Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Heterogeneous Media

verfasst von : Marcelo J. S. de Lemos

Erschienen in: Thermal Non-Equilibrium in Heterogeneous Media

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This book presents, in a self-contained fashion, a series of studies on flow and heat transfer in porous media, in which distinct energy balances are considered for the porous matrix and for the permeating fluid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saito MB, de Lemos MJS (2010) A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int J Heat Mass Transf 53(11–12):2424–2433CrossRefMATH Saito MB, de Lemos MJS (2010) A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int J Heat Mass Transf 53(11–12):2424–2433CrossRefMATH
2.
Zurück zum Zitat Schumann TEW (1929) Heat transfer: liquid flowing through a porous prism. J Frankl Inst 208:405–416CrossRefMATH Schumann TEW (1929) Heat transfer: liquid flowing through a porous prism. J Frankl Inst 208:405–416CrossRefMATH
3.
Zurück zum Zitat Vafai K, Sozen M (1990) Analysis of energy and momentum transport for fluid flow through a porous bed. J Heat Transf 112:690–699CrossRef Vafai K, Sozen M (1990) Analysis of energy and momentum transport for fluid flow through a porous bed. J Heat Transf 112:690–699CrossRef
4.
Zurück zum Zitat Amiri A, Vafai K (1994) Analysis of dispersion effects and nonthermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int J Heat Mass Transf 30:939–954CrossRef Amiri A, Vafai K (1994) Analysis of dispersion effects and nonthermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int J Heat Mass Transf 30:939–954CrossRef
5.
Zurück zum Zitat Whitaker S (1991) Improved constraints for the principle of local thermal equilibrium. Ind Eng Chem Res 30:983–997CrossRef Whitaker S (1991) Improved constraints for the principle of local thermal equilibrium. Ind Eng Chem Res 30:983–997CrossRef
6.
Zurück zum Zitat Quintard M, Whitaker S (1993) One- and two-equation models for transient diffusion processes in two-phase systems. In: Advances in Heat Transfer,vol 23. Academic Press, New York, pp 369–464 Quintard M, Whitaker S (1993) One- and two-equation models for transient diffusion processes in two-phase systems. In: Advances in Heat Transfer,vol 23. Academic Press, New York, pp 369–464
7.
Zurück zum Zitat Quintard M, Whitaker S (1995) Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int J Heat Mass Transf 38:2779–2796CrossRefMATH Quintard M, Whitaker S (1995) Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int J Heat Mass Transf 38:2779–2796CrossRefMATH
8.
Zurück zum Zitat Hsu CT (1999) A closure model for transient heat conduction in porous media. J Heat Transf 121:733–739CrossRef Hsu CT (1999) A closure model for transient heat conduction in porous media. J Heat Transf 121:733–739CrossRef
9.
Zurück zum Zitat Sözen M, Vafai K (1990) Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int J Heat Mass Transf 33(6):1247–1261CrossRef Sözen M, Vafai K (1990) Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int J Heat Mass Transf 33(6):1247–1261CrossRef
10.
Zurück zum Zitat Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York
11.
Zurück zum Zitat Quintard M (1998) Modeling local non-equilibrium heat transfer in porous media. In: Proceedings of the 11th international heat transfer conference, Kyongyu, Korea, vol 1, pp 279–285 Quintard M (1998) Modeling local non-equilibrium heat transfer in porous media. In: Proceedings of the 11th international heat transfer conference, Kyongyu, Korea, vol 1, pp 279–285
12.
Zurück zum Zitat Ingham DB, Pop I (1998) Transport phenomena in porous media. Elsevier, Amsterdam, pp 103–129 Ingham DB, Pop I (1998) Transport phenomena in porous media. Elsevier, Amsterdam, pp 103–129
13.
Zurück zum Zitat Quintard M, Kaviany M, Whitaker S (1997) Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv Water Resour 20:77–94CrossRef Quintard M, Kaviany M, Whitaker S (1997) Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv Water Resour 20:77–94CrossRef
14.
Zurück zum Zitat Wakao N, Kaguei S, Funazkri T (1979) Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed bed. Chem Eng Sci 34:325–336CrossRef Wakao N, Kaguei S, Funazkri T (1979) Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed bed. Chem Eng Sci 34:325–336CrossRef
15.
Zurück zum Zitat Kuwahara F, Shirota M, Nakayama A (2001) A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media. Int J Heat Mass Transf 44:1153–1159CrossRefMATH Kuwahara F, Shirota M, Nakayama A (2001) A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media. Int J Heat Mass Transf 44:1153–1159CrossRefMATH
16.
Zurück zum Zitat Saito MB, de Lemos MJS (2005) Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. Int Commun Heat Mass Transf 32(5):667–677CrossRef Saito MB, de Lemos MJS (2005) Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. Int Commun Heat Mass Transf 32(5):667–677CrossRef
17.
Zurück zum Zitat Parisi DR, Laborde MA (2004) Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore. Chem Eng J 104:35–43CrossRef Parisi DR, Laborde MA (2004) Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore. Chem Eng J 104:35–43CrossRef
18.
Zurück zum Zitat Negri ED, Alfano OM, Chiovetta MG (1991) Direct redution of hematite in a moving-bed reactor: analysis of the water gas shift reaction effects on the reactor behavior. Am Chem Soc 30:474–482 Negri ED, Alfano OM, Chiovetta MG (1991) Direct redution of hematite in a moving-bed reactor: analysis of the water gas shift reaction effects on the reactor behavior. Am Chem Soc 30:474–482
19.
Zurück zum Zitat Valipour MS, Hashemi MYM, Saboohi Y (2006) Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: an isothermal study. Adv Powder Technol 17(3):277–295CrossRef Valipour MS, Hashemi MYM, Saboohi Y (2006) Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: an isothermal study. Adv Powder Technol 17(3):277–295CrossRef
20.
Zurück zum Zitat Valipour MS, Saboohi Y (2007) Modeling of multiple noncatalytic gas-solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf 43(9):881–894CrossRef Valipour MS, Saboohi Y (2007) Modeling of multiple noncatalytic gas-solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf 43(9):881–894CrossRef
21.
Zurück zum Zitat Valipour MS, Saboohi Y (2007) Numerical investigation of nonisothermal reduction Hematite using Syngas: the shaft scale study. Model Simul Mater Sci Eng 15:487–507CrossRef Valipour MS, Saboohi Y (2007) Numerical investigation of nonisothermal reduction Hematite using Syngas: the shaft scale study. Model Simul Mater Sci Eng 15:487–507CrossRef
22.
Zurück zum Zitat Henda R, Falcioni DJ (2006) Modeling of heat transfer in a moving packed bed: case of the preheater in nickel carbonyl process. J Appl Mech—ASME 73(1):47–53 Henda R, Falcioni DJ (2006) Modeling of heat transfer in a moving packed bed: case of the preheater in nickel carbonyl process. J Appl Mech—ASME 73(1):47–53
23.
Zurück zum Zitat Ryu C, Yang YB, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: part i. experiments—fuel type, equivalence ratio and particle size. Fuel 85:1039–1046CrossRef Ryu C, Yang YB, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: part i. experiments—fuel type, equivalence ratio and particle size. Fuel 85:1039–1046CrossRef
24.
Zurück zum Zitat Boman C, Nordin A, Thaning L (2003) Effects of increased biomass pellet combustion on ambient air quality in residential areas—a parametric dispersion modeling study. Biomass Bioenergy 25:465–474CrossRef Boman C, Nordin A, Thaning L (2003) Effects of increased biomass pellet combustion on ambient air quality in residential areas—a parametric dispersion modeling study. Biomass Bioenergy 25:465–474CrossRef
25.
Zurück zum Zitat Shimizu T, Han J, Choi S, Kim L, Kim H (2006) Fluidized-bed combustion characteristics of cedar pellets by using an alternative bed material. Energy Fuels 20:2737–2742CrossRef Shimizu T, Han J, Choi S, Kim L, Kim H (2006) Fluidized-bed combustion characteristics of cedar pellets by using an alternative bed material. Energy Fuels 20:2737–2742CrossRef
26.
Zurück zum Zitat Kayal TK, Chakravarty M (1994) Mathematical modeling of continuous updraft gasification of bundled jute stick—a low ash content woody biomass. Bioresour Technol 49(1):61–73CrossRef Kayal TK, Chakravarty M (1994) Mathematical modeling of continuous updraft gasification of bundled jute stick—a low ash content woody biomass. Bioresour Technol 49(1):61–73CrossRef
27.
Zurück zum Zitat Rogel A, Aguillón J (2006) The 2D Eulerian approach of entrained flow and temperature in a biomass stratified downdraft gasifier. Am J Appl Sci 3(10):2068–2075CrossRef Rogel A, Aguillón J (2006) The 2D Eulerian approach of entrained flow and temperature in a biomass stratified downdraft gasifier. Am J Appl Sci 3(10):2068–2075CrossRef
28.
Zurück zum Zitat Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17:1510–1521CrossRef Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17:1510–1521CrossRef
29.
Zurück zum Zitat Li SY, Bie RS (2006) Modeling the reaction of gaseous HCl with CaO in fluidized bed. Chem Eng Sci 61(16):5468–5475CrossRef Li SY, Bie RS (2006) Modeling the reaction of gaseous HCl with CaO in fluidized bed. Chem Eng Sci 61(16):5468–5475CrossRef
30.
Zurück zum Zitat Zhao J, Huang J, Wu J, Fang Y, Wang Y (2008) Modeling and optimization of the moving granular packed bed for combined hot gas desulfurization and dust removal. Powder Technol 180:2–8CrossRef Zhao J, Huang J, Wu J, Fang Y, Wang Y (2008) Modeling and optimization of the moving granular packed bed for combined hot gas desulfurization and dust removal. Powder Technol 180:2–8CrossRef
31.
Zurück zum Zitat Baron J, Bulewicz EM (2006) The combustion of polymer pellets in a bubbling fluidized bed. Fuel 85:2494–2508CrossRef Baron J, Bulewicz EM (2006) The combustion of polymer pellets in a bubbling fluidized bed. Fuel 85:2494–2508CrossRef
32.
Zurück zum Zitat Nakayama A, Kuwahara F, Sugiyama M, Xu G (2001) A two energy equation model for conduction and convection in porous media. Int J Heat Mass Transf 44:4375–4379CrossRefMATH Nakayama A, Kuwahara F, Sugiyama M, Xu G (2001) A two energy equation model for conduction and convection in porous media. Int J Heat Mass Transf 44:4375–4379CrossRefMATH
33.
Zurück zum Zitat Quintard M (1998) Modeling local non-equilibrium heat transfer in porous media. In: Proceedings of the eleventh international heat transfer conference, vol 1, pp 279–285 Quintard M (1998) Modeling local non-equilibrium heat transfer in porous media. In: Proceedings of the eleventh international heat transfer conference, vol 1, pp 279–285
34.
Zurück zum Zitat Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York, pp 391–424 Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, New York, pp 391–424
35.
Zurück zum Zitat Hsu CT (1999) A closure model for transient heat conduction in porous media. J Heat Transf 121:733–739CrossRef Hsu CT (1999) A closure model for transient heat conduction in porous media. J Heat Transf 121:733–739CrossRef
Metadaten
Titel
Heterogeneous Media
verfasst von
Marcelo J. S. de Lemos
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-14666-9_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.