzymes. Proc. Natl. Acad. Sci. USA. 101, 4142–4147 (2004)CrossRef
76.
Zurück zum Zitat Moore, G.L., Maranas, C.D.: Identifying residue-residue clashes in protein hybrids by using a second-order mean-field approach. Proc. Natl. Acad. Sci. USA. 100, 5091–5096 (2003)CrossRef Moore, G.L., Maranas, C.D.: Identifying residue-residue clashes in protein hybrids by using a second-order mean-field approach. Proc. Natl. Acad. Sci. USA. 100, 5091–5096 (2003)CrossRef
77.
Zurück zum Zitat Saraf, M.C., Maranas, C.D.: Using a residue clash map to functionally characterize protein recombination hybrids. Protein Eng. 16, 1025–1034 (2003)CrossRef Saraf, M.C., Maranas, C.D.: Using a residue clash map to functionally characterize protein recombination hybrids. Protein Eng. 16, 1025–1034 (2003)CrossRef
78.
Zurück zum Zitat Dubey, A., Realff, M.J., Lee, J.H., Bommarius, A.S.: Support vector machines for learning to identify the critical positions of a protein. J. Theor. Biol. 234, 351–361 (2005)MathSciNetCrossRef Dubey, A., Realff, M.J., Lee, J.H., Bommarius, A.S.: Support vector machines for learning to identify the critical positions of a protein. J. Theor. Biol. 234, 351–361 (2005)MathSciNetCrossRef
79.
Zurück zum Zitat Saraf, M.C., Gupta, A., Maranas, C.D.: Design of combinatorial protein libraries of optimal size. Proteins 60, 769–777 (2005)CrossRef Saraf, M.C., Gupta, A., Maranas, C.D.: Design of combinatorial protein libraries of optimal size. Proteins 60, 769–777 (2005)CrossRef
80.
Zurück zum Zitat Pantazes, R.J., Saraf, M.C., Maranas, C.D.: Optimal protein library design using recombination or point mutations based on sequence-based scoring functions. Protein Eng. Des. Sel. 20, 361–373 (2007)CrossRef Pantazes, R.J., Saraf, M.C., Maranas, C.D.: Optimal protein library design using recombination or point mutations based on sequence-based scoring functions. Protein Eng. Des. Sel. 20, 361–373 (2007)CrossRef
81.
Zurück zum Zitat Fox, R.J., Davis, S.C., Mundorff, E.C., et al.: Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344 (2007)CrossRef Fox, R.J., Davis, S.C., Mundorff, E.C., et al.: Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344 (2007)CrossRef
82.
Zurück zum Zitat Feng, X., Sanchis, J., Reetz, M.T., Rabitz, H.: Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm. Chemistry 18, 5646–5654 (2012)CrossRef Feng, X., Sanchis, J., Reetz, M.T., Rabitz, H.: Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm. Chemistry 18, 5646–5654 (2012)CrossRef
83.
Zurück zum Zitat Firth, A.E., Patrick, W.M.: GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res. 36, W281–W285 (2008)CrossRef Firth, A.E., Patrick, W.M.: GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res. 36, W281–W285 (2008)CrossRef
84.
Zurück zum Zitat Patrick, W.M., Firth, A.E., Blackburn, J.M.: User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16, 451–457 (2003)CrossRef Patrick, W.M., Firth, A.E., Blackburn, J.M.: User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16, 451–457 (2003)CrossRef
85.
Zurück zum Zitat Ashkenazy, H., Erez, E., Martz, E., Pupko, T., Ben-Tal, N.: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010)CrossRef Ashkenazy, H., Erez, E., Martz, E., Pupko, T., Ben-Tal, N.: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010)CrossRef
86.
Zurück zum Zitat Engelen, S., Trojan, L.A., Sacquin-Mora, S., Lavery, R., Carbone, A.: Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS. Comput. Biol. 5, e1000267 (2009) Engelen, S., Trojan, L.A., Sacquin-Mora, S., Lavery, R., Carbone, A.: Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS. Comput. Biol. 5, e1000267 (2009)
87.
Zurück zum Zitat Guney, E., Tuncbag, N., Keskin, O., Gursoy, A.: HotSprint: database of computational hot spots in protein interfaces. Nucleic Acids Res. 36, D662–D666 (2008)CrossRef Guney, E., Tuncbag, N., Keskin, O., Gursoy, A.: HotSprint: database of computational hot spots in protein interfaces. Nucleic Acids Res. 36, D662–D666 (2008)CrossRef
88.
Zurück zum Zitat Pavelka, A., Chovancova, E., Damborsky, J.: HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 37, W376–W383 (2009)CrossRef Pavelka, A., Chovancova, E., Damborsky, J.: HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 37, W376–W383 (2009)CrossRef
89.
Zurück zum Zitat Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., Pupko, T.: Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res. 35, W506–W511 (2007)CrossRef Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., Pupko, T.: Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res. 35, W506–W511 (2007)CrossRef
90.
Zurück zum Zitat Bava, K.A., Gromiha, M.M., Uedaira, H., Kitajima, K., Sarai, A.: ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 32, D120–D121 (2004)CrossRef Bava, K.A., Gromiha, M.M., Uedaira, H., Kitajima, K., Sarai, A.: ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 32, D120–D121 (2004)CrossRef
91.
Zurück zum Zitat Kawabata, T., Ota, M., Nishikawa, K.: The protein mutant database. Nucl. Acids Res. 27, 355–357 (1999)CrossRef Kawabata, T., Ota, M., Nishikawa, K.: The protein mutant database. Nucl. Acids Res. 27, 355–357 (1999)CrossRef
92.
Zurück zum Zitat Braun, A., Halwachs, B., Geier, M. et al.: MuteinDB: the mutein database linking substrates, products and enzymatic reactions directly with genetic variants of enzymes. Database. (Oxford) 2012, bas028 (2012) Braun, A., Halwachs, B., Geier, M. et al.: MuteinDB: the mutein database linking substrates, products and enzymatic reactions directly with genetic variants of enzymes. Database. (Oxford) 2012, bas028 (2012)
93.
Zurück zum Zitat Ashkenazy, H., Erez, E., Martz, E., Pupko, T., Ben-Tal, N.: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucl. Acids Res. 38, W529–W533 (2010)CrossRef Ashkenazy, H., Erez, E., Martz, E., Pupko, T., Ben-Tal, N.: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucl. Acids Res. 38, W529–W533 (2010)CrossRef
94.
Zurück zum Zitat Guney, E., Tuncbag, N., Keskin, O., Gursoy, A.: HotSprint: database of computational hot spots in protein interfaces. Nucl. Acids Res. 36, D662–D666 (2008)CrossRef Guney, E., Tuncbag, N., Keskin, O., Gursoy, A.: HotSprint: database of computational hot spots in protein interfaces. Nucl. Acids Res. 36, D662–D666 (2008)CrossRef
95.
Zurück zum Zitat Pavelka, A., Chovancova, E., Damborsky, J.: HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucl. Acids Res. 37, W376–W383 (2009)CrossRef Pavelka, A., Chovancova, E., Damborsky, J.: HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucl. Acids Res. 37, W376–W383 (2009)CrossRef
96.
Zurück zum Zitat Cabrita, L.D., Gilis, D., Robertson, A.L., Dehouck, Y., Rooman, M., Bottomley, S.P.: Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 16, 2360–2367 (2007)CrossRef Cabrita, L.D., Gilis, D., Robertson, A.L., Dehouck, Y., Rooman, M., Bottomley, S.P.: Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 16, 2360–2367 (2007)CrossRef
97.
Zurück zum Zitat Gilis, D., McLennan, H.R., Dehouck, Y., Cabrita, L.D., Rooman, M., Bottomley, S.P.: In vitro and in silico design of alpha1-antitrypsin mutants with different conformational stabilities. J. Mol. Biol. 325, 581–589 (2003)CrossRef Gilis, D., McLennan, H.R., Dehouck, Y., Cabrita, L.D., Rooman, M., Bottomley, S.P.: In vitro and in silico design of alpha1-antitrypsin mutants with different conformational stabilities. J. Mol. Biol. 325, 581–589 (2003)CrossRef
98.
Zurück zum Zitat Rothlisberger, D., Khersonsky, O., Wollacott, A.M., et al.: Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008)CrossRef Rothlisberger, D., Khersonsky, O., Wollacott, A.M., et al.: Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008)CrossRef
99.
Zurück zum Zitat Jiang, L., Althoff, E.A., Clemente, F.R., et al.: De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008)CrossRef Jiang, L., Althoff, E.A., Clemente, F.R., et al.: De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008)CrossRef
100.
Zurück zum Zitat Siegel, J.B., Zanghellini, A., Lovick, H.M., et al.: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010)CrossRef Siegel, J.B., Zanghellini, A., Lovick, H.M., et al.: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010)CrossRef
101.
Zurück zum Zitat Khersonsky, O., Kiss, G., Rothlisberger, D., et al.: Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci. U.S.A. 109, 10358–10363 (2012)CrossRef Khersonsky, O., Kiss, G., Rothlisberger, D., et al.: Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci. U.S.A. 109, 10358–10363 (2012)CrossRef
102.
Zurück zum Zitat Althoff, E.A., Wang, L., Jiang, L., et al.: Robust design and optimization of retroaldol enzymes. Protein Sci. 21, 717–726 (2012)CrossRef Althoff, E.A., Wang, L., Jiang, L., et al.: Robust design and optimization of retroaldol enzymes. Protein Sci. 21, 717–726 (2012)CrossRef
103.
Zurück zum Zitat Watkins, D.W., Armstrong, C.T., Beesley, J.L., et al.: A suite of de novo c-type cytochromes for functional oxidoreductase engineering. Biochim. Biophys. Acta 1857, 493–502 (2016)CrossRef Watkins, D.W., Armstrong, C.T., Beesley, J.L., et al.: A suite of de novo c-type cytochromes for functional oxidoreductase engineering. Biochim. Biophys. Acta 1857, 493–502 (2016)CrossRef
104.
Zurück zum Zitat Wolf, C., Siegel, J.B., Tinberg, C., et al.: Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J. Am. Chem. Soc. 137, 13106–13113 (2015)CrossRef Wolf, C., Siegel, J.B., Tinberg, C., et al.: Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J. Am. Chem. Soc. 137, 13106–13113 (2015)CrossRef
105.
Zurück zum Zitat Cochran, F.V., Wu, S.P., Wang, W., et al.: Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc. 127, 1346–1347 (2005)CrossRef Cochran, F.V., Wu, S.P., Wang, W., et al.: Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc. 127, 1346–1347 (2005)CrossRef
106.
Zurück zum Zitat McAllister, K.A., Zou, H., Cochran, F.V., et al.: Using alpha-helical coiled-coils to design nanostructured metalloporphyrin arrays. J. Am. Chem. Soc. 130, 11921–11927 (2008)CrossRef McAllister, K.A., Zou, H., Cochran, F.V., et al.: Using alpha-helical coiled-coils to design nanostructured metalloporphyrin arrays. J. Am. Chem. Soc. 130, 11921–11927 (2008)CrossRef
107.
Zurück zum Zitat Fry, H.C., Lehmann, A., Saven, J.G., DeGrado, W.F., Therien, M.J.: Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore. J. Am. Chem. Soc. 132, 3997–4005 (2010)CrossRef Fry, H.C., Lehmann, A., Saven, J.G., DeGrado, W.F., Therien, M.J.: Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore. J. Am. Chem. Soc. 132, 3997–4005 (2010)CrossRef
108.
Zurück zum Zitat Tebo, A.G., Pecoraro, V.L.: Artificial metalloenzymes derived from three-helix bundles. Curr. Opin. Chem. Biol. 25, 65–70 (2015)CrossRef Tebo, A.G., Pecoraro, V.L.: Artificial metalloenzymes derived from three-helix bundles. Curr. Opin. Chem. Biol. 25, 65–70 (2015)CrossRef
109.
Zurück zum Zitat Saven, J.G.: Computational protein design: advances in the design and redesign of biomolecular nanostructures. Curr. Opin. Colloid Interface Sci. 15, 13–17 (2010)CrossRef Saven, J.G.: Computational protein design: advances in the design and redesign of biomolecular nanostructures. Curr. Opin. Colloid Interface Sci. 15, 13–17 (2010)CrossRef
110.
Zurück zum Zitat Koehler, L.J., Ulmschneider, M.B., Gray, J.J.: Computational modeling of membrane proteins. Proteins 83, 1–24 (2015)CrossRef Koehler, L.J., Ulmschneider, M.B., Gray, J.J.: Computational modeling of membrane proteins. Proteins 83, 1–24 (2015)CrossRef
111.
Zurück zum Zitat Slovic, A.M., Kono, H., Lear, J.D., Saven, J.G., DeGrado, W.F.: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. USA. 101, 1828–1833 (2004)CrossRef Slovic, A.M., Kono, H., Lear, J.D., Saven, J.G., DeGrado, W.F.: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. USA. 101, 1828–1833 (2004)CrossRef
112.
Zurück zum Zitat Caputo, G.A., Litvinov, R.I., Li, W., Bennett, J.S., DeGrado, W.F., Yin, H.: Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry 47, 8600–8606 (2008)CrossRef Caputo, G.A., Litvinov, R.I., Li, W., Bennett, J.S., DeGrado, W.F., Yin, H.: Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry 47, 8600–8606 (2008)CrossRef
113.
Zurück zum Zitat Signarvic, R.S., DeGrado, W.F.: Metal-binding dependent disruption of membranes by designed helices. J. Am. Chem. Soc. 131, 3377–3384 (2009)CrossRef Signarvic, R.S., DeGrado, W.F.: Metal-binding dependent disruption of membranes by designed helices. J. Am. Chem. Soc. 131, 3377–3384 (2009)CrossRef
Metadaten
Titel
Generating the Fancy Protein Basket with De Novo and Combinatorial Approaches
verfasst von
Krishna Mohan Poluri
Khushboo Gulati
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2732-1_4