Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Graphene Oxide: Synthesis and Characterization

verfasst von : Mohd. Bilal Khan, Mohd. Parvaz, Zishan Husain Khan

Erschienen in: Recent Trends in Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene oxide is single or few atomic layers of graphene attached to oxygen-containing groups. It is a flexible material and is prepared by the energetic oxidation of graphite. Graphene oxide has a lot of potential due to easy synthesis, cost-effectiveness and scope for mass scale production. It is one of the important materials for the futuristic memory devices. The band gap of graphene oxide can be easily tuned by varying the oxidation level. It is ideal as an electrical insulator as well as semiconductor, when it is fully oxidized and partially oxidized respectively. Graphene oxide is produced by the oxidation of graphite followed by exfoliation of oxidized graphite. Various methods for the synthesis of graphene oxide are discussed in this chapter. The reduction of graphene oxide to produce reduced graphene oxide is extremely important. The process used for reduction has a large impact on the quality of the reduced graphene oxide produced and therefore will determine how close reduced graphene oxide will come, in terms of structure and properties, to pristine graphene. For the industrial applications, there is a need to utilize large quantities of graphene, and reduced graphene oxide is the most obvious solution due to the relative ease in creating sufficient quantities of graphene to desired quality levels. Although, there are many reports on the reduction of graphene oxide available in the literature, the complete removal of oxygen-containing groups is still a challenge. This chapter presents a review of the research work reported on the synthesis and characterization of graphene oxide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Hirsch, M. Brettreich, Fullerenes—Chemistry and Reactions (Wiley, New York, 2004). H. Yang et al., Angew. Chem. Int. Ed. 49, 886 (2010) A. Hirsch, M. Brettreich, Fullerenes—Chemistry and Reactions (Wiley, New York, 2004). H. Yang et al., Angew. Chem. Int. Ed. 49, 886 (2010)
2.
Zurück zum Zitat A. Hirsch, The era of carbon allotropes. Nat. Mater. 9(11), 868–871 (2010)CrossRef A. Hirsch, The era of carbon allotropes. Nat. Mater. 9(11), 868–871 (2010)CrossRef
3.
Zurück zum Zitat N. Tagmatarchis, H. Shinohara, Fullerenes in medicinal chemistry and their biological applications. Mini. Rev. Med. Chem. 1(4), 339–348 (2001) N. Tagmatarchis, H. Shinohara, Fullerenes in medicinal chemistry and their biological applications. Mini. Rev. Med. Chem. 1(4), 339–348 (2001)
4.
Zurück zum Zitat E.A. Katz, Fullerene thin films as photovoltaic material, in Nanostructured Materials for Solar Energy Conversion, ed. by T. Sōga (Elsevier, Amsterdam, 2006), pp. 361–443 E.A. Katz, Fullerene thin films as photovoltaic material, in Nanostructured Materials for Solar Energy Conversion, ed. by T. Sōga (Elsevier, Amsterdam, 2006), pp. 361–443
5.
Zurück zum Zitat R.E. Smalley, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer Science & Business Media, 2003) R.E. Smalley, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer Science & Business Media, 2003)
6.
Zurück zum Zitat S.H. Jin, Single-walled carbon nanotubes (SWNTs); history and future prospects for electronic applications, in Active-Matrix Flatpanel Displays And Devices (AMFPD), 2016 The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices, FTFMD (2016), pp. 38–41 S.H. Jin, Single-walled carbon nanotubes (SWNTs); history and future prospects for electronic applications, in Active-Matrix Flatpanel Displays And Devices (AMFPD), 2016 The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices, FTFMD (2016), pp. 38–41
7.
Zurück zum Zitat M. Husain, Z.H. Khan (eds.), Advances in Nanomaterials, vol. 79 (Springer, Berlin, 2016) M. Husain, Z.H. Khan (eds.), Advances in Nanomaterials, vol. 79 (Springer, Berlin, 2016)
8.
Zurück zum Zitat P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, in Carbon Nanotubes (Springer, Berlin, 2001), 391–425 P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, in Carbon Nanotubes (Springer, Berlin, 2001), 391–425
9.
Zurück zum Zitat H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66(9), (1994), 1893–1901 H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66(9), (1994), 1893–1901
10.
Zurück zum Zitat E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef
11.
Zurück zum Zitat H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie 316(3–4), 119–127 (1962) H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie 316(3–4), 119–127 (1962)
12.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
13.
Zurück zum Zitat This Month in Physics History: October 22, 2004: Discovery of Graphene. APS News. Series II. 18(9), 2 (2009) This Month in Physics History: October 22, 2004: Discovery of Graphene. APS News. Series II. 18(9), 2 (2009)
14.
Zurück zum Zitat D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012) D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)
15.
Zurück zum Zitat J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008) J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008)
16.
Zurück zum Zitat V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 122(12), 2200–2203 (2010) V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 122(12), 2200–2203 (2010)
17.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006) S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)
18.
Zurück zum Zitat H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009) H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)
19.
Zurück zum Zitat D. Li, R.B. Kaner, Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008) D. Li, R.B. Kaner, Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008)
20.
Zurück zum Zitat S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controll. Release 173, 75–88 (2014)CrossRef S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controll. Release 173, 75–88 (2014)CrossRef
21.
Zurück zum Zitat K. Shehzad, Y. Xu, C. Gao, X. Duan, Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 45(20), 5541–5588 (2016)CrossRef K. Shehzad, Y. Xu, C. Gao, X. Duan, Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 45(20), 5541–5588 (2016)CrossRef
22.
Zurück zum Zitat Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Func. Mater. 23(29), 3693–3700 (2013)CrossRef Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Func. Mater. 23(29), 3693–3700 (2013)CrossRef
23.
Zurück zum Zitat Martin Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011)CrossRef Martin Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011)CrossRef
24.
Zurück zum Zitat Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1), 107–131 (2012)CrossRef Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1), 107–131 (2012)CrossRef
25.
Zurück zum Zitat M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef
26.
Zurück zum Zitat H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53–56 (1998)CrossRef H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53–56 (1998)CrossRef
27.
Zurück zum Zitat X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef
28.
Zurück zum Zitat G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef
29.
Zurück zum Zitat X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)CrossRef X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)CrossRef
30.
Zurück zum Zitat G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, Su WF, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008)CrossRef G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, Su WF, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008)CrossRef
31.
Zurück zum Zitat S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)CrossRef S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)CrossRef
32.
Zurück zum Zitat X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)CrossRef X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)CrossRef
33.
Zurück zum Zitat R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067), 442–444 (2012)CrossRef R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067), 442–444 (2012)CrossRef
34.
Zurück zum Zitat L. Wang, K. Lee, Y.Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10). 2995–3000 (2009) L. Wang, K. Lee, Y.Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10). 2995–3000 (2009)
35.
Zurück zum Zitat C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013) C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013)
36.
Zurück zum Zitat B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R. Soc. London 149, 249–259 (1859) B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R. Soc. London 149, 249–259 (1859)
37.
Zurück zum Zitat L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)CrossRef L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)CrossRef
38.
Zurück zum Zitat L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 32, 1394–1399 (1899)CrossRef L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 32, 1394–1399 (1899)CrossRef
39.
Zurück zum Zitat U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 754–771 (1939)CrossRef U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 754–771 (1939)CrossRef
40.
Zurück zum Zitat W. Gao, Synthesis, structure and characterizations, in Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, ed. by W. Gao (Springer International Publishing, 2015), pp. 1–28 W. Gao, Synthesis, structure and characterizations, in Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, ed. by W. Gao (Springer International Publishing, 2015), pp. 1–28
41.
Zurück zum Zitat W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958) W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)
42.
Zurück zum Zitat K.R. Koch, P.F. Krause, Oxidation by dimanganese heptoxide: an impressive demonstration. J. Chem. Ed 59, 973 (1982) K.R. Koch, P.F. Krause, Oxidation by dimanganese heptoxide: an impressive demonstration. J. Chem. Ed 59, 973 (1982)
43.
Zurück zum Zitat A. Simon, R. Dronskowski, B. Krebs, B. Hettich, The crystal structure of Mn2O7. Angew. Chem. Int. Ed. Engl. 26(2), 139–140 (1987) A. Simon, R. Dronskowski, B. Krebs, B. Hettich, The crystal structure of Mn2O7. Angew. Chem. Int. Ed. Engl. 26(2), 139–140 (1987)
44.
Zurück zum Zitat S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006) S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)
45.
Zurück zum Zitat N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999) N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999)
46.
Zurück zum Zitat J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRef J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRef
47.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef
48.
Zurück zum Zitat S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009) S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)
49.
Zurück zum Zitat S. Park et al., Graphene oxide papers modified by divalentions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008) S. Park et al., Graphene oxide papers modified by divalentions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)
50.
Zurück zum Zitat S. Stankovich, R. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006) S. Stankovich, R. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006)
51.
Zurück zum Zitat J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008) J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)
52.
Zurück zum Zitat S. Stankovich et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007) S. Stankovich et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)
53.
Zurück zum Zitat D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008) D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)
54.
Zurück zum Zitat Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008) Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)
55.
Zurück zum Zitat S. Park et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008) S. Park et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008)
56.
Zurück zum Zitat Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008) Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)
57.
Zurück zum Zitat S. Niyogi et al., Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006) S. Niyogi et al., Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)
58.
Zurück zum Zitat J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008) J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)
59.
Zurück zum Zitat V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2008) V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2008)
60.
Zurück zum Zitat R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008) R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008)
61.
Zurück zum Zitat H.C. Schniepp et al., Functionalized single graphene sheets derived form splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006) H.C. Schniepp et al., Functionalized single graphene sheets derived form splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)
62.
Zurück zum Zitat M.J. McAllister et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007) M.J. McAllister et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)
63.
Zurück zum Zitat G. Williams, B. Serger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008) G. Williams, B. Serger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)
64.
Zurück zum Zitat P.V. Kamat, V. Bridewell, Electrocatalytic activity of graphene oxide: mediating electron transfer between two redox couples, in Meeting Abstracts, no. 6, The electrochemical society, (2016), pp. 551–551 P.V. Kamat, V. Bridewell, Electrocatalytic activity of graphene oxide: mediating electron transfer between two redox couples, in Meeting Abstracts, no. 6, The electrochemical society, (2016), pp. 551–551
65.
Zurück zum Zitat Y. Wang, L. Li, C. Luo, X. Wang, H. Duan, Removal of Pb 2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb 2+. Int. J. Biol. Macromol. 86, 505–511 (2016) Y. Wang, L. Li, C. Luo, X. Wang, H. Duan, Removal of Pb 2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb 2+. Int. J. Biol. Macromol. 86, 505–511 (2016)
66.
Zurück zum Zitat Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009) Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)
67.
Zurück zum Zitat O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J. Phys. Chem. C. 116(17), 9653–9659 (2012) O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J. Phys. Chem. C. 116(17), 9653–9659 (2012)
68.
Zurück zum Zitat S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012) S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)
69.
Zurück zum Zitat K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2007) K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2007)
70.
Zurück zum Zitat H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008) H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)
71.
Zurück zum Zitat S.C. Youn, J. Geng, B.S. Son, S.B. Yang, D.W. Kim, H.M. Cho, H.T. Jung, Effect of the exposure time of hydrazine vapor on the reduction of graphene oxide films. J. Nanosci. Nanotechnol. 11(7), 5959–5964 (2011) S.C. Youn, J. Geng, B.S. Son, S.B. Yang, D.W. Kim, H.M. Cho, H.T. Jung, Effect of the exposure time of hydrazine vapor on the reduction of graphene oxide films. J. Nanosci. Nanotechnol. 11(7), 5959–5964 (2011)
72.
Zurück zum Zitat Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122 (2010) Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122   (2010)
73.
Zurück zum Zitat H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19(23), 3832–3837 (2009) H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19(23), 3832–3837 (2009)
74.
Zurück zum Zitat S. Sharin, I.A. Rahman, A.F. Ahmad, H.M.K. Mohd, F. Mohamed, S. Radiman, M.S. Yasir, S. Sarmani, M.T. Ayob, I.S.A. Bastamam, Reduction of graphene oxide to graphene by using gamma irradiation. Malays. J. Anal. Sci. 19(6), 1223–1228 (2015) S. Sharin, I.A. Rahman, A.F. Ahmad, H.M.K. Mohd, F. Mohamed, S. Radiman, M.S. Yasir, S. Sarmani, M.T. Ayob, I.S.A. Bastamam, Reduction of graphene oxide to graphene by using gamma irradiation. Malays. J. Anal. Sci. 19(6), 1223–1228 (2015)
75.
Zurück zum Zitat L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009) L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009)
76.
Zurück zum Zitat Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen et al., Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5(1), 15–20 (2010) Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen et al., Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5(1), 15–20 (2010)
77.
Zurück zum Zitat Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl. Mater. Inter. 2(12), 3461–3466 (2010) Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl. Mater. Inter. 2(12), 3461–3466 (2010)
78.
Zurück zum Zitat P. Kumar, K.S. Subrahmanyam, C.N.R. Rao, Graphene produced by radiation-induced reduction of graphene oxide. Int. J. Nanosci. 10(04n05), 559–566 (2011) P. Kumar, K.S. Subrahmanyam, C.N.R. Rao, Graphene produced by radiation-induced reduction of graphene oxide. Int. J. Nanosci. 10(04n05), 559–566 (2011)
79.
Zurück zum Zitat B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu et al., Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 22(16), 7775–7781 (2012) B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu et al., Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 22(16), 7775–7781 (2012)
80.
Zurück zum Zitat D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010) D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)
81.
Zurück zum Zitat C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014) C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014)
82.
Zurück zum Zitat X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, J. Phys. Chem. C 115, 11957–11961 (2011) X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, J. Phys. Chem. C 115, 11957–11961 (2011)
83.
Zurück zum Zitat T. Sakura, Y. Nagasaki, Preparation of gold colloid using pyrrole-2-carboxylic acid and characterization of its particle growth. Colloid Polym. Sci. 285(12), 1407–1410 (2007) T. Sakura, Y. Nagasaki, Preparation of gold colloid using pyrrole-2-carboxylic acid and characterization of its particle growth. Colloid Polym. Sci. 285(12), 1407–1410 (2007)
84.
Zurück zum Zitat S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10), 3158–3164 (2011) S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10), 3158–3164 (2011)
85.
Zurück zum Zitat Y. Chen, X. Zhang, P. Yu, Y. Ma, Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 30, 4527–4529 (2009) Y. Chen, X. Zhang, P. Yu, Y. Ma, Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 30, 4527–4529 (2009)
86.
Zurück zum Zitat J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J. Mater. Chem. 20(9), 1722–1727 (2010) J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J. Mater. Chem. 20(9), 1722–1727 (2010)
87.
Zurück zum Zitat Z. Lei, L. Lu, X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5(4), 6391–6399 (2012) Z. Lei, L. Lu, X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5(4), 6391–6399 (2012)
88.
Zurück zum Zitat P. Su, H.L. Guo, L. Tian, S.K. Ning, An efficient method of producing stable graphene suspensions with less toxicity using dimethyl ketoxime. Carbon 50(15), 5351–5358 (2012) P. Su, H.L. Guo, L. Tian, S.K. Ning, An efficient method of producing stable graphene suspensions with less toxicity using dimethyl ketoxime. Carbon 50(15), 5351–5358 (2012)
89.
Zurück zum Zitat X. Shen, L. Jiang, Z. Ji, J. Wu, H. Zhou, G. Zhu, Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid. Interf. Sci. 354(2), 493–497 (2011) X. Shen, L. Jiang, Z. Ji, J. Wu, H. Zhou, G. Zhu, Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid. Interf. Sci. 354(2), 493–497 (2011)
90.
Zurück zum Zitat S. Zhang, Y. Shao, H. Liao, M.H. Engelhard, G. Yin, Y. Lin, Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5(3), 1785–1791 (2011) S. Zhang, Y. Shao, H. Liao, M.H. Engelhard, G. Yin, Y. Lin, Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5(3), 1785–1791 (2011)
91.
Zurück zum Zitat T. Wu, X. Wang, H. Qiu, J. Gao, W. Wang, Y. Liu, Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J. Mater. Chem. 22(11), 4772–4779 (2012) T. Wu, X. Wang, H. Qiu, J. Gao, W. Wang, Y. Liu, Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J. Mater. Chem. 22(11), 4772–4779 (2012)
92.
Zurück zum Zitat I.K. Moon, J. Lee, R.S. Ruoff, H. Lee. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(73), (2010) I.K. Moon, J. Lee, R.S. Ruoff, H. Lee. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(73), (2010)
93.
Zurück zum Zitat P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011) P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011)
94.
Zurück zum Zitat S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466–4474 (2010) S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466–4474 (2010)
95.
Zurück zum Zitat Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon 49, 573–580 (2011) Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon 49, 573–580 (2011)
96.
Zurück zum Zitat H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009) H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)
97.
Zurück zum Zitat M. Periasamy, M. Thirumalaikumar, Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J. Organomet. Chem. 609(1–2), 137–151 (2000) M. Periasamy, M. Thirumalaikumar, Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J. Organomet. Chem. 609(1–2), 137–151 (2000)
98.
Zurück zum Zitat W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009) W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)
99.
Zurück zum Zitat C.Y. Su, X.U. Yanping, W. Zhang, J. Zhao, A. Liu, X. Tang, C.H. Tsai, Y. Huang, L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4(9), 5285–5292 (2010) C.Y. Su, X.U. Yanping, W. Zhang, J. Zhao, A. Liu, X. Tang, C.H. Tsai, Y. Huang, L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4(9), 5285–5292 (2010)
100.
Zurück zum Zitat J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater. 22, 2213–2218 (2010) J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater. 22, 2213–2218 (2010)
101.
Zurück zum Zitat M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, J. Phys. Chem. C. 114, 6426–6432 (2010) M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, J. Phys. Chem. C. 114, 6426–6432 (2010)
102.
Zurück zum Zitat Y. Wang, L. Sun, B. Fugetsu, Bull. Chem. Soc. Jpn. 85, 1339–1344 (2012) Y. Wang, L. Sun, B. Fugetsu, Bull. Chem. Soc. Jpn. 85, 1339–1344 (2012)
103.
Zurück zum Zitat Q. Ma, J. Song, C. Jin, Z. Li, J. Liu, S. Meng, J. Zhao, Y. Guo, Carbon 54, 36–41 (2013) Q. Ma, J. Song, C. Jin, Z. Li, J. Liu, S. Meng, J. Zhao, Y. Guo, Carbon 54, 36–41 (2013)
104.
Zurück zum Zitat Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, Carbon 48, 1686–1689 (2010) Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, Carbon 48, 1686–1689 (2010)
105.
Zurück zum Zitat V.H. Pham, H.D. Pham, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, J.S. Chung, J. Mater. Chem. 22, 10530–10536 (2012) V.H. Pham, H.D. Pham, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, J.S. Chung, J. Mater. Chem. 22, 10530–10536 (2012)
106.
Zurück zum Zitat Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-m. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191–198 (2010) Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-m. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191–198 (2010)
107.
Zurück zum Zitat X. Mei, J. Ouyang, Carbon 49, 5389–5397 (2011); P.B. Liu, Y. Huang, L. Wang, Mater. Lett. 91, 125–128 (2013) X. Mei, J. Ouyang, Carbon 49, 5389–5397 (2011); P.B. Liu, Y. Huang, L. Wang, Mater. Lett. 91, 125–128 (2013)
108.
Zurück zum Zitat N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidan, L. Dubois, J. Mater. Chem. A 1, 2789–2794 (2013) N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidan, L. Dubois, J. Mater. Chem. A 1, 2789–2794 (2013)
109.
Zurück zum Zitat B.K. Barman, P. Mahanandia, K.K. Nanda, RSC Adv. 3, 12621–12624 (2013) B.K. Barman, P. Mahanandia, K.K. Nanda, RSC Adv. 3, 12621–12624 (2013)
110.
Zurück zum Zitat R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, Chem. Commun. 48, 1787–1789 (2012) R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, Chem. Commun. 48, 1787–1789 (2012)
111.
Zurück zum Zitat Y. Liu, Y. Li, M. Zhong, Y. Yang, W. Yuefang, M. Wang, J. Mater. Chem. 21, 15449–15455 (2011) Y. Liu, Y. Li, M. Zhong, Y. Yang, W. Yuefang, M. Wang, J. Mater. Chem. 21, 15449–15455 (2011)
112.
Zurück zum Zitat S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, RSC Adv. 2, 8827–8832 (2012) S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, RSC Adv. 2, 8827–8832 (2012)
113.
Zurück zum Zitat H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 4, 1539 (2013) H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 4, 1539 (2013)
114.
Zurück zum Zitat D. Chen, L. Li, L. Guo, Nanotechnology 22, 325601 (2011) D. Chen, L. Li, L. Guo, Nanotechnology 22, 325601 (2011)
115.
Zurück zum Zitat S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 9696–9703 (2012) S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 9696–9703 (2012)
116.
Zurück zum Zitat J.K. Ma, X.R. Wang, Y. Liu, T. Wu, Y. Liu, Y.Q. Guo, R.Q. Li, X.Y. Sun, F. Wu, C.B. Li, J.P. Gao, J. Mater. Chem. A 1, 2192–2201 (2013) J.K. Ma, X.R. Wang, Y. Liu, T. Wu, Y. Liu, Y.Q. Guo, R.Q. Li, X.Y. Sun, F. Wu, C.B. Li, J.P. Gao, J. Mater. Chem. A 1, 2192–2201 (2013)
117.
Zurück zum Zitat T.A. Pham, J. Kim, J.S. Kim, Y.T. Jeong, Colloids Surf. A 384, 543–548 (2011) T.A. Pham, J. Kim, J.S. Kim, Y.T. Jeong, Colloids Surf. A 384, 543–548 (2011)
118.
Zurück zum Zitat D. Suresh, H. Nagabhushana, S.C. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett. 142, 4–6 (2015) D. Suresh, H. Nagabhushana, S.C. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett. 142, 4–6 (2015)
119.
Zurück zum Zitat S. Hatamie, O. Akhavan, S.K. Sadrnezhaad, M.M. Ahadian, M.M. Shirolkar, H.Q. Wang, Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells, Mater. Sci. Eng. C 55, 482–489 (2015) S. Hatamie, O. Akhavan, S.K. Sadrnezhaad, M.M. Ahadian, M.M. Shirolkar, H.Q. Wang, Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells, Mater. Sci. Eng. C 55, 482–489 (2015)
120.
Zurück zum Zitat R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160, 355–358 (2015) R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160, 355–358 (2015)
121.
Zurück zum Zitat E.C. Salas, Z. Sun, A. Lüttge and JM Tour. ACS Nano 4, 4852–4856 (2010) E.C. Salas, Z. Sun, A. Lüttge and JM Tour. ACS Nano 4, 4852–4856 (2010)
122.
Zurück zum Zitat O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5), 1853–1860 (2012) O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5), 1853–1860 (2012)
123.
Zurück zum Zitat P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012) P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012)
124.
Zurück zum Zitat O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015) O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015)
125.
Zurück zum Zitat A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011) A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011)
126.
Zurück zum Zitat T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006) T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides.  Chem. Mater. 18(11), 2740–2749 (2006)
127.
Zurück zum Zitat W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897), 1815–1817 (2008) W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897), 1815–1817 (2008)
128.
Zurück zum Zitat H. He, T. Riedl, A. Lerf, J. Klinowski, Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996) H. He, T. Riedl, A. Lerf, J. Klinowski, Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996)
129.
Zurück zum Zitat A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 101, 857–862 (1997) A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 101, 857–862 (1997)
130.
Zurück zum Zitat A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998) A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)
131.
Zurück zum Zitat Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, B. Wei, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett. 14(4), 1938–1943 (2014) Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, B. Wei, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett. 14(4), 1938–1943 (2014)
132.
Zurück zum Zitat J. Zhao, L. Liu, F. Li, Structural Characterizations in Graphene Oxide: Physics and Applications. (Springer, Berlin Heidelberg, 2015), pp. 15–29 J. Zhao, L. Liu, F. Li, Structural Characterizations in Graphene Oxide: Physics and Applications. (Springer, Berlin Heidelberg, 2015), pp. 15–29
133.
Zurück zum Zitat C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009) C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films.  Adv. Funct. Mater. 19(16), 2577–2583 (2009)
134.
Zurück zum Zitat D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009) D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009)
135.
Zurück zum Zitat O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48(2), 509–519 (2010) O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48(2), 509–519 (2010)
136.
Zurück zum Zitat G. Abhijit, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011) G. Abhijit, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)
137.
Zurück zum Zitat R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee. Density functional theory study of graphite oxide for different oxidation levels. Phys. Rev. B 79(12), 125435 (2009) R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee. Density functional theory study of graphite oxide for different oxidation levels. Phys. Rev. B 79(12), 125435 (2009)
138.
Zurück zum Zitat A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010) A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)
139.
Zurück zum Zitat C. Hontoria-Lucas, A.J. Lopez-Peinado, J.D. de López-González, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11), 1585–1592 (1995) C. Hontoria-Lucas, A.J. Lopez-Peinado, J.D. de López-González, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11), 1585–1592 (1995)
140.
Zurück zum Zitat A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006) A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
141.
Zurück zum Zitat A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006) A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films.  Nano Lett. 6(12), 2667–2673 (2006)
142.
Zurück zum Zitat K. Krishnamoorthy, M. Veerapandian, K. Yun, S-J. Kim. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013) K. Krishnamoorthy, M. Veerapandian, K. Yun, S-J. Kim. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)
143.
Zurück zum Zitat G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010) G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)
144.
Zurück zum Zitat L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009) L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009)
145.
Zurück zum Zitat C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010) C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic structure of reduced graphene oxide.  Nano Lett. 10(4), 1144–1148 (2010)
146.
Zurück zum Zitat K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater. 22(40), 4467–4472 (2010) K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide,  Adv. Mater. 22(40), 4467–4472 (2010)
147.
Zurück zum Zitat J. Xie, F. Tu, Q. Su, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Eng. 5, 122–131 (2014) J. Xie, F. Tu, Q. Su, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Eng. 5, 122–131 (2014)
148.
Zurück zum Zitat K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and electronic structure of graphene-oxide. Nano Lett. 9(3), 1058–1063 (2009) K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and electronic structure of graphene-oxide. Nano Lett. 9(3), 1058–1063 (2009)
149.
Zurück zum Zitat M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620–625 (2006) M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620–625 (2006)
150.
Zurück zum Zitat D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 6th edn. (Thomson Brooks/Cole, Belmont, CA, 2007), pp. 169–173 D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 6th edn. (Thomson Brooks/Cole, Belmont, CA, 2007), pp. 169–173
151.
Zurück zum Zitat Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131(3), 898–899 (2009) Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes.  J. Am. Chem. Soc. 131(3), 898–899 (2009)
152.
Zurück zum Zitat Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146 (2012) Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146 (2012)
153.
Zurück zum Zitat T. Szabó, O. Berkesi, I. Dékány, DRIFT study of deuterium-exchanged graphite oxide. Carbon 43(15), 3186–3189 (2005) T. Szabó, O. Berkesi, I. Dékány, DRIFT study of deuterium-exchanged graphite oxide. Carbon 43(15), 3186–3189 (2005)
154.
Zurück zum Zitat J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010) J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)
155.
Zurück zum Zitat Y. Wang, L. Tang, Z. Li, Y. Lin, J. Li, In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells. Nat. Protoc. 9(8), 1944–1955 (2014) Y. Wang, L. Tang, Z. Li, Y. Lin, J. Li, In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells. Nat. Protoc. 9(8), 1944–1955 (2014)
156.
Zurück zum Zitat K.R. Koch, Oxidation by Mn207: an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 59(11), 973 (1972) K.R. Koch, Oxidation by Mn207: an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 59(11), 973 (1972)
Metadaten
Titel
Graphene Oxide: Synthesis and Characterization
verfasst von
Mohd. Bilal Khan
Mohd. Parvaz
Zishan Husain Khan
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3842-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.