Skip to main content
Erschienen in: Journal of Polymer Research 2/2019

01.02.2019 | ORIGINAL PAPER

Graphene/carbon nanotubes-supported Ziegler-Natta catalysts for in situ synthesis of mechanically strong, thermally and electrically conductive trans-polyisoprene nanocomposite

verfasst von: Lan Cao, Tridib K. Sinha, Xiaojie Zhang, Xiaokang Zhai, Chunfu Wang, Chengzhong Zong, Jin Kuk Kim

Erschienen in: Journal of Polymer Research | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Facile ball milling process is introduced here to prepare an efficient rGO/CNT/MgCl2 supported Ti-based Ziegler-Natta catalyst, for in situ polymerization of isoprene and simultaneous production of rGO/CNT based trans-polyisoprene (TPI) hybrid nanocomposite (having 98% of trans-1,4 structure). Effect of rGO/CNT on the morphological and crystalline properties of the catalyst, along with its efficacy towards the polymerization has been thoroughly investigated by SEM, XRD, FTIR, 1H-NMR, 13C-NMR, etc. Surprisingly, β-crystallinity of TPI nanocomposite increases with increasing rGO/CNT content. Because of increasing crystallinity and presence of homogeneously dispersed rGO/CNT filler, TPI nanocomposite (containing only 2 wt% rGO/CNT) shows improved mechanical property (e.g., increase of 110% modulus at 300% strain), 65% increased thermal conductivity and 109 time increased electrical conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tsoukatos T, Pispas S, Hadjichristidis N (2000) Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization. Macromolecules 33:9504–9511CrossRef Tsoukatos T, Pispas S, Hadjichristidis N (2000) Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization. Macromolecules 33:9504–9511CrossRef
2.
Zurück zum Zitat Wang B, Wang Z, Jiang F, Fang H, Wang Z (2014) Synthesis and characterization of MWCNT-graft-polyisoprene via ARGET ATRP. RSC Adv 4:26468–26475CrossRef Wang B, Wang Z, Jiang F, Fang H, Wang Z (2014) Synthesis and characterization of MWCNT-graft-polyisoprene via ARGET ATRP. RSC Adv 4:26468–26475CrossRef
3.
Zurück zum Zitat Ouardad S, Wirotius AL, Kostjuk S, Ganachaud F, Peruch F (2015) Carbocationic polymerization of isoprene using cumyl initiators: progress in understanding side reactions. RSC Adv 5:59218–59225CrossRef Ouardad S, Wirotius AL, Kostjuk S, Ganachaud F, Peruch F (2015) Carbocationic polymerization of isoprene using cumyl initiators: progress in understanding side reactions. RSC Adv 5:59218–59225CrossRef
4.
Zurück zum Zitat Bellucci FS, de Almeida FCL, Nobre MAL, Rodríguez-Pérez MA, Paschoalini AT, Job AE (2016) Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites Part B 85:196–206CrossRef Bellucci FS, de Almeida FCL, Nobre MAL, Rodríguez-Pérez MA, Paschoalini AT, Job AE (2016) Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites Part B 85:196–206CrossRef
6.
Zurück zum Zitat Ratri PJ, Tashiro K (2013) Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β-to-α transition of trans-1,4-polyisoprene. Polym J 45:1107–1114CrossRef Ratri PJ, Tashiro K (2013) Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β-to-α transition of trans-1,4-polyisoprene. Polym J 45:1107–1114CrossRef
7.
Zurück zum Zitat Kent E, Swinney F (1966) Properties and Applications of trans-1,4-Polyisoprene. Ind Eng Chem Res 5:134–138CrossRef Kent E, Swinney F (1966) Properties and Applications of trans-1,4-Polyisoprene. Ind Eng Chem Res 5:134–138CrossRef
8.
Zurück zum Zitat Jones R, Wei Y, Biomed J (1971) Mater. Res. A 5:19–30 Jones R, Wei Y, Biomed J (1971) Mater. Res. A 5:19–30
9.
Zurück zum Zitat Lin GY, Liu SM, Dong FC (2013). App MechaMater 467:146–151 Lin GY, Liu SM, Dong FC (2013). App MechaMater 467:146–151
10.
Zurück zum Zitat Boochathum P, Prajudtake W (2001) Vulcanization of cis- and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Eur Polym J 37:417–427CrossRef Boochathum P, Prajudtake W (2001) Vulcanization of cis- and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Eur Polym J 37:417–427CrossRef
11.
Zurück zum Zitat Jiang H, Yue H, Zhao JY, Sha QE (2012) Molecular Dynamics Simulation of the Mechanical Properties of NR/TPI. Adv Mater Res 560-561:1114–1118CrossRef Jiang H, Yue H, Zhao JY, Sha QE (2012) Molecular Dynamics Simulation of the Mechanical Properties of NR/TPI. Adv Mater Res 560-561:1114–1118CrossRef
12.
Zurück zum Zitat Qu L, Huang G, Nie Y, Wu J, Weng G, Zhang P (2011) Strain-induced crystallization behavior of natural rubber and trans-1,4-polyisoprene crosslinked blends. J Appl Polym Sci 120:1346–1354CrossRef Qu L, Huang G, Nie Y, Wu J, Weng G, Zhang P (2011) Strain-induced crystallization behavior of natural rubber and trans-1,4-polyisoprene crosslinked blends. J Appl Polym Sci 120:1346–1354CrossRef
13.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: Past, present and future. Prog Mater Sci 56:1178–1271CrossRef Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: Past, present and future. Prog Mater Sci 56:1178–1271CrossRef
14.
Zurück zum Zitat Dresselhaus M, Dresselhaus G, Charlier J-C, Hernandez E (2004) Philos. Transact. A, math. Phys Eng Sci 362:2065–2098CrossRef Dresselhaus M, Dresselhaus G, Charlier J-C, Hernandez E (2004) Philos. Transact. A, math. Phys Eng Sci 362:2065–2098CrossRef
15.
Zurück zum Zitat Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2Nanoribbons: High stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744CrossRef Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2Nanoribbons: High stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744CrossRef
16.
Zurück zum Zitat Tripathi SN, Rao GS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632CrossRef Tripathi SN, Rao GS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632CrossRef
17.
Zurück zum Zitat Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A 3:24112–24120CrossRef Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A 3:24112–24120CrossRef
18.
Zurück zum Zitat Zhang HX, Park JH, Moon YK, Ko EB, Lee Dh, Hu Y, Zhang X, Yoon KB (2017) Preparation of graphene/MgCl2-supported Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization. Chin J Catal 38:131–137CrossRef Zhang HX, Park JH, Moon YK, Ko EB, Lee Dh, Hu Y, Zhang X, Yoon KB (2017) Preparation of graphene/MgCl2-supported Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization. Chin J Catal 38:131–137CrossRef
19.
Zurück zum Zitat Zhang HX, Park JH, Ko EB, Moon YK, Lee Dh, Hu Y-M, Zhang XQ, Yoon KB (2016) Comparison of the properties of graphene- and graphene oxide-based polyethylene nanocomposites prepared by an in situ polymerization method. RSC Adv 6:73013–73019CrossRef Zhang HX, Park JH, Ko EB, Moon YK, Lee Dh, Hu Y-M, Zhang XQ, Yoon KB (2016) Comparison of the properties of graphene- and graphene oxide-based polyethylene nanocomposites prepared by an in situ polymerization method. RSC Adv 6:73013–73019CrossRef
20.
Zurück zum Zitat Zhang HX, Park JH, Yoon KB (2018) Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts. Compos Sci Technol 154:85–91CrossRef Zhang HX, Park JH, Yoon KB (2018) Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts. Compos Sci Technol 154:85–91CrossRef
21.
Zurück zum Zitat Huang BC, China patent CN 85110352, 1985 Huang BC, China patent CN 85110352, 1985
22.
Zurück zum Zitat Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:384CrossRef Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:384CrossRef
23.
Zurück zum Zitat Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19:37CrossRef Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19:37CrossRef
24.
Zurück zum Zitat Bahri-Laleh N (2016) Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl Surf Sci 379:395–401CrossRef Bahri-Laleh N (2016) Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl Surf Sci 379:395–401CrossRef
25.
Zurück zum Zitat Chen X, Qiu M, Ding H, Fu K, Fan Y (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8:5696–5705CrossRef Chen X, Qiu M, Ding H, Fu K, Fan Y (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8:5696–5705CrossRef
26.
Zurück zum Zitat Lin X, Shen X, Sun X, Liu X, Wu Y, Wang Z, Kim JK (2016) Graphene Oxide Papers Simultaneously Doped with Mg2+and Cl–for Exceptional Mechanical, Electrical, and Dielectric Properties. ACS Appl. Mater. Inter. 8:2360–2371CrossRef Lin X, Shen X, Sun X, Liu X, Wu Y, Wang Z, Kim JK (2016) Graphene Oxide Papers Simultaneously Doped with Mg2+and Cl–for Exceptional Mechanical, Electrical, and Dielectric Properties. ACS Appl. Mater. Inter. 8:2360–2371CrossRef
27.
Zurück zum Zitat Sinha TK, Ghosh SK, Maiti R, Jana S, Adhikari B, Mandal D, Ray SK (2016) Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor. ACS Appl Mater Inter 8:14986–14993CrossRef Sinha TK, Ghosh SK, Maiti R, Jana S, Adhikari B, Mandal D, Ray SK (2016) Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor. ACS Appl Mater Inter 8:14986–14993CrossRef
28.
Zurück zum Zitat Conti G, Arribas G, Altomare A, Ciardelli F (1994) Influence of ligands and cocatalyst on the activity in ethylene polymerization of soluble titanium complexes. J Mol Catal 89:41–50CrossRef Conti G, Arribas G, Altomare A, Ciardelli F (1994) Influence of ligands and cocatalyst on the activity in ethylene polymerization of soluble titanium complexes. J Mol Catal 89:41–50CrossRef
29.
Zurück zum Zitat D’Amore KS, Thushara A, Piovano M, Causà S, Bordiga, Groppo E (2016). ACS Catal 6:5786–5796CrossRef D’Amore KS, Thushara A, Piovano M, Causà S, Bordiga, Groppo E (2016). ACS Catal 6:5786–5796CrossRef
30.
Zurück zum Zitat Makhiyanov N (2017). J. Polym. Sci., Part A: Polym Chem 59:269–279 Makhiyanov N (2017). J. Polym. Sci., Part A: Polym Chem 59:269–279
31.
Zurück zum Zitat Mandelkern L, Quinn Jr F, Roberts D (1956) Thermodynamics of Crystallization in High Polymers: Gutta Percha1,2. JACS 78:926–932CrossRef Mandelkern L, Quinn Jr F, Roberts D (1956) Thermodynamics of Crystallization in High Polymers: Gutta Percha1,2. JACS 78:926–932CrossRef
32.
Zurück zum Zitat Yao K, Nie H, Liang Y, Qiu D, He A (2015) Polymorphic crystallization behaviors in cis-1,4-polyisoprene/trans-1,4-polyisoprene blends. Polymer 80:259–264CrossRef Yao K, Nie H, Liang Y, Qiu D, He A (2015) Polymorphic crystallization behaviors in cis-1,4-polyisoprene/trans-1,4-polyisoprene blends. Polymer 80:259–264CrossRef
33.
Zurück zum Zitat Schilder H, Goodman A, Aldrich W (1974) The thermomechanical properties of gutta-percha. Or Surg Or Med Or Pa 38:109–114CrossRef Schilder H, Goodman A, Aldrich W (1974) The thermomechanical properties of gutta-percha. Or Surg Or Med Or Pa 38:109–114CrossRef
34.
Zurück zum Zitat Baboo M, Dixit M, Sharma K, Saxena NS (2011) Mechanical and thermal characterization of cis-polyisoprene and trans-polyisoprene blends. Polym Bull 66:661–672CrossRef Baboo M, Dixit M, Sharma K, Saxena NS (2011) Mechanical and thermal characterization of cis-polyisoprene and trans-polyisoprene blends. Polym Bull 66:661–672CrossRef
35.
Zurück zum Zitat Baboo M, Dixit M, Sharma K, Saxena NS (2009) The Structure and Thermomechanical Properties of Blends of Trans-polyisoprene with Cis-polyisoprene. Int J Polym Mater 58:636–646CrossRef Baboo M, Dixit M, Sharma K, Saxena NS (2009) The Structure and Thermomechanical Properties of Blends of Trans-polyisoprene with Cis-polyisoprene. Int J Polym Mater 58:636–646CrossRef
36.
Zurück zum Zitat Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479CrossRef Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479CrossRef
37.
Zurück zum Zitat Ogunsona EO, Misra M, Mohanty AK (2017) Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Adv 7:8727–8739CrossRef Ogunsona EO, Misra M, Mohanty AK (2017) Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Adv 7:8727–8739CrossRef
38.
Zurück zum Zitat Li Y, Zhao J, Tang C, He Y, Wang Y, Chen J, Mao J, Zhou Q, Wang B, Wei F, Luo J, Shi G (2016) Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Adv Mater Inter 3:1600700CrossRef Li Y, Zhao J, Tang C, He Y, Wang Y, Chen J, Mao J, Zhou Q, Wang B, Wei F, Luo J, Shi G (2016) Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Adv Mater Inter 3:1600700CrossRef
39.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 36:914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 36:914–944CrossRef
40.
Zurück zum Zitat Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53:3378–3385CrossRef Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53:3378–3385CrossRef
41.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
42.
Zurück zum Zitat Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H, Li D, Dahmen K (2003). J Appl Polym Sci 94:6034–6039 Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H, Li D, Dahmen K (2003). J Appl Polym Sci 94:6034–6039
43.
Zurück zum Zitat Tjong SC (2012) Polymer composites with carbonaceous nanofillers: properties and applications. John Wiley & Sons Tjong SC (2012) Polymer composites with carbonaceous nanofillers: properties and applications. John Wiley & Sons
Metadaten
Titel
Graphene/carbon nanotubes-supported Ziegler-Natta catalysts for in situ synthesis of mechanically strong, thermally and electrically conductive trans-polyisoprene nanocomposite
verfasst von
Lan Cao
Tridib K. Sinha
Xiaojie Zhang
Xiaokang Zhai
Chunfu Wang
Chengzhong Zong
Jin Kuk Kim
Publikationsdatum
01.02.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 2/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1688-y

Weitere Artikel der Ausgabe 2/2019

Journal of Polymer Research 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.