Skip to main content

2023 | OriginalPaper | Buchkapitel

Human Thermal Comfort Modeling

verfasst von : Shin-ichi Tanabe, Akihisa Nomoto, Yoshito Takahashi, Yutaro Ogawa

Erschienen in: Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

From a perspective of maximizing thermal comfort for occupants while minimizing energy consumption, personalized air conditioning systems (PCS) have gained attention as a more cost-effective alternative to conventional air conditioning systems that maintain a constant temperature in a room. To implement or introduce such novel technologies, it is necessary to quantify user’s perception of them. While experiments involving human subjects and the use of a thermal manikin can be used to evaluate thermal comfort, they are not always practical. With the advancement of computational technology, more sophisticated physiological and psychometric models that go beyond traditional comfort indices have been proposed to evaluate thermal comfort in complex environments such as those with non-uniform and transient temperatures. This chapter describes the history and several examples of thermoregulation and thermal comfort models and introduces the concept of ‘thermal alliesthesia’ which refers to subjective experiences of thermal pleasure resulting from changes in a person's thermal status.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen
2.
Zurück zum Zitat Gagge AP, Stolwjk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–263 Gagge AP, Stolwjk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–263
3.
Zurück zum Zitat Tanabe S, Arens E, Bauman F, Zhang H, Madsen T (1994) Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Trans 100:39–48 Tanabe S, Arens E, Bauman F, Zhang H, Madsen T (1994) Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Trans 100:39–48
5.
Zurück zum Zitat Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment.pdf. ASHRAE Trans 92:709–731 Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment.pdf. ASHRAE Trans 92:709–731
7.
Zurück zum Zitat Jones BW, Ogawa Y (1992) Transient interaction between the human and the thermal environment. ASHRAE Trans 98:189–195 Jones BW, Ogawa Y (1992) Transient interaction between the human and the thermal environment. ASHRAE Trans 98:189–195
12.
Zurück zum Zitat Streblow R (2011) Thermal sensation and comfort model for inhomogeneous indoor environments. RWTH Aachen Univ, PhD dissertation Streblow R (2011) Thermal sensation and comfort model for inhomogeneous indoor environments. RWTH Aachen Univ, PhD dissertation
14.
Zurück zum Zitat Fu G (1995) A transient, 3-D mathematical thermal model for the clothed human. PhD Dissertation, Kansas State University, Manhattan, KS Fu G (1995) A transient, 3-D mathematical thermal model for the clothed human. PhD Dissertation, Kansas State University, Manhattan, KS
15.
Zurück zum Zitat Takemori T, Nakajima T, Shoji Y (1995) A fundamental model of the human themal system for prediction of thermal comfort. Trans Jpn Soc Mech Eng B 61:1513–1520CrossRef Takemori T, Nakajima T, Shoji Y (1995) A fundamental model of the human themal system for prediction of thermal comfort. Trans Jpn Soc Mech Eng B 61:1513–1520CrossRef
18.
Zurück zum Zitat Sato T, Xu L, Ogawa K, Tanabe S (2003) Development of human thermoregulation model JOS applicable to different types of human body , sex and age. In: Heal Build 2003—Proceedings of the 7th International Conference (7–11 Dec 2003). Natl Univ Singapore, vol 1, pp 828–834 Sato T, Xu L, Ogawa K, Tanabe S (2003) Development of human thermoregulation model JOS applicable to different types of human body , sex and age. In: Heal Build 2003—Proceedings of the 7th International Conference (7–11 Dec 2003). Natl Univ Singapore, vol 1, pp 828–834
19.
Zurück zum Zitat Takahashi Y, Nomoto A, Yoda S, Hisayama R, Ogata M, Ozeki Y, TanabeS ichi (2021) Thermoregulation model JOS-3 with new open source code. Energ Build 231:110575 Takahashi Y, Nomoto A, Yoda S, Hisayama R, Ogata M, Ozeki Y, TanabeS ichi (2021) Thermoregulation model JOS-3 with new open source code. Energ Build 231:110575
20.
Zurück zum Zitat Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energ Build 34:637–646 Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energ Build 34:637–646
25.
Zurück zum Zitat Ogawa Y, Hisayama R, Yoda S, Nomoto A, Akimoto M, Fujii K, Shindo K, Takahashi Y, Nakagawa J, Tanabe S (2021) Prediction methods for thermal sensation and comfort (Part23) Development of coupled method of thermoregulation model JOS-3 and thermal simulations on 3D-CAD. SHASE Annu Conf Proc 73–76. https://doi.org/10.18948/SHASETAIKAI.2021.6.0_73 Ogawa Y, Hisayama R, Yoda S, Nomoto A, Akimoto M, Fujii K, Shindo K, Takahashi Y, Nakagawa J, Tanabe S (2021) Prediction methods for thermal sensation and comfort (Part23) Development of coupled method of thermoregulation model JOS-3 and thermal simulations on 3D-CAD. SHASE Annu Conf Proc 73–76. https://​doi.​org/​10.​18948/​SHASETAIKAI.​2021.​6.​0_​73
28.
Zurück zum Zitat Kurazumi Y, Ishii J, Fukagawa K, Yamato Y, Tobita K, Tsuchikawa T, Matsubara N (2008) Body heat balance for evaluation of sleep environment: measurements of radiative and connective heat transfer coefficients of the human body with supine position by using a thermal mannequin. Jpn Soc Physiol Anthropol 13:17–26. https://doi.org/10.20718/jjpa.13.1_17 Kurazumi Y, Ishii J, Fukagawa K, Yamato Y, Tobita K, Tsuchikawa T, Matsubara N (2008) Body heat balance for evaluation of sleep environment: measurements of radiative and connective heat transfer coefficients of the human body with supine position by using a thermal mannequin. Jpn Soc Physiol Anthropol 13:17–26. https://​doi.​org/​10.​20718/​jjpa.​13.​1_​17
29.
Zurück zum Zitat Lee J, Zhang H, Arens E (2013) Typical clothing ensemble insulation levels for sixteen body parts. In: CLIMA 2013 Lee J, Zhang H, Arens E (2013) Typical clothing ensemble insulation levels for sixteen body parts. In: CLIMA 2013
33.
Zurück zum Zitat Hensel H (1981) Thermoreception and temperature regulation. Academic Press Hensel H (1981) Thermoreception and temperature regulation. Academic Press
40.
Zurück zum Zitat Houghton F, Yaglou C (1923) Determining equal comfort lines. ASHRAE Trans 29:165–176 Houghton F, Yaglou C (1923) Determining equal comfort lines. ASHRAE Trans 29:165–176
42.
Zurück zum Zitat Winslow CEA, Herrington LP, Gagge AP (1937) Relations between atmospheric conditions, physiological reactions and sensations of pleasantness. Am J Hyg 26:103–115 Winslow CEA, Herrington LP, Gagge AP (1937) Relations between atmospheric conditions, physiological reactions and sensations of pleasantness. Am J Hyg 26:103–115
43.
Zurück zum Zitat Heschong L (1979) Thermal delight in architecture. The MIT Press Heschong L (1979) Thermal delight in architecture. The MIT Press
44.
Zurück zum Zitat McIntyre DA (1980) Indoor climate. Applied Science Publishers, London McIntyre DA (1980) Indoor climate. Applied Science Publishers, London
45.
Zurück zum Zitat Kuno S, Ohno H, Nakahara N (1987) A two-dimensional model expressing thermal sensation in transitional conditions. ASHRAE Trans 93:396–406 Kuno S, Ohno H, Nakahara N (1987) A two-dimensional model expressing thermal sensation in transitional conditions. ASHRAE Trans 93:396–406
46.
Zurück zum Zitat ASHRAE (1997) ANSI/ASHRAE handbook fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers ASHRAE (1997) ANSI/ASHRAE handbook fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers
55.
Zurück zum Zitat Parkinson T, Zhang H, Arens E, He Y, de Dear R, Elson J, Parkinson A, Maranville C, Wang A (2021) Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity. Indoor Air 31:2266–2280. https://doi.org/10.1111/INA.12859CrossRef Parkinson T, Zhang H, Arens E, He Y, de Dear R, Elson J, Parkinson A, Maranville C, Wang A (2021) Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity. Indoor Air 31:2266–2280. https://​doi.​org/​10.​1111/​INA.​12859CrossRef
56.
Zurück zum Zitat Vellei M, de Dear R, Inard C, Jay O (2021) Dynamic thermal perception: A review and agenda for future experimental research. Build Environ 205:108269 Vellei M, de Dear R, Inard C, Jay O (2021) Dynamic thermal perception: A review and agenda for future experimental research. Build Environ 205:108269
63.
Zurück zum Zitat Ukai M (2018) Study on indoor thermal environment acceptability. Kogakuin University of Technology & Engineering, PhD Dissertation (in Japanese) Ukai M (2018) Study on indoor thermal environment acceptability. Kogakuin University of Technology & Engineering, PhD Dissertation (in Japanese)
Metadaten
Titel
Human Thermal Comfort Modeling
verfasst von
Shin-ichi Tanabe
Akihisa Nomoto
Yoshito Takahashi
Yutaro Ogawa
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0718-2_4