Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Historical Introduction

verfasst von : Jiagang Wu

Erschienen in: Advances in Lead-Free Piezoelectric Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Piezoelectric materials are currently used in many electronic devices because of excellent properties. Here, we briefly introduce the historical evolution of piezoelectric effect and also emphasize the importance of some factors (e.g., phase transition, microstructure, poling behavior) on the piezoelectricity of a material. Due to the toxicity of Pb in lead-based piezoelectrics, lots of attention has been given to lead-free piezoelectric materials, especially the use of phase boundaries. Importantly, we summarize the development of lead-free piezoelectrics, and some great advances have been demonstrated. We believe that the advances in lead-free piezoelectric materials will promote the practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holler FJS, Douglas A, Crouch, Stanley R (2007) Principles of instrumental analysis, 6th edn. Cengage Learning, p 9. ISBN 978-0-495-01201-6 Holler FJS, Douglas A, Crouch, Stanley R (2007) Principles of instrumental analysis, 6th edn. Cengage Learning, p 9. ISBN 978-0-495-01201-6
2.
Zurück zum Zitat Gautschi G (2002) Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Sens Rev 22(4):363–364CrossRef Gautschi G (2002) Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Sens Rev 22(4):363–364CrossRef
4.
Zurück zum Zitat Budimir M, Damjanovic D, Setter N (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94(10):6753–6761CrossRef Budimir M, Damjanovic D, Setter N (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94(10):6753–6761CrossRef
5.
Zurück zum Zitat Davis M, Budimir M, Damjanovic D (2014) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101(5):054112CrossRef Davis M, Budimir M, Damjanovic D (2014) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101(5):054112CrossRef
6.
Zurück zum Zitat Heitmann AA, Rossetti GA (2004) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97(6):1661–1685CrossRef Heitmann AA, Rossetti GA (2004) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97(6):1661–1685CrossRef
7.
Zurück zum Zitat Haun MJ, Furman E, Zhuang ZQ (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system. Ferroelectric 94(1):313CrossRef Haun MJ, Furman E, Zhuang ZQ (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system. Ferroelectric 94(1):313CrossRef
8.
Zurück zum Zitat Shirane G, Takeda A (1952) Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3. J Phys Soc Jpn 7(1):5–11CrossRef Shirane G, Takeda A (1952) Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3. J Phys Soc Jpn 7(1):5–11CrossRef
9.
Zurück zum Zitat Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J Phys Soc Jpn 8(5):615–629CrossRef Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J Phys Soc Jpn 8(5):615–629CrossRef
10.
Zurück zum Zitat Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25(6):809–810CrossRef Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25(6):809–810CrossRef
11.
Zurück zum Zitat Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London
12.
Zurück zum Zitat Berlincourt D (1971) Piezoelectric crystals and ceramics. In: Ultrasonic transducer materials. Springer, Berlin, pp 63–124 Berlincourt D (1971) Piezoelectric crystals and ceramics. In: Ultrasonic transducer materials. Springer, Berlin, pp 63–124
13.
Zurück zum Zitat Noheda B, Cox DE, Shirane G (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63(1):014103CrossRef Noheda B, Cox DE, Shirane G (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63(1):014103CrossRef
14.
Zurück zum Zitat Cox DE, Noheda B, Shirane G (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79(3):400–402CrossRef Cox DE, Noheda B, Shirane G (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79(3):400–402CrossRef
15.
Zurück zum Zitat Noheda B, Cox DE, Shirane G (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3Pb (Zr1-xTix) O3 solid solution. Appl Phys Lett 74(14):2059–2061CrossRef Noheda B, Cox DE, Shirane G (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3Pb (Zr1-xTix) O3 solid solution. Appl Phys Lett 74(14):2059–2061CrossRef
16.
Zurück zum Zitat Zhang N, Yokota H, Glazer A-M (2014) The missing boundary in the phase diagram of PbZr1−xTixO3. Nat Commun 5:5231CrossRef Zhang N, Yokota H, Glazer A-M (2014) The missing boundary in the phase diagram of PbZr1−xTixO3. Nat Commun 5:5231CrossRef
17.
Zurück zum Zitat Guo R, Cross LE, Park SE (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423CrossRef Guo R, Cross LE, Park SE (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423CrossRef
18.
Zurück zum Zitat Yokota H, Zhang N, Taylor A-E (2009) Crystal structure of the rhombohedral phase of PbZr1-xTixO3 ceramics at room temperature. Phys Rev B 80(10):754–758CrossRef Yokota H, Zhang N, Taylor A-E (2009) Crystal structure of the rhombohedral phase of PbZr1-xTixO3 ceramics at room temperature. Phys Rev B 80(10):754–758CrossRef
19.
Zurück zum Zitat Li MJ, Xu LP, Shi K (2016) Interband electronic transitions and phase diagram of PbZr1-xTixO3 (0.05 ≤ x ≤ 0.70) ceramics: ellipsometric experiment and first-principles theory. J Phys D: Appl Phys 49(27):275305CrossRef Li MJ, Xu LP, Shi K (2016) Interband electronic transitions and phase diagram of PbZr1-xTixO3 (0.05 ≤ x ≤ 0.70) ceramics: ellipsometric experiment and first-principles theory. J Phys D: Appl Phys 49(27):275305CrossRef
20.
Zurück zum Zitat Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811CrossRef Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811CrossRef
21.
Zurück zum Zitat Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectric 37(1):579–582CrossRef Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectric 37(1):579–582CrossRef
22.
Zurück zum Zitat Kuwata J, Uchino K, Nomura S (2014) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn J Appl Phys 21(21):1298–1302 Kuwata J, Uchino K, Nomura S (2014) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn J Appl Phys 21(21):1298–1302
23.
Zurück zum Zitat Choi SW, Shrout TR, Jang SJ (1989) Morphotropic phase boundary in Pb(MgNb)O3-PbTiO3 system. Mater Lett 8:253–255CrossRef Choi SW, Shrout TR, Jang SJ (1989) Morphotropic phase boundary in Pb(MgNb)O3-PbTiO3 system. Mater Lett 8:253–255CrossRef
24.
Zurück zum Zitat Singh AK, Pandey D (2001) Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. J Phys: Conden Matter 13(48):931–936 Singh AK, Pandey D (2001) Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. J Phys: Conden Matter 13(48):931–936
25.
Zurück zum Zitat Noheda B, Cox DE, Shirane G (2002) Phase diagram of the ferroelectric relaxor (1-x) PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B 66(5):340–351CrossRef Noheda B, Cox DE, Shirane G (2002) Phase diagram of the ferroelectric relaxor (1-x) PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B 66(5):340–351CrossRef
26.
Zurück zum Zitat Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals. J Appl Phys 87(5):2312–2319CrossRef Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. J Appl Phys 87(5):2312–2319CrossRef
27.
Zurück zum Zitat Guo Y, Luo H, Ling D (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys: Conden Matter 15(2):L77–L82 (6) Guo Y, Luo H, Ling D (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys: Conden Matter 15(2):L77–L82 (6)
28.
Zurück zum Zitat Eitel RE, Randall CA, Shrout TR (2014) Preparation and characterization of high temperature perovskite ferroelectrics, in the solid-solution (1-x)BiScO3–xPbTiO3. Jpn J Appl Phys 41(4A):2099–2104 Eitel RE, Randall CA, Shrout TR (2014) Preparation and characterization of high temperature perovskite ferroelectrics, in the solid-solution (1-x)BiScO3xPbTiO3. Jpn J Appl Phys 41(4A):2099–2104
29.
Zurück zum Zitat Han P, Tian J, Yan W (2008) Bridgman growth and properties of PMN–PT-based single crystals. In: Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Woodhead Publishing Limited, Cambridge, UK Han P, Tian J, Yan W (2008) Bridgman growth and properties of PMN–PT-based single crystals. In: Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Woodhead Publishing Limited, Cambridge, UK
30.
Zurück zum Zitat La-Orauttapong D, Noheda B, Ye ZG (2002) Phase diagram of the relaxor ferroelectric (1-x) Pb(Zn1/3Nb2/3)O31-xPbTiO3. Phys Rev B 67(13):99–107 La-Orauttapong D, Noheda B, Ye ZG (2002) Phase diagram of the relaxor ferroelectric (1-x) Pb(Zn1/3Nb2/3)O31-xPbTiO3. Phys Rev B 67(13):99–107
31.
Zurück zum Zitat Noheda B, Cox DE, Shirane G (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett 86(17):3891–3894CrossRef Noheda B, Cox DE, Shirane G (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett 86(17):3891–3894CrossRef
32.
Zurück zum Zitat Dwight V (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(Bi1/3Bi2/3)O3–PbTiO3 crystals. J Appl Phys 88(8):4794–4806CrossRef Dwight V (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(Bi1/3Bi2/3)O3–PbTiO3 crystals. J Appl Phys 88(8):4794–4806CrossRef
33.
Zurück zum Zitat Ohwada K, Hirota K, Rehrig PW (2001) Neutron diffraction study of the irreversible R-MA-MC phase transition in single crystal Pb[(Zn1/3Nb2/3)1-xTix]O3. J Phys Soc Jpn 70(9):2778–2783CrossRef Ohwada K, Hirota K, Rehrig PW (2001) Neutron diffraction study of the irreversible R-MA-MC phase transition in single crystal Pb[(Zn1/3Nb2/3)1-xTix]O3. J Phys Soc Jpn 70(9):2778–2783CrossRef
34.
Zurück zum Zitat Bellaiche L, GarcÍ A, Vanderbilt D (2001) Electric-field induced polarization paths in Pb (Zr1-xTix) O3 alloys. Phys Rev B 64(6):060103CrossRef Bellaiche L, GarcÍ A, Vanderbilt D (2001) Electric-field induced polarization paths in Pb (Zr1-xTix) O3 alloys. Phys Rev B 64(6):060103CrossRef
35.
Zurück zum Zitat Liu Z, Zhao CL, Li JF, Wang K, Wu JG (2018) Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics. J Mater Chem C 6:456–463CrossRef Liu Z, Zhao CL, Li JF, Wang K, Wu JG (2018) Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics. J Mater Chem C 6:456–463CrossRef
36.
Zurück zum Zitat Eitel RE, Randall CA, Shrout TR (2001) New high temperature morphotropic phase boundary piezoelectrics, based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys 40(10):5999CrossRef Eitel RE, Randall CA, Shrout TR (2001) New high temperature morphotropic phase boundary piezoelectrics, based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys 40(10):5999CrossRef
37.
Zurück zum Zitat Eitel RE, Zhang SJ, Shrout TR (2004) Phase diagram of the perovskite system (1-x)BiScO3-xPbTiO3. J Appl Phys 96(5):2828–2831CrossRef Eitel RE, Zhang SJ, Shrout TR (2004) Phase diagram of the perovskite system (1-x)BiScO3-xPbTiO3. J Appl Phys 96(5):2828–2831CrossRef
38.
Zurück zum Zitat Zhang S, Eitel RE, Randall CA, Shrout TR, Alberta EF (2005) Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl Phys Lett 86(26):262904CrossRef Zhang S, Eitel RE, Randall CA, Shrout TR, Alberta EF (2005) Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl Phys Lett 86(26):262904CrossRef
39.
Zurück zum Zitat Salomon E-W-A-N, Trans (1946) Electrochem. Soc Salomon E-W-A-N, Trans (1946) Electrochem. Soc
40.
Zurück zum Zitat Liu W, Ren X (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103(25):257602CrossRef Liu W, Ren X (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103(25):257602CrossRef
41.
Zurück zum Zitat Keeble DS, Benabdallah F, Thomas PA (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 102(9):092903CrossRef Keeble DS, Benabdallah F, Thomas PA (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 102(9):092903CrossRef
42.
Zurück zum Zitat Wu JG, Fan Z, Xiao D (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402CrossRef Wu JG, Fan Z, Xiao D (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402CrossRef
43.
Zurück zum Zitat Zeches RJ, Rossell MD, Zhang JX (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980CrossRef Zeches RJ, Rossell MD, Zhang JX (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980CrossRef
44.
Zurück zum Zitat Lee MH, Kim DJ, Park JS (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27(43):6976–6982CrossRef Lee MH, Kim DJ, Park JS (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27(43):6976–6982CrossRef
45.
Zurück zum Zitat Wu JG, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595CrossRef Wu JG, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595CrossRef
46.
Zurück zum Zitat Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87CrossRef Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87CrossRef
47.
Zurück zum Zitat Wang K, Yao FZ, Jo W (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086CrossRef Wang K, Yao FZ, Jo W (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086CrossRef
48.
Zurück zum Zitat Zheng T, Wu H, Yuan Y, Wu JG (2017) Structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef Zheng T, Wu H, Yuan Y, Wu JG (2017) Structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537CrossRef
49.
Zurück zum Zitat Xu K, Li J, Lv X, Wu JG (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8523CrossRef Xu K, Li J, Lv X, Wu JG (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8523CrossRef
50.
Zurück zum Zitat Wang X, Wu J, Xiao D (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910CrossRef Wang X, Wu J, Xiao D (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910CrossRef
51.
Zurück zum Zitat Wang R, Wang K, Yao F (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98(7):2177–2182CrossRef Wang R, Wang K, Yao F (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98(7):2177–2182CrossRef
52.
Zurück zum Zitat Takenaka T, Maruyama KI, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239CrossRef Takenaka T, Maruyama KI, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239CrossRef
53.
Zurück zum Zitat Ma C, Tan X (2010) Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. Solid State Commun 150(s33–34):1497–1500CrossRef Ma C, Tan X (2010) Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. Solid State Commun 150(s33–34):1497–1500CrossRef
54.
Zurück zum Zitat Ma C, Guo H, Beckman S-P (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3, Piezoelectrics. Phys Rev Lett 109(10):107602CrossRef Ma C, Guo H, Beckman S-P (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3, Piezoelectrics. Phys Rev Lett 109(10):107602CrossRef
55.
Zurück zum Zitat Ma C, Guo H, Tan X (2013) A new phase boundary in (Bi1/2Na1/2)TiO3-BaTiO3 revealed via a novel method of electron diffraction analysis. Adv Funct Mater 23(42):5261–5266CrossRef Ma C, Guo H, Tan X (2013) A new phase boundary in (Bi1/2Na1/2)TiO3-BaTiO3 revealed via a novel method of electron diffraction analysis. Adv Funct Mater 23(42):5261–5266CrossRef
56.
Zurück zum Zitat Jo W, Rodel J (2011) Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-xmol%BaTiO3 piezoceramics. Appl Phys Lett 99(4):042901CrossRef Jo W, Rodel J (2011) Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-xmol%BaTiO3 piezoceramics. Appl Phys Lett 99(4):042901CrossRef
57.
Zurück zum Zitat Zhang ST, Kounga AB, Aulbach E (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906CrossRef Zhang ST, Kounga AB, Aulbach E (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906CrossRef
58.
Zurück zum Zitat Liu X, Tan X (2015) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–578CrossRef Liu X, Tan X (2015) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–578CrossRef
59.
Zurück zum Zitat Martirena HT, Burfoot JC (1974) Grain-size effects on properties of some ferroelectric ceramics. J Phys C: Solid State Phys 7(17):3182CrossRef Martirena HT, Burfoot JC (1974) Grain-size effects on properties of some ferroelectric ceramics. J Phys C: Solid State Phys 7(17):3182CrossRef
60.
Zurück zum Zitat Zhang HL, Li JF, Zhang BP (2007) Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater 55(1):171–181CrossRef Zhang HL, Li JF, Zhang BP (2007) Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater 55(1):171–181CrossRef
61.
Zurück zum Zitat Devries RC, Burke JE (1957) Microstructure of barium titanate ceramics. J Am Ceram Soc 40(6):200–206CrossRef Devries RC, Burke JE (1957) Microstructure of barium titanate ceramics. J Am Ceram Soc 40(6):200–206CrossRef
62.
Zurück zum Zitat Lin DM, Xiao DQ, Zhu JG (2010) The relations of sintering conditions and microstructures of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 piezoelectric ceramics. Cryst Res Technol 39(1):30–33CrossRef Lin DM, Xiao DQ, Zhu JG (2010) The relations of sintering conditions and microstructures of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 piezoelectric ceramics. Cryst Res Technol 39(1):30–33CrossRef
63.
Zurück zum Zitat Jaeger RE, Egerton L (2010) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213CrossRef Jaeger RE, Egerton L (2010) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213CrossRef
64.
Zurück zum Zitat Li JF, Wang K, Zhang BP (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709CrossRef Li JF, Wang K, Zhang BP (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709CrossRef
65.
Zurück zum Zitat Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10(5):335–339CrossRef Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10(5):335–339CrossRef
66.
Zurück zum Zitat Lv J, Wu J, Wu W (2015) Enhanced electrical properties of quenched (1–x)Bi1–ySmyFeO3-xBiScO3 lead-free ceramics. J Phys Chem C 119(36):21105–21115CrossRef Lv J, Wu J, Wu W (2015) Enhanced electrical properties of quenched (1–x)Bi1–ySmyFeO3-xBiScO3 lead-free ceramics. J Phys Chem C 119(36):21105–21115CrossRef
67.
Zurück zum Zitat Choi JJ, Ryu J, Kim HE (2001) Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres. J Amer Chem Soc 84:1465–1469 Choi JJ, Ryu J, Kim HE (2001) Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres. J Amer Chem Soc 84:1465–1469
68.
Zurück zum Zitat Palei P, Pattanaik M, Kumar P (2012) Effect of oxygen sintering on the structural and electrical properties of KNN ceramics. Ceram Int 38:851–854CrossRef Palei P, Pattanaik M, Kumar P (2012) Effect of oxygen sintering on the structural and electrical properties of KNN ceramics. Ceram Int 38:851–854CrossRef
69.
Zurück zum Zitat Pan D, Guo Y, Zhang K, Duan H, Chen Y, Li H, Liu H (2017) Phase structure, microstructure, and piezoelectric properties of potassium-sodium niobate-based lead-free ceramics modified by Ca. J Alloys Compd 693:950–954CrossRef Pan D, Guo Y, Zhang K, Duan H, Chen Y, Li H, Liu H (2017) Phase structure, microstructure, and piezoelectric properties of potassium-sodium niobate-based lead-free ceramics modified by Ca. J Alloys Compd 693:950–954CrossRef
70.
Zurück zum Zitat Zhang Y, Li L, Bai W, Zhai J (2016) Microstructure and piezoelectric properties of lead-free (KNa)NbO-LiNbO-SrTiOCeramics. Ferroelectric 490:78–84CrossRef Zhang Y, Li L, Bai W, Zhai J (2016) Microstructure and piezoelectric properties of lead-free (KNa)NbO-LiNbO-SrTiOCeramics. Ferroelectric 490:78–84CrossRef
71.
Zurück zum Zitat Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J Alloys Compd 490:690–694CrossRef Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J Alloys Compd 490:690–694CrossRef
72.
Zurück zum Zitat West DL, Payne DA (2010) Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route. J Am Ceram Soc 86:192–194CrossRef West DL, Payne DA (2010) Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route. J Am Ceram Soc 86:192–194CrossRef
73.
Zurück zum Zitat Tao H, Wu J (2017) New poling method for piezoelectric ceramics. J Mater Chem C 5:1601–1606CrossRef Tao H, Wu J (2017) New poling method for piezoelectric ceramics. J Mater Chem C 5:1601–1606CrossRef
74.
Zurück zum Zitat Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles. Phys Rev Lett 84:5427CrossRef Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles. Phys Rev Lett 84:5427CrossRef
75.
Zurück zum Zitat Ji W, Tan CKI, Yao K, Al-Mamun A, Bhatia CS, Wong TI (2015) Structural evolution and properties of 0.3Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric ceramics with different sintering times. J Am Ceram Soc 97:3294–3300CrossRef Ji W, Tan CKI, Yao K, Al-Mamun A, Bhatia CS, Wong TI (2015) Structural evolution and properties of 0.3Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric ceramics with different sintering times. J Am Ceram Soc 97:3294–3300CrossRef
76.
Zurück zum Zitat Shen ZY, Zhen Y, Wang K, Li JF (2009) Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J Am Ceram Soc 92:1748–1752CrossRef Shen ZY, Zhen Y, Wang K, Li JF (2009) Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J Am Ceram Soc 92:1748–1752CrossRef
77.
Zurück zum Zitat Guo FQ, Zhang BH, Fan ZX, Peng X, Yang Q, Dong YX, Chen RR (2016) Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J Mater Sci-Mater Electron 27:5967–5971CrossRef Guo FQ, Zhang BH, Fan ZX, Peng X, Yang Q, Dong YX, Chen RR (2016) Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J Mater Sci-Mater Electron 27:5967–5971CrossRef
78.
Zurück zum Zitat Rahman JU, Hussain A, Maqboo A, Ryu GH, Song TK, Kim WJ, Kim MH (2014) Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3-BaTiO3 ceramics. J Alloys Compd 593:97–102CrossRef Rahman JU, Hussain A, Maqboo A, Ryu GH, Song TK, Kim WJ, Kim MH (2014) Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3-BaTiO3 ceramics. J Alloys Compd 593:97–102CrossRef
79.
Zurück zum Zitat Wang XP, Zheng T, Wu JG, Xiao DQ, Zhu JG, Wang H, Wang XJ, Lou XJ, Gu YL (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na)NbO3-based ceramics with different additives. J Mater Chem A 3:15951–15961 Wang XP, Zheng T, Wu JG, Xiao DQ, Zhu JG, Wang H, Wang XJ, Lou XJ, Gu YL (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na)NbO3-based ceramics with different additives. J Mater Chem A 3:15951–15961
80.
Zurück zum Zitat Zhao C, Wang H, Xiong J, Wu J (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M=Sn, Hf, Zr) lead-free ceramics. Dalton Tran 45:6466–6480CrossRef Zhao C, Wang H, Xiong J, Wu J (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M=Sn, Hf, Zr) lead-free ceramics. Dalton Tran 45:6466–6480CrossRef
81.
Zurück zum Zitat Xie C, Fang QH, Liu YW, Chen JK (2013) Dislocation simulation of domain switching toughening in ferroelectric ceramics. Int J Solids Struct 50:1325–1331CrossRef Xie C, Fang QH, Liu YW, Chen JK (2013) Dislocation simulation of domain switching toughening in ferroelectric ceramics. Int J Solids Struct 50:1325–1331CrossRef
82.
Zurück zum Zitat Hippel AV (1950) Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 22:221–237CrossRef Hippel AV (1950) Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 22:221–237CrossRef
83.
Zurück zum Zitat Zou T, Wang X, Wang H, Zhong C, Li L, Chen I (2008) Bulk dense fine-grain (1-x)BiScO3-xPbTiO3 ceramics with high piezoelectric coefficient. Appl Phys Lett 93:192913CrossRef Zou T, Wang X, Wang H, Zhong C, Li L, Chen I (2008) Bulk dense fine-grain (1-x)BiScO3-xPbTiO3 ceramics with high piezoelectric coefficient. Appl Phys Lett 93:192913CrossRef
84.
Zurück zum Zitat Wang H, Zhu J, Lu N, Bokov AA, Ye ZG, Zhang XW (2006) Hierarchical micro-/nanoscale domain structure in Mc phase of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal. Appl Phy Lett 89:042908CrossRef Wang H, Zhu J, Lu N, Bokov AA, Ye ZG, Zhang XW (2006) Hierarchical micro-/nanoscale domain structure in Mc phase of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal. Appl Phy Lett 89:042908CrossRef
85.
Zurück zum Zitat Yao FZ, Yu Q, Wang K, Li Q, Li JF (2014) Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC Adv 4: 20062–20068 Yao FZ, Yu Q, Wang K, Li Q, Li JF (2014) Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC Adv 4: 20062–20068
86.
Zurück zum Zitat Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750CrossRef Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750CrossRef
87.
Zurück zum Zitat Tai CW, Hong CS, Chan HLW (2010) Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 ceramics at different temperatures. J Am Ceram Soc 91:3335–3341CrossRef Tai CW, Hong CS, Chan HLW (2010) Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 ceramics at different temperatures. J Am Ceram Soc 91:3335–3341CrossRef
88.
Zurück zum Zitat Alikin D, Turygin A, Kholkin A, Shur V (2017) Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics. Materials 10:47CrossRef Alikin D, Turygin A, Kholkin A, Shur V (2017) Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics. Materials 10:47CrossRef
89.
Zurück zum Zitat Wada S, Yako K, Yokoo K, Hakemoto H, Tsurumi T (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectric 334:17–27 Wada S, Yako K, Yokoo K, Hakemoto H, Tsurumi T (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectric 334:17–27
90.
Zurück zum Zitat Yu H, Wang X, Fang J, Li L (2013) Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J Am Ceram Soc 96:3369–3371CrossRef Yu H, Wang X, Fang J, Li L (2013) Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J Am Ceram Soc 96:3369–3371CrossRef
91.
Zurück zum Zitat Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105CrossRef Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105CrossRef
92.
Zurück zum Zitat Schönau KA, Schmitt LA, Knapp M, Fuess H, Eichel RA, Kungl H, Hoffmann MJ (2007) Nanodomain structure of Pb [Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117CrossRef Schönau KA, Schmitt LA, Knapp M, Fuess H, Eichel RA, Kungl H, Hoffmann MJ (2007) Nanodomain structure of Pb [Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117CrossRef
93.
Zurück zum Zitat Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Guo S, Bao H, Zhou C, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901CrossRef Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Guo S, Bao H, Zhou C, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901CrossRef
94.
Zurück zum Zitat Zhang L, Sun Q, Ma W, Zhang Y, Liu H (2012) The effect of poling condition on the piezoelectric properties of 0.3PNN-0.7PZT ceramics in the vicinity of MPB. J Mater Sci-Mater Electron 23:688–691CrossRef Zhang L, Sun Q, Ma W, Zhang Y, Liu H (2012) The effect of poling condition on the piezoelectric properties of 0.3PNN-0.7PZT ceramics in the vicinity of MPB. J Mater Sci-Mater Electron 23:688–691CrossRef
95.
Zurück zum Zitat Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. Eur Phys J B 88:1–9 Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. Eur Phys J B 88:1–9
96.
Zurück zum Zitat Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J Mater Sci Mater Electron 26:3757–3765CrossRef Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J Mater Sci Mater Electron 26:3757–3765CrossRef
97.
Zurück zum Zitat Guo H, Ma C, Liu X, Tan X (2013) Electrical poling below coercive field for large piezoelectricity. Appl Phys Lett 102:092902CrossRef Guo H, Ma C, Liu X, Tan X (2013) Electrical poling below coercive field for large piezoelectricity. Appl Phys Lett 102:092902CrossRef
98.
Zurück zum Zitat Zheng T, Wu JG (2016) Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics. ACS Appl Mater Interfaces 8:9242–9246CrossRef Zheng T, Wu JG (2016) Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics. ACS Appl Mater Interfaces 8:9242–9246CrossRef
99.
Zurück zum Zitat Li J, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27CrossRef Li J, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27CrossRef
100.
Zurück zum Zitat Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116CrossRef Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116CrossRef
101.
Zurück zum Zitat Ursic H, Rojac T, Bencan A, Malic B, Damjanovic D (2015) Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv Funct Mater 25:2099–2108CrossRef Ursic H, Rojac T, Bencan A, Malic B, Damjanovic D (2015) Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv Funct Mater 25:2099–2108CrossRef
102.
Zurück zum Zitat Zheng T, Wu JG (2015) Enhanced piezoelectric activity in high-temperature Bi1-x-ySmxLayFeO3 lead-free ceramics. J Mater Chem C 3:3684–3693CrossRef Zheng T, Wu JG (2015) Enhanced piezoelectric activity in high-temperature Bi1-x-ySmxLayFeO3 lead-free ceramics. J Mater Chem C 3:3684–3693CrossRef
103.
Zurück zum Zitat Lv J, Lou X, Wu J (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4(25):6140–6151CrossRef Lv J, Lou X, Wu J (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4(25):6140–6151CrossRef
104.
Zurück zum Zitat Yuan GL, Or SW (2006) Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J Appl Phys 100:024109CrossRef Yuan GL, Or SW (2006) Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J Appl Phys 100:024109CrossRef
105.
Zurück zum Zitat Yuan GL, Or SW, Wang YP, Liu ZG, Liu JM (2006) Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun 138:76–81CrossRef Yuan GL, Or SW, Wang YP, Liu ZG, Liu JM (2006) Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun 138:76–81CrossRef
106.
Zurück zum Zitat Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108:1315–1465CrossRef Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108:1315–1465CrossRef
107.
Zurück zum Zitat Shi XX, Liu XQ, Chen XM (2016) Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics. J Appl Phys 119:064104CrossRef Shi XX, Liu XQ, Chen XM (2016) Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics. J Appl Phys 119:064104CrossRef
108.
Zurück zum Zitat Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloys Compd 676:505–512CrossRef Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloys Compd 676:505–512CrossRef
109.
Zurück zum Zitat Li B, Blendell JE, Bowman KJ (2011) Temperature-dependent poling behavior of lead-free BZT-BCT piezoelectrics. J Am Ceram Soc 94:3192–3194CrossRef Li B, Blendell JE, Bowman KJ (2011) Temperature-dependent poling behavior of lead-free BZT-BCT piezoelectrics. J Am Ceram Soc 94:3192–3194CrossRef
110.
Zurück zum Zitat Wu JG, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32:891–898CrossRef Wu JG, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32:891–898CrossRef
111.
Zurück zum Zitat Praveen JP, Karthik T, James AR, Chandrakala E, Asthana S, Das D (2015) Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J Eur Ceram Soc 35:1785–1798CrossRef Praveen JP, Karthik T, James AR, Chandrakala E, Asthana S, Das D (2015) Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J Eur Ceram Soc 35:1785–1798CrossRef
112.
Zurück zum Zitat Li B, Ehmke MC, Blendell JE, Bowman KJ (2013) Optimizing electrical poling for tetragonal, lead-free BZT–BCT piezoceramic alloys. J Eur Ceram Soc 33:3037–3044CrossRef Li B, Ehmke MC, Blendell JE, Bowman KJ (2013) Optimizing electrical poling for tetragonal, lead-free BZT–BCT piezoceramic alloys. J Eur Ceram Soc 33:3037–3044CrossRef
113.
Zurück zum Zitat Zhang B, Wu J, Wu B, Xiao D, Zhu J (2012) Effects of sintering temperature and poling conditions on the electrical properties of Bi0.50(Na0.70K0.20Li0.10)0.50TiO3 piezoelectric ceramics. J Alloys Compd 525:53–57CrossRef Zhang B, Wu J, Wu B, Xiao D, Zhu J (2012) Effects of sintering temperature and poling conditions on the electrical properties of Bi0.50(Na0.70K0.20Li0.10)0.50TiO3 piezoelectric ceramics. J Alloys Compd 525:53–57CrossRef
114.
Zurück zum Zitat Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z (2007) An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl Phys Lett 91:202907CrossRef Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z (2007) An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl Phys Lett 91:202907CrossRef
115.
Zurück zum Zitat Wang K, Li JF (2010) Domain engineering of lead-free Li-modified (K, Na)NbO3 olycrystals with highly enhanced piezoelectricity. Adv Funct Mater 20:1924–1929CrossRef Wang K, Li JF (2010) Domain engineering of lead-free Li-modified (K, Na)NbO3 olycrystals with highly enhanced piezoelectricity. Adv Funct Mater 20:1924–1929CrossRef
116.
Zurück zum Zitat Wu J, Wang Y, Wang H (2014) Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics. RSC Adv 4:64835–64842CrossRef Wu J, Wang Y, Wang H (2014) Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics. RSC Adv 4:64835–64842CrossRef
117.
Zurück zum Zitat Tao H, Wu WJ, Wu JG (2016) Electrical properties of holmium doped (K,Na)(Nb,Sb)O3-(Bi,Na)HfO3 ceramics with wide sintering and poling temperature range. J Alloy Compd 689:759–766 Tao H, Wu WJ, Wu JG (2016) Electrical properties of holmium doped (K,Na)(Nb,Sb)O3-(Bi,Na)HfO3 ceramics with wide sintering and poling temperature range. J Alloy Compd 689:759–766
118.
Zurück zum Zitat Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 30:1705171CrossRef Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 30:1705171CrossRef
119.
Zurück zum Zitat Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392–395CrossRef Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392–395CrossRef
120.
Zurück zum Zitat Royen P, Swars K (2010) Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% eisenoxyd. Angew Chem 69:779CrossRef Royen P, Swars K (2010) Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% eisenoxyd. Angew Chem 69:779CrossRef
121.
Zurück zum Zitat Wang J, Neaton JB, Zheng Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRef Wang J, Neaton JB, Zheng Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRef
122.
Zurück zum Zitat Yan J, Gomi M, Yokota T, Song H (2013) Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl Phys Lett 102:024113 Yan J, Gomi M, Yokota T, Song H (2013) Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl Phys Lett 102:024113
123.
Zurück zum Zitat Fan Z, Xiao J, Liu H, Yang P, Ke Q, Ji W, Yao K, Ong KP, Zeng K, Wang J (2015) Stable ferroelectric perovskite structure with giant axial ratio and polarization in epitaxial BiFe0.6Ga0.4O3 thin films. ACS Appl Mater Interfaces 7:2648–2653CrossRef Fan Z, Xiao J, Liu H, Yang P, Ke Q, Ji W, Yao K, Ong KP, Zeng K, Wang J (2015) Stable ferroelectric perovskite structure with giant axial ratio and polarization in epitaxial BiFe0.6Ga0.4O3 thin films. ACS Appl Mater Interfaces 7:2648–2653CrossRef
124.
Zurück zum Zitat Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2010) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Cheminform 38 Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2010) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Cheminform 38
125.
Zurück zum Zitat Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66CrossRef Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66CrossRef
126.
Zurück zum Zitat Seidel J, Fu D, Yang SY, Alarcón-Lladó E, Wu J, Ramesh R, Ager JW III (2011) Efficient photovoltaic current generation at ferroelectric domain walls. Phys Rev Lett 107:126805CrossRef Seidel J, Fu D, Yang SY, Alarcón-Lladó E, Wu J, Ramesh R, Ager JW III (2011) Efficient photovoltaic current generation at ferroelectric domain walls. Phys Rev Lett 107:126805CrossRef
127.
Zurück zum Zitat Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M (2016) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032CrossRef Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M (2016) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032CrossRef
128.
Zurück zum Zitat Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 1:150–151 Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 1:150–151
129.
Zurück zum Zitat Lin D, Xiao D, Zhu J, Yu P (2006) Piezoelectric and ferroelectric properties of [Bi0.5(Na1−x−yKxLiy) 0.5]TiO3 lead-free piezoelectric ceramics. Appl Phys Lett 88:062901CrossRef Lin D, Xiao D, Zhu J, Yu P (2006) Piezoelectric and ferroelectric properties of [Bi0.5(Na1−xyKxLiy) 0.5]TiO3 lead-free piezoelectric ceramics. Appl Phys Lett 88:062901CrossRef
130.
Zurück zum Zitat Zhang S, Kounga AB, Aulbach E, Ehrenberg H (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906CrossRef Zhang S, Kounga AB, Aulbach E, Ehrenberg H (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906CrossRef
131.
Zurück zum Zitat Zhang J, Pan Z, Guo FF, Liu WC, Ning H, Chen YB, Lu MH, Yang B, Chen J, Zhang ST (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:6615CrossRef Zhang J, Pan Z, Guo FF, Liu WC, Ning H, Chen YB, Lu MH, Yang B, Chen J, Zhang ST (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:6615CrossRef
132.
Zurück zum Zitat Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350CrossRef Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350CrossRef
133.
Zurück zum Zitat Wada S, Takeda K, Tsurumi T, Kimura T (2014) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46:7039–7043CrossRef Wada S, Takeda K, Tsurumi T, Kimura T (2014) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46:7039–7043CrossRef
134.
Zurück zum Zitat Aurivillius B (1949) Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9. Arkiv kemi 1:463–480 Aurivillius B (1949) Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9. Arkiv kemi 1:463–480
135.
Zurück zum Zitat Aurivillius B (1949) Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12. Arkiv kemi 1:499–512 Aurivillius B (1949) Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12. Arkiv kemi 1:499–512
Metadaten
Titel
Historical Introduction
verfasst von
Jiagang Wu
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8998-5_1

Neuer Inhalt