Skip to main content

2020 | OriginalPaper | Buchkapitel

Heat Transfer Enhancement with Different Nanofluids in Heat Exchanger by CFD

verfasst von : T. Sreedhar, B. Nageswara Rao, D. Vinay Kumar

Erschienen in: Emerging Trends in Mechanical Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofluids play a prominent role in heat transfer applications. The thermophysical phenomenon is additionally necessary for these fluids. Many researchers’ have been measured these fluids, in terms of preparation, stability and thermal properties. Most of the industries measure mistreatment of different types of heat exchangers. In order to interchange this drawback, we tend to square measure mistreatments completely for different coolants like water with ethylene glycol, nanofluid, and hybrid nanofluid. These fluids have high thermophysical properties. The design and modeling of a double pipe heat exchanger is finished by creo 2.0 and temperature distribution, heat transfer constant is simulated by ANSYS Fluent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Hwang Y, Lee JK, Lee CH et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74CrossRef Hwang Y, Lee JK, Lee CH et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74CrossRef
4.
Zurück zum Zitat Singh K, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14–15):1667–1673CrossRef Singh K, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14–15):1667–1673CrossRef
5.
Zurück zum Zitat Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method. Int J Heat Fluid Flow 29:1456–1461CrossRef Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method. Int J Heat Fluid Flow 29:1456–1461CrossRef
6.
Zurück zum Zitat Dong L, Quan X, Cheng P (2014) An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transfer 71:189–196CrossRef Dong L, Quan X, Cheng P (2014) An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transfer 71:189–196CrossRef
7.
Zurück zum Zitat Usri NA et al (2015) Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 79:397–402CrossRef Usri NA et al (2015) Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 79:397–402CrossRef
8.
Zurück zum Zitat Phanindra Y, Kumar SD, Pugazhendhi S (2018) Experimental investigation on Al2O3 & Cu/Oil hybrid nano fluid using concentric tube heat exchanger. Mater Today Proc 5(5):12142–12150CrossRef Phanindra Y, Kumar SD, Pugazhendhi S (2018) Experimental investigation on Al2O3 & Cu/Oil hybrid nano fluid using concentric tube heat exchanger. Mater Today Proc 5(5):12142–12150CrossRef
9.
Zurück zum Zitat Asadi Amin et al (2018) An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Appl Therm Eng 129:577–586CrossRef Asadi Amin et al (2018) An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Appl Therm Eng 129:577–586CrossRef
10.
Zurück zum Zitat Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771–779CrossRef Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771–779CrossRef
11.
Zurück zum Zitat Rahimi A, Kasaeipoor A, Malekshah EH, Palizian M, Kolsi L (2018) Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm Sci Eng Prog 5:372–387CrossRef Rahimi A, Kasaeipoor A, Malekshah EH, Palizian M, Kolsi L (2018) Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm Sci Eng Prog 5:372–387CrossRef
12.
Zurück zum Zitat Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21(21)CrossRef Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21(21)CrossRef
13.
Zurück zum Zitat Bastian Águila V et al (2018) Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material, vol 120. Elsevier. ISSN 00179310 Bastian Águila V et al (2018) Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material, vol 120. Elsevier. ISSN 00179310
14.
Zurück zum Zitat Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101CrossRef Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101CrossRef
15.
Zurück zum Zitat Wang XQ, Mujumdar AS (2008) A review on nanofluids—Part I: theoretical and numerical investigations. Braz J Chem Eng 25(4):613–630. ISSN 0104-6632CrossRef Wang XQ, Mujumdar AS (2008) A review on nanofluids—Part I: theoretical and numerical investigations. Braz J Chem Eng 25(4):613–630. ISSN 0104-6632CrossRef
17.
Zurück zum Zitat Xue QZ (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter 368(1–4):302–307CrossRef Xue QZ (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter 368(1–4):302–307CrossRef
18.
Zurück zum Zitat Sarafraz MM, Hormozi F (2016) Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a heat exchanger, vol 72. Elsevier Inc. Sarafraz MM, Hormozi F (2016) Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a heat exchanger, vol 72. Elsevier Inc.
Metadaten
Titel
Heat Transfer Enhancement with Different Nanofluids in Heat Exchanger by CFD
verfasst von
T. Sreedhar
B. Nageswara Rao
D. Vinay Kumar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9931-3_38

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.