Skip to main content
Erschienen in: Environmental Earth Sciences 4/2017

01.02.2017 | Original Article

Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow

verfasst von: M. P. Kreipl, A. T. Kreipl

Erschienen in: Environmental Earth Sciences | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Beginning in the 1860s, fracturing was used to stimulate or rather shoot rock formations for oil production. To increase both initial flow and ultimate extraction, liquid and solidified nitroglycerin was used in these years. The concept of (hydraulic) fracturing with pressure instead of explosives grew in the 1930s. Beginning in 1953, water-based fluids were developed using different types of gelling agents. Nowadays, aqueous fluids such as acid, water, brines, and water-based foams are used in most fracturing treatments. The breakdown of the fluids to decrease viscosity is mostly carried out by use of oxidizing agents. Thereby, the technology is facing concerns regarding microseismicity, air emissions, water consumption, and the endangerment of groundwater due to the risk of perforating protective layers and the ooze of chemicals through the surface. Furthermore, particularly both cross-linking and breaking agents pose serious risks for humans respectively are environmentally hazardous in terms of eco-toxicitywhile the degradation effect of common oxidizing agents is relatively low in cases of high-temperature fracturing treatments. According to our comparative viscosity tests, the viscosity of both common hydrogels with and without oxidizing agents can be reduced to the same level when heated to 130 °C or above. Furthermore, in both cases no non-Newtonian behavior could be observed after the temperature treatment (anymore). Therefore, we developed a hydrogel that allows for optimized cross-linking without toxic linkers and that can be dissolved without environmentally hazardous chemicals. Furthermore, it avoids the clogging of pores by hydrogel residues and improves oil and gas exploitation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The terms (hydraulic) "fracturing" and "fracing" are used interchangeably in the literature and practice. Accordingly, we follow the same approach. The term "fracking" is, however, only common in Germany. Thus, we use “fracking” only in case we cite a corresponding reference.
 
2
With an overview on applied hydraulic fracture models allowing for the primary physical mechanisms involved (deformation of the rock, fracturing of the rock, flow of viscous fluid within the fracture, and leak-off) and a new single expansion framework which describes the interaction between several physical processes see Mitchell et al. (2007). On diffusion in a fractured medium, see Cannon and Meyer (1971).
 
3
TSO is a technique used in moderate to high-permeability reservoirs to form proppant bridges at the end of the cracks to cause a widening of the cracks instead of further longitudinal growth. For a more comprehensive insight, see Čikeš and Plantić (2005, 1, 5 et seqq.); Smith et al. (1984, 95–103); Smith and Hannah (1996).
 
4
The application date is not declared within the patent but stated in several publications. In 1865, the patent was published. Referring to the year 1864, e.g., Montgomery and Smith 2010, 27; Oil Region Alliance of Business, Industry & Tourism 2007.
 
5
An employee of Stanolind Oil and Gas Corporation (a Standard Oil (of Indiana)/Amoco (now BP) subsidiary founded in the 1920s).
 
6
Depending on the definition, foams can be defined as a separate category (foam-based fluids, e.g., see Meiners et al. 2013, A75) or a subcategory of water-based fluids, as they are largely based on water.
 
7
With an analysis of oil flow in fractured oil reservoirs using foam injections Choi et al. (2013).
 
8
See Lange et al (2013) with a field-example based on an exploration of the average and maximum vertical extents of hydraulic fractures performed by Fisher and Warpinski (2011) in the Barnett Shale, USA.
 
9
For the stressed state of a rock mass, corresponding measurements and planning decisions, e.g., see Kurlenya et al. (1994); Fallahzadeh et al. (2015). For the use of fuzzy logic in candidate-well selection for hydraulic fracturing in oil and gas wells, e.g., see Zoveidavianpoor et al. (2012). For predicting the behavior of rock masses and related uncertainties in modeling, e.g., see Elmouttie and Poropat (2014).
For the simulation of the nonlinearity and discontinuity of a rock mass, e.g., see Pan et al. (2013).
For the governing of fluid flow through porous media under the usage of mathematics and its development over time, e.g., see Cannon and Meyer (1971); Dupuy et al. (1973); Chen et al. (1974); Wassermann et al. (1975); Durrer and Slater (1977); Mitchell et al. (2007); Rahman and Rahman (2010); Gordalla et al. (2013); Yusof and Mahadzir (2014).
For microscopic modeling of the hydraulic fracturing process, e.g., see Eshiet et al. (2013).
For a comparison between neural networks and multiple regression analysis to predict rock fragmentation, e.g., see Enayatollahi et al. (2014).
 
10
For a deeper insight into water and frac fluid flowback, e.g., see Olsson et al. (2013); Borchardt et al. (2012); Veil and Clark (2011); Sjolander et al. (2011); Blauch et al. (2009); Balaba and Smart (2012); Frimmel et al. (2012).
 
11
For disposal recycling, the removement of pollutants, and the use as drilling fluid, e.g., see Bruff and Jikich (2011); Ely et al. (2011); Pierce et al. (2010); Veil and Clark (2011); Coughlin and Arthur (2011); Horner et al. (2011).
 
12
1.000 m3 or more of water per fracturing stage or 10,000 m3 or more of water during the entire process. See EU (2014).
 
13
Regarding microseismic monitoring during oil well stimulation by hydraulic fracturing, e.g., see Ilinski and Krasnova (2010).
 
14
With a review about recent seismic activity possibly related to hydraulic fracturing Ellsworth (2013).
 
15
In the form of solids, such as coal, iron, sand, and gravel; liquids, such as crude petroleum; and gases, such as natural gas. The category includes quarrying, milling of mined materials, injection of water for secondary oil recovery or for unconventional oil and gas recovery (such as hydraulic fracturing), and other operations associated with mining activities (Maupin et al. 2014).
 
16
As boron compounds typically sodium tetraborate (Borax Anhydrous, CAS Number 1330-43-4) is used. According to the Material Safety Data Sheet (MSDS) sodium tetraborate is toxic to fish (LC50). It is classified as irritating and harmful, causing serious eye irritation (risk phrase H319 (EG) Nr. 1272/2008) and harming fertility or damaging the unborn child (risk phrase H360 (EG) Nr. 1272/2008). Furthermore, it can cause nausea, vomiting, diarrhea, gastrointestinal cramps, erythematous lesions of the skin and mucous membranes, and liver irregularities. Other symptoms include circulatory collapse, tachycardia, cyanosis, delirium, convulsions and coma. According to reports, less than 5 g can cause the death of infants and 5–20 g the death of adults. See MSDS (2015a).
Furthermore, boric acid (CAS Number 10043-35-3) is used. According to the MSDS boric acid is toxic to fish (LC50, LC0), and daphnia, and other aquatic invertebrates (LC50, EC50). It is classified as harmful and toxic for human reproduction, harming reproduction and fertility or damaging the unborn child (risk phrase H360FD (EG) Nr. 1272/2008) as well as having acute toxicity (LD50 oral—rat). Furthermore, it can cause nausea, vomiting, diarrhea, gastrointestinal cramps, erythematous lesions of the skin and mucous membranes, and liver irregularities. Other symptoms include circulatory collapse, tachycardia, cyanosis, delirium, convulsions and coma. According to reports, less than 5 g can cause the death of infants and 5-20 g the death of adults. Beyond this, for most toxicity test categories (MSDS Class 11 and 12), no data are available for both chemicals. See MSDS (2014a)
Zirconium compounds used, e.g., are zirconyl chloride hydrate (CAS Number 15461-27-5). Zirconyl chloride hydrate is classified (in the MSDS) as dangerous, explicitly causing severe skin burns and eye damages (risk phrase H314 (EG) Nr. 1272/2008). It can cause cough, shortness of breath, headache, nausea, and vomiting. Eco-toxicity tests (MSDS Class 12) have not been performed. Same applies to the rest of the toxicity tests/test categories according to MSDS Class 11. See MSDS (2014b).
Titanium(IV) oxide (a titanium compound used, CAS Number 13463-67-7) is toxic to fish (LC50), daphnia, and other aquatic invertebrates (EC50, EC0) according to the MSDS. Furthermore, it has germ cell mutagenicity (hamster, ovaries, micronucleus test; hamster, lungs, DNA inhibition; hamster, ovaries, sister chromatid exchange; mouse, micronucleus test). See MSDS (2016a).
 
17
As bromate, e.g., sodium bromate (CAS Number 7789-38-0) is used. According to the MSDS it is classified as oxidizing (risk phrase H272 (EG) Nr. 1272/2008) and irritating, causing serious eye irritation (risk phrase H319 (EG) Nr. 1272/2008), skin irritation (risk phrase H315 (EG) Nr. 1272/2008), airway irritation (risk phrase H335 (EG) Nr. 1272/2008) as well as being deleterious when swallowed (risk phrase H302 (EG) Nr. 1272/2008) and having acute toxicity (LD50 intraperitoneal—mouse). Beyond this, for most (human-)toxicity test categories (MSDS Class 11) no data are available. Eco-toxicity tests (MSDS Class 12) have not been performed at all. See MSDS (2013).
As persulfates typically sodium persulfate/peroxodisulfate (CAS Number 7775-27-1), ammonium persulfate/peroxodisulfate (CAS Number 7727-54-0) or potassium persulfate/peroxodisulfate (CAS Number 7775-21-1) are used.
According to the MSDS sodium persulfate is toxic to fish (LC50), algae (EC50), and daphnia, and other aquatic invertebrates (EC50). It is classified as oxidizing (risk phrase H272 (EG) Nr. 1272/2008), irritating and harmful, explicitly causing serious eye irritation (risk phrase H319 (EG) Nr. 1272/2008), skin irritation (risk phrase H315 (EG) Nr. 1272/2008), airway irritation (risk phrase H335 (EG) Nr. 1272/2008), allergic skin reactions (risk phrase H317 (EG) Nr. 1272/2008), as well as being deleterious when swallowed (risk phrase H302 (EG) Nr. 1272/2008) and having acute toxicity (LD50 oral—rat; LC50 inhaling—rat; LD50 skin—rabbit). Furthermore, it can cause allergy, asthmatical symptoms and dyspnea when inhaled (risk phrase H334 (EG) Nr. 1272/2008). Reiterated exposition can cause asthma. See MSDS (2012a).
According to the MSDS ammonium persulfate is toxic to fish (LC50), and daphnia, and other aquatic invertebrates (EC50). It is classified as oxidizing (risk phrase H272 (EG) Nr. 1272/2008), irritating and harmful, explicitly causing serious eye irritation (risk phrase H319 (EG) Nr. 1272/2008), skin irritation (risk phrase H315 (EG) Nr. 1272/2008), airway irritation (risk phrase H335 (EG) Nr. 1272/2008), allergic skin reactions (risk phrase H317 (EG) Nr. 1272/2008), as well as being deleterious when swallowed (risk phrase H302 (EG) Nr. 1272/2008) and having acute toxicity (LD50 oral—rat; LD50 skin—rat). Furthermore, it can cause allergy, asthmatical symptoms and dyspnea when inhaled (risk phrase H334 (EG) Nr. 1272/2008). See MSDS (2016b).
According to the MSDS potassium persulfate is toxic to fish (LC50), bacteria (EC50), and daphnia, and other aquatic invertebrates (EC50). It is classified as oxidizing (risk phrase H272 (EG) Nr. 1272/2008), irritating and harmful, explicitly causing serious eye irritation (risk phrase H319 (EG) Nr. 1272/2008), skin irritation (risk phrase H315 (EG) Nr. 1272/2008), airway irritation (risk phrase H335 (EG) Nr. 1272/2008), allergic skin reactions (risk phrase H317 (EG) Nr. 1272/2008), as well as being deleterious when swallowed (risk phrase H302 (EG) Nr. 1272/2008) and having acute toxicity (LD50 oral—rat; LD50 skin—rabbit). Furthermore, it is harmful to aquatic organisms. Moreover, it can cause allergy, asthmatical symptoms and dyspnea when inhaled (risk phrase H334 (EG) Nr. 1272/2008). For the rest of the toxicity test categories (MSDS Class 11 and 12) no data are available. See MSDS (2014c).
 
18
Hydrochloric acid (CAS Number 7647-01-0) is toxic to fish (LC50) as well as to daphnia and other aquatic invertebrates (EC50). It is classified as irritating and caustic, explicitly causing severe skin burns and eye damages (risk phrase H314 and H318 (EG) Nr. 1272/2008), and airway irritation (risk phrase H335 (EG) Nr. 1272/2008). It is corrosive (risk phrase H290 (EG) Nr. 1272/2008). Under MSDS category “additional information” (Class 11) the following afflictions and characteristics are listed: ardor, coughing, wheezing, laryngitis, shortness of breath, convulsions, inflammation and edema of the larynx, spasms, edema and inflammation of the bronchi, pneumonitis, pulmonary edema, extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin. For the remaining toxicity test categories (MSDS Class 11 and 12) no data are available. See MSDS (2016c).
Hydrofluoric acid (CAS Number 7664-39-3) is classified life endangering, explicitly when swallowed (risk phrase H300 (EG) Nr. 1272/2008) or inhaled (risk phrase H330 (EG) Nr. 1272/2008) as well as in cases of skin contact (risk phrase H310 (EG) Nr. 1272/2008), and caustic, explicitly causing severe skin burns and eye damages (risk phrase H314 (EG) Nr. 1272/2008). Under MSDS category “additional information” (Class 11) the following afflictions and characteristics are listed: possibly reducing serum calcium levels and potentially causing fatal hypocalcemia, possibly causing severe burns and blisters, extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes and skin, causing skin necrosis. For almost all of the remaining toxicity test categories (MSDS Class 11 and 12) no data are available. See MSDS (2015b).
 
19
Certainly a variety of other corporations and institutions is developing, or at least trying to develop, corresponding new fluids. However, corresponding undertakings are justifiably kept secret respectively are not progressed far enough yet.
 
20
For example, tetraethylenepentamine (No. 1 on the list) (CAS Number 112-57-2). It is toxic to fish (LC50), daphnia, other aquatic invertebrates (EC50), and to algae (IC50). It is classified as harmful if swallowed or in contact with skin (risk phrase H302 and H312 (EG) Nr. 1272/2008), explicitly causing severe skin burns and eye damages (risk phrase H314 (EG) Nr. 1272/2008), as well as allergic skin reactions (risk phrase H317 (EG) Nr. 1272/2008). It is toxic to aquatic life with long lasting effects (risk phrase H411 (EG) Nr. 1272/2008). It is classified as having acute toxicity (LD50 oral—rat). Under MSDS category “additional information” (Class 11) the following afflictions and characteristics are listed: extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin; spasm, inflammation and edema of the larynx, spasm, inflammation and edema of the bronchi, pneumonitis, pulmonary edema, burning sensation, cough, wheezing, laryngitis, shortness of breath, headache, nausea. For the remaining toxicity test categories (MSDS Class 11 and 12), no data are available. See MSDS (2012b).
 
Literatur
Zurück zum Zitat Abad C, Robinson K, Hughes T (2010) Degradable polymers for wellbore fluids and processes. US Patent No. US 7858561 B2; US Patent Application No. US 20090075845 A1; Canadian Patent Application No. CA 2593607 A1; Canadian Patent No. CA 2593607 C; Chinese Patent Application No. CN 101133231 A; International (PCT) Patent Application No. WO 2006075154 A1 Abad C, Robinson K, Hughes T (2010) Degradable polymers for wellbore fluids and processes. US Patent No. US 7858561 B2; US Patent Application No. US 20090075845 A1; Canadian Patent Application No. CA 2593607 A1; Canadian Patent No. CA 2593607 C; Chinese Patent Application No. CN 101133231 A; International (PCT) Patent Application No. WO 2006075154 A1
Zurück zum Zitat Adgate JL, Goldstein BD, McKenzie LM (2014) Potential public health hazards, exposures and health effects from unconventional natural gas development. Environ Sci Technol 48:8307–8320CrossRef Adgate JL, Goldstein BD, McKenzie LM (2014) Potential public health hazards, exposures and health effects from unconventional natural gas development. Environ Sci Technol 48:8307–8320CrossRef
Zurück zum Zitat Alm RM (1955) Gelling normally liquid hydrocarbons. US Patent No. US 2668098 A Alm RM (1955) Gelling normally liquid hydrocarbons. US Patent No. US 2668098 A
Zurück zum Zitat Almond SW, Bland WE (1984) Effect of break mechanism on gelling agent residue and flow impairment in 20/40 mesh sand. Presented at the SPE formation damage control symposium, Bakersfield, CA, 13–14 February. SPE-12485-MS. doi:10.2118/12485-MS Almond SW, Bland WE (1984) Effect of break mechanism on gelling agent residue and flow impairment in 20/40 mesh sand. Presented at the SPE formation damage control symposium, Bakersfield, CA, 13–14 February. SPE-12485-MS. doi:10.​2118/​12485-MS
Zurück zum Zitat Bahamdan A (2005) Hydrophobic guar gum derivatives prepared by controlled grafting processes for hydraulic fracturing applications. Dissertation, Louisiana State University Bahamdan A (2005) Hydrophobic guar gum derivatives prepared by controlled grafting processes for hydraulic fracturing applications. Dissertation, Louisiana State University
Zurück zum Zitat Balaba RS, Smart RB (2012) Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater. Chemosphere 89:1437–1442CrossRef Balaba RS, Smart RB (2012) Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater. Chemosphere 89:1437–1442CrossRef
Zurück zum Zitat Baretto G (2016) Fluid composition for stimulation in the field of oil and gas production. US Patent No. US 20160186047 A1 Baretto G (2016) Fluid composition for stimulation in the field of oil and gas production. US Patent No. US 20160186047 A1
Zurück zum Zitat Blauch ME, Myers RR, Moore T et al (2009) Marcellus shale post-frac flowback waters—where is all the salt coming from and what are the implications? Presented at the SPE Eastern Regional Meeting, Charleston, WV, 23–25 September. SPE-125740-MS. doi:10.2118/125740-MS Blauch ME, Myers RR, Moore T et al (2009) Marcellus shale post-frac flowback waters—where is all the salt coming from and what are the implications? Presented at the SPE Eastern Regional Meeting, Charleston, WV, 23–25 September. SPE-125740-MS. doi:10.​2118/​125740-MS
Zurück zum Zitat Borchardt D, Ewen C, Richter S et al (2012) Information and dialog process on the safety and environmental compatibility of fracing technology (Informations- und Dialogprozess zur Sicherheit und Umweltverträglichkeit der Frackingtechnologie). Wasser und Abfall 2012:10–14 Borchardt D, Ewen C, Richter S et al (2012) Information and dialog process on the safety and environmental compatibility of fracing technology (Informations- und Dialogprozess zur Sicherheit und Umweltverträglichkeit der Frackingtechnologie). Wasser und Abfall 2012:10–14
Zurück zum Zitat Bruff MJ, Jikich SA (2011) Field Demonstration of an integrated water treatment technology solution in marcellus shale. Presented at the SPE Eastern regional meeting, Columbus, OH, 17–19 August. SPE-149466-PP. doi:10.2118/149466-MS Bruff MJ, Jikich SA (2011) Field Demonstration of an integrated water treatment technology solution in marcellus shale. Presented at the SPE Eastern regional meeting, Columbus, OH, 17–19 August. SPE-149466-PP. doi:10.​2118/​149466-MS
Zurück zum Zitat Cahoy DR, Gehman J, Lei Z (2013) Fracking patents: the emergence of patents as information containment tools in shale drilling. Michigan Telecommun Technol Law Rev 19:279–377 Cahoy DR, Gehman J, Lei Z (2013) Fracking patents: the emergence of patents as information containment tools in shale drilling. Michigan Telecommun Technol Law Rev 19:279–377
Zurück zum Zitat Cannon JR, Meyer GH (1971) On diffusion in a fractured medium. society for industrial and applied mathematics. J Appl Math 20:434–448 Cannon JR, Meyer GH (1971) On diffusion in a fractured medium. society for industrial and applied mathematics. J Appl Math 20:434–448
Zurück zum Zitat Choi M, Seo J, Park H et al (2013) Analysis of oil flow in fractured oil reservoir using carbondioxide (CO2) foam injection. J Pet Gas Eng 4:143–153 Choi M, Seo J, Park H et al (2013) Analysis of oil flow in fractured oil reservoir using carbondioxide (CO2) foam injection. J Pet Gas Eng 4:143–153
Zurück zum Zitat Coughlin BJ, Arthur JD (2011) Cumulative impacts of shale-gas water management: considerations and challenges. Presented at the Americas E&P Health, Safety, Security, and Environmental Conference, Houston, Texas, 21–23 March. SPE-142234-MS. doi:10.2118/142234-MS Coughlin BJ, Arthur JD (2011) Cumulative impacts of shale-gas water management: considerations and challenges. Presented at the Americas E&P Health, Safety, Security, and Environmental Conference, Houston, Texas, 21–23 March. SPE-142234-MS. doi:10.​2118/​142234-MS
Zurück zum Zitat Crews JB (2003) Polyols for breaking of borate crosslinked fracturing fluid. US Patent No. US 6617285 B2; Canadian Patent Application No. CA 2390175 A1; US Patent No. US 7084093 B2; US Patent No. US 7160842 B2; US Patent Application No. US 20030022796; US Patent Application No. US 20040019199; US Patent Application No. US 20040127367; US Patent Application No. US 20070072776 Crews JB (2003) Polyols for breaking of borate crosslinked fracturing fluid. US Patent No. US 6617285 B2; Canadian Patent Application No. CA 2390175 A1; US Patent No. US 7084093 B2; US Patent No. US 7160842 B2; US Patent Application No. US 20030022796; US Patent Application No. US 20040019199; US Patent Application No. US 20040127367; US Patent Application No. US 20070072776
Zurück zum Zitat Dawson JC, Le HV (1998) Gelation additive for hydraulic fracturing fluids. US Patent No. US 5798320 A; International (PCT) Patent Application No. WO 1996033966 A1 Dawson JC, Le HV (1998) Gelation additive for hydraulic fracturing fluids. US Patent No. US 5798320 A; International (PCT) Patent Application No. WO 1996033966 A1
Zurück zum Zitat Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Liebigs Ann Chem 460:98–122CrossRef Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Liebigs Ann Chem 460:98–122CrossRef
Zurück zum Zitat Dinske C, Shapiro SA, Rutledge JT (2010) Interpretation of microseismicity resulting from gel and water fracturing of tight gas reservoirs. Pure appl Geophys 167:169–182CrossRef Dinske C, Shapiro SA, Rutledge JT (2010) Interpretation of microseismicity resulting from gel and water fracturing of tight gas reservoirs. Pure appl Geophys 167:169–182CrossRef
Zurück zum Zitat Dupuy HP, Fore SP, Goldblatt LA (1973) Direct gas chromatographic examination of volatiles in salad oils and shortenings. J Am Oil Chem Soc 50:340–342CrossRef Dupuy HP, Fore SP, Goldblatt LA (1973) Direct gas chromatographic examination of volatiles in salad oils and shortenings. J Am Oil Chem Soc 50:340–342CrossRef
Zurück zum Zitat Durrer EJ, Slater GE (1977) Optimization of petroleum and natural gas production—a survey. Manage Sci 24:35–43CrossRef Durrer EJ, Slater GE (1977) Optimization of petroleum and natural gas production—a survey. Manage Sci 24:35–43CrossRef
Zurück zum Zitat Elmouttie MK, Poropat GV (2014) Quasi-stochastic analysis of uncertainty for modelling structurally controlled failures. Rock Mech Rock Eng 47:519–534CrossRef Elmouttie MK, Poropat GV (2014) Quasi-stochastic analysis of uncertainty for modelling structurally controlled failures. Rock Mech Rock Eng 47:519–534CrossRef
Zurück zum Zitat Ely JW (1994) Stimulation engineering handbook. PennWell Books, Tulsa Ely JW (1994) Stimulation engineering handbook. PennWell Books, Tulsa
Zurück zum Zitat Ely JW, Fraim M, Horn AD et al (2011) Game changing technology for treating and recycling frac water. Presented at the SPE annual technical conference and exhibition, Denver, Colorado, 30 October–2 November. SPE-145454-MS. doi:10.2118/145454-MS Ely JW, Fraim M, Horn AD et al (2011) Game changing technology for treating and recycling frac water. Presented at the SPE annual technical conference and exhibition, Denver, Colorado, 30 October–2 November. SPE-145454-MS. doi:10.​2118/​145454-MS
Zurück zum Zitat Enayatollahi I, Bazzazi AA, Asadi A (2014) Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng 47:799–807CrossRef Enayatollahi I, Bazzazi AA, Asadi A (2014) Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng 47:799–807CrossRef
Zurück zum Zitat Eshiet KI, Sheng Y, Ye J (2013) Microscopic modelling of the hydraulic fracturing process. Environ Earth Sci 68:1169–1186CrossRef Eshiet KI, Sheng Y, Ye J (2013) Microscopic modelling of the hydraulic fracturing process. Environ Earth Sci 68:1169–1186CrossRef
Zurück zum Zitat EU (European Union) (2014) Commission Recommendations of 22 January 2014 on minimum principles for the exploration and production of hydrocarbons (such as shale gas) using high-volume hydraulic fracturing. Official Journal of the European Union L 39/72 EU (European Union) (2014) Commission Recommendations of 22 January 2014 on minimum principles for the exploration and production of hydrocarbons (such as shale gas) using high-volume hydraulic fracturing. Official Journal of the European Union L 39/72
Zurück zum Zitat Fakhru’l-Razi A, Pendashteh A, Abdullah LC et al (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551CrossRef Fakhru’l-Razi A, Pendashteh A, Abdullah LC et al (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551CrossRef
Zurück zum Zitat Fallahzadeh SH, Rasouli V, Sarmadivaleh M (2015) An investigation of hydraulic fracturing initiation and near-wellbore propagation from perforated boreholes in tight formations. Rock Mech Rock Eng 48:573–584CrossRef Fallahzadeh SH, Rasouli V, Sarmadivaleh M (2015) An investigation of hydraulic fracturing initiation and near-wellbore propagation from perforated boreholes in tight formations. Rock Mech Rock Eng 48:573–584CrossRef
Zurück zum Zitat Ferrer I, Thurman EM (2015) Chemical constituents and analytical approaches for hydraulic fracturing waters. Trends Environ Anal Chem 5:18–25CrossRef Ferrer I, Thurman EM (2015) Chemical constituents and analytical approaches for hydraulic fracturing waters. Trends Environ Anal Chem 5:18–25CrossRef
Zurück zum Zitat Frimmel FH, Ewers U, Schmitt-Jansen M et al (2012) Toxikologische Bewertung von Fracking-Fluiden (Toxicological assessment of fracking fluids). Wasser und Abfall 2012:22–29 Frimmel FH, Ewers U, Schmitt-Jansen M et al (2012) Toxikologische Bewertung von Fracking-Fluiden (Toxicological assessment of fracking fluids). Wasser und Abfall 2012:22–29
Zurück zum Zitat Gibowicz SJ (1986) Physics of fracturing and seismic energy release: a review. Pure appl Geophys 124:611–658CrossRef Gibowicz SJ (1986) Physics of fracturing and seismic energy release: a review. Pure appl Geophys 124:611–658CrossRef
Zurück zum Zitat Gordalla BC, Ewers U, Frimmel FH (2013) Hydraulic fracturing: a toxicological threat for groundwater and drinking-water? Environ Earth Sci 70:3875–3893CrossRef Gordalla BC, Ewers U, Frimmel FH (2013) Hydraulic fracturing: a toxicological threat for groundwater and drinking-water? Environ Earth Sci 70:3875–3893CrossRef
Zurück zum Zitat Gow S (2005) Roughnecks, rock bits and rigs: the evolution of oil well drilling technology in Alberta, 1883–1970. University of Calgary Press, CalgaryCrossRef Gow S (2005) Roughnecks, rock bits and rigs: the evolution of oil well drilling technology in Alberta, 1883–1970. University of Calgary Press, CalgaryCrossRef
Zurück zum Zitat Hakimhashemi AH, Yoon JS, Heidbach O et al (2014) Forward induced seismic hazard assessment: application to a synthetic seismicity catalogue from hydraulic stimulation modelling. J Seismol 18:671–680CrossRef Hakimhashemi AH, Yoon JS, Heidbach O et al (2014) Forward induced seismic hazard assessment: application to a synthetic seismicity catalogue from hydraulic stimulation modelling. J Seismol 18:671–680CrossRef
Zurück zum Zitat Helmig D, Thompson CR, Evans J et al (2014) Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah. Environ Sci Technol 48:4707–4715CrossRef Helmig D, Thompson CR, Evans J et al (2014) Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah. Environ Sci Technol 48:4707–4715CrossRef
Zurück zum Zitat Horner P, Halldorson B, Slutz JA (2011) Shale gas water treatment value chain—a review of technologies, including case studies. Presented at the SPE annual technical conference and exhibition, Denver, CO, 30 October–2 November. SPE-147264-MS. doi:10.2118/147264-MS Horner P, Halldorson B, Slutz JA (2011) Shale gas water treatment value chain—a review of technologies, including case studies. Presented at the SPE annual technical conference and exhibition, Denver, CO, 30 October–2 November. SPE-147264-MS. doi:10.​2118/​147264-MS
Zurück zum Zitat Howard GC, Fast CR (1957) Optimum fluid characteristics for fracture extension. Appendix by Carter ED. In: American Petroleum Institute (ed) Drilling and production practices 1957. American Petroleum Institute, New York, pp 261–270 Howard GC, Fast CR (1957) Optimum fluid characteristics for fracture extension. Appendix by Carter ED. In: American Petroleum Institute (ed) Drilling and production practices 1957. American Petroleum Institute, New York, pp 261–270
Zurück zum Zitat Ilinski AD, Krasnova MA (2010) Location of microearthquakes sources at passive seismic monitoring of hydraulic fracturing. Seism Instrum 46:213–222CrossRef Ilinski AD, Krasnova MA (2010) Location of microearthquakes sources at passive seismic monitoring of hydraulic fracturing. Seism Instrum 46:213–222CrossRef
Zurück zum Zitat Kern LR (1962) Method and composition for formation fracturing. US Patent No. US 3058909 A Kern LR (1962) Method and composition for formation fracturing. US Patent No. US 3058909 A
Zurück zum Zitat Kreipl AT, Luinstra GA (2016) Verfahren zur Herstellung von Gelsystemen für Oel- und Gasfeldanwendungen, wie Fracking und Bohrlochreinigung und nach diesem Verfahren hergestelltes Gelsystem (Process and fluid systems for oil and gas field applications such as fracing and well cleaning). German Patent No. DE 102012102045 B4; International (PCT) Patent Application No. WO2013135235 A1 Kreipl AT, Luinstra GA (2016) Verfahren zur Herstellung von Gelsystemen für Oel- und Gasfeldanwendungen, wie Fracking und Bohrlochreinigung und nach diesem Verfahren hergestelltes Gelsystem (Process and fluid systems for oil and gas field applications such as fracing and well cleaning). German Patent No. DE 102012102045 B4; International (PCT) Patent Application No. WO2013135235 A1
Zurück zum Zitat Kurlenya MV, Leont’ev AV, Popov SN (1994) Development of hydraulic fracturing for studying the stressed state of a rock mass. J Min Sci 30:3–20CrossRef Kurlenya MV, Leont’ev AV, Popov SN (1994) Development of hydraulic fracturing for studying the stressed state of a rock mass. J Min Sci 30:3–20CrossRef
Zurück zum Zitat Lange T, Sauter M, Heitfeld M et al (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 1. Environ Earth Sci 70:3839–3853CrossRef Lange T, Sauter M, Heitfeld M et al (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 1. Environ Earth Sci 70:3839–3853CrossRef
Zurück zum Zitat Li Y-P (1996) Microearthquake analysis for hydraulic fracturing process. Acta Seismol Sin (now Earthq Sci) 9:377–387CrossRef Li Y-P (1996) Microearthquake analysis for hydraulic fracturing process. Acta Seismol Sin (now Earthq Sci) 9:377–387CrossRef
Zurück zum Zitat Li G, Li M, Wang D et al (2012) 高含硫气藏酸压液体 (Analogously acid for high sulfur gas reservoirs). Chinese Patent No. CN102604626 B Li G, Li M, Wang D et al (2012) 高含硫气藏酸压液体 (Analogously acid for high sulfur gas reservoirs). Chinese Patent No. CN102604626 B
Zurück zum Zitat Lin L, Li L, Abad C (2011) Internal breakers for viscoelastic surfactant fluids. US Patent No. US 8067342 B2; Canadian Patent Application No. CA 2724080 A1; US Patent Application No. US 20080269081 A1; International (PCT) Patent Application No. WO 2009138910 A1 Lin L, Li L, Abad C (2011) Internal breakers for viscoelastic surfactant fluids. US Patent No. US 8067342 B2; Canadian Patent Application No. CA 2724080 A1; US Patent Application No. US 20080269081 A1; International (PCT) Patent Application No. WO 2009138910 A1
Zurück zum Zitat Lin L, Abad C, Baser B et al (2015) Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids. US Patent No. US 9006153 B2; US Patent No. US 8481462 B2; US Patent Application No. US 20080070806 A1; US Patent Application No. US 20140196897 A1 Lin L, Abad C, Baser B et al (2015) Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids. US Patent No. US 9006153 B2; US Patent No. US 8481462 B2; US Patent Application No. US 20080070806 A1; US Patent Application No. US 20140196897 A1
Zurück zum Zitat Maupin MA, Kenny JF, Hutson SS et al (2014) Estimated use of water in the United States in 2010: U.S. Geological Survey Circular 1405. doi:10.3133/cir1405 Maupin MA, Kenny JF, Hutson SS et al (2014) Estimated use of water in the United States in 2010: U.S. Geological Survey Circular 1405. doi:10.​3133/​cir1405
Zurück zum Zitat McKenzie LM, Witter RZ, Newman LS et al (2012) Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci Total Environ 424:79–87CrossRef McKenzie LM, Witter RZ, Newman LS et al (2012) Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci Total Environ 424:79–87CrossRef
Zurück zum Zitat McKenzie LM, Guo R, Witter RZ et al (2014) Birth outcomes and maternal residential proximity to natural gas development in rural Colorado. Environ Health Perspect 122:412–417CrossRef McKenzie LM, Guo R, Witter RZ et al (2014) Birth outcomes and maternal residential proximity to natural gas development in rural Colorado. Environ Health Perspect 122:412–417CrossRef
Zurück zum Zitat Mirakyan A, Sullivan PF, Hutchins RD et al (2012) Interpolymer crosslinked gel and method of using. International (PCT) Patent Application No. WO2012075154 A1; Canadian Patent Application No. CA2818899A1, CA2818899C, and CA2819193A1; European Patent Application No. EP2681289A1 and EP2681290A1; US Patent Application No. US20120132422, US20120138294, and US20150144346 Mirakyan A, Sullivan PF, Hutchins RD et al (2012) Interpolymer crosslinked gel and method of using. International (PCT) Patent Application No. WO2012075154 A1; Canadian Patent Application No. CA2818899A1, CA2818899C, and CA2819193A1; European Patent Application No. EP2681289A1 and EP2681290A1; US Patent Application No. US20120132422, US20120138294, and US20150144346
Zurück zum Zitat Mitchell SL, Kuske R, Peirce AP (2007) An asymptotic framework for finite hydraulic fractures including leak-off. society for industrial and applied mathematics. J Appl Math 67:364–386 Mitchell SL, Kuske R, Peirce AP (2007) An asymptotic framework for finite hydraulic fractures including leak-off. society for industrial and applied mathematics. J Appl Math 67:364–386
Zurück zum Zitat Moore WS (1955) Fracturing in Eastern United States. In: American Petroleum Institute (ed) Drilling and production practices 1955. American Petroleum Institute, New York, p 379 Moore WS (1955) Fracturing in Eastern United States. In: American Petroleum Institute (ed) Drilling and production practices 1955. American Petroleum Institute, New York, p 379
Zurück zum Zitat Olsson O, Weichgrebe D, Rosenwinkel KH (2013) Hydraulic fracturing wastewater in Germany: composition, treatment, concerns. Environ Earth Sci 70:3895–3906CrossRef Olsson O, Weichgrebe D, Rosenwinkel KH (2013) Hydraulic fracturing wastewater in Germany: composition, treatment, concerns. Environ Earth Sci 70:3895–3906CrossRef
Zurück zum Zitat Pan P-Z, Rutqvist J, Feng X-T et al (2013) An approach for modeling rock discontinuous mechanical behavior under multiphase fluid flow conditions. Rock Mech Rock Eng 47:589–603CrossRef Pan P-Z, Rutqvist J, Feng X-T et al (2013) An approach for modeling rock discontinuous mechanical behavior under multiphase fluid flow conditions. Rock Mech Rock Eng 47:589–603CrossRef
Zurück zum Zitat Pierce D, Bertrand K, Vasiliu C (2010) Water recycling helps with sustainability. Society of Petroleum Engineers. Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Queensland, 18–20 October. SPE-134137-MS. doi: 10.2118/134137-MS Pierce D, Bertrand K, Vasiliu C (2010) Water recycling helps with sustainability. Society of Petroleum Engineers. Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Queensland, 18–20 October. SPE-134137-MS. doi: 10.​2118/​134137-MS
Zurück zum Zitat Rabinowitz PM, Slizovskiy IB, Lamers V et al (2015) Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania. Environ Health Perspect 123:21–26CrossRef Rabinowitz PM, Slizovskiy IB, Lamers V et al (2015) Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania. Environ Health Perspect 123:21–26CrossRef
Zurück zum Zitat Rahman MM, Rahman MK (2010) A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand. Part A. Energy Sources 32:1416–1436CrossRef Rahman MM, Rahman MK (2010) A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand. Part A. Energy Sources 32:1416–1436CrossRef
Zurück zum Zitat Reistle CE (1951) Method of treating earth formations. US Patent No. US 2547778 A Reistle CE (1951) Method of treating earth formations. US Patent No. US 2547778 A
Zurück zum Zitat Riedl J, Rotter S, Faetsch S et al (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 70:3907–3920CrossRef Riedl J, Rotter S, Faetsch S et al (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 70:3907–3920CrossRef
Zurück zum Zitat Roberts EAL (1865) Improvement in exploding torpedoes in artesian wells. US Patent No. US 47458 A Roberts EAL (1865) Improvement in exploding torpedoes in artesian wells. US Patent No. US 47458 A
Zurück zum Zitat Roberts EAL (1866) Improvement in method of increasing capacity of oil-wells. US Patent No. US 59936 A Roberts EAL (1866) Improvement in method of increasing capacity of oil-wells. US Patent No. US 59936 A
Zurück zum Zitat Roberts EAL (1873) Improvement in methods of and means for increasing the capacity of oil-wells. US Patent No. US RE5434 E Roberts EAL (1873) Improvement in methods of and means for increasing the capacity of oil-wells. US Patent No. US RE5434 E
Zurück zum Zitat Robinson KL, De Paz Banez MV, Tustin GJ et al (2011) Reversible polymeric gelation for oilfield applications. US Patent No. US 7987912 B2; US Patent Application No. US 20090126932 A1 Robinson KL, De Paz Banez MV, Tustin GJ et al (2011) Reversible polymeric gelation for oilfield applications. US Patent No. US 7987912 B2; US Patent Application No. US 20090126932 A1
Zurück zum Zitat Rytter E (2015) Porous proppants. International (PCT) Patent Application No. WO2015067555 A2 and WO2015067555 A3 Rytter E (2015) Porous proppants. International (PCT) Patent Application No. WO2015067555 A2 and WO2015067555 A3
Zurück zum Zitat Scanlon BR, Reedy RC, Nicot JP (2014) Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environ Sci Technol 48:12386–12393CrossRef Scanlon BR, Reedy RC, Nicot JP (2014) Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environ Sci Technol 48:12386–12393CrossRef
Zurück zum Zitat Shell FJ, Bodine OK (1960) Economics of hydraulic fracturing using wall-building additives. In: American Petroleum Institute (ed) Drilling and production practices 1960. American Petroleum Institute, New York, p 145 Shell FJ, Bodine OK (1960) Economics of hydraulic fracturing using wall-building additives. In: American Petroleum Institute (ed) Drilling and production practices 1960. American Petroleum Institute, New York, p 145
Zurück zum Zitat Wann SR, Carraway DT (2014) Degradable polymers and method for fracking applications. International (PCT) Patent Application No. WO2014165315 A1; European Patent Application No. EP2970754A1; US Patent Application No. US20140274820 Wann SR, Carraway DT (2014) Degradable polymers and method for fracking applications. International (PCT) Patent Application No. WO2014165315 A1; European Patent Application No. EP2970754A1; US Patent Application No. US20140274820
Zurück zum Zitat Wassermann ML, Emanuel AS, Seinfelt TH (1975) Practical applications of optimal-control. Theory to history-matching multiphase simulator models. SPE J 15:347–355. doi:10.2118/5020-PA CrossRef Wassermann ML, Emanuel AS, Seinfelt TH (1975) Practical applications of optimal-control. Theory to history-matching multiphase simulator models. SPE J 15:347–355. doi:10.​2118/​5020-PA CrossRef
Zurück zum Zitat Willberg DM, Williams RD, Moncada K et al (2016) Control system and method of flowback operations for shale reservoirs. International (PCT) Patent Application No. WO2016118802A1 Willberg DM, Williams RD, Moncada K et al (2016) Control system and method of flowback operations for shale reservoirs. International (PCT) Patent Application No. WO2016118802A1
Zurück zum Zitat Winter R, Kuhlmann P, Gaeraedts J (2013) Verfahren zur Herstellung beschichteter proppants. International (PCT) Patent Application No. WO2013087844 A1; Canadian Patent Application No. CA2858920 A1; Chinese Patent Application No. CN104039920 A; German Patent Application No. DE102011121254 A1; European Patent Application No. EP2791273 A1; US Patent Application No. US20140345864 Winter R, Kuhlmann P, Gaeraedts J (2013) Verfahren zur Herstellung beschichteter proppants. International (PCT) Patent Application No. WO2013087844 A1; Canadian Patent Application No. CA2858920 A1; Chinese Patent Application No. CN104039920 A; German Patent Application No. DE102011121254 A1; European Patent Application No. EP2791273 A1; US Patent Application No. US20140345864
Zurück zum Zitat Wyant RE, Perkins TK, Moore TF (1964) Borate-gum gel breakers. US Patent No. US 3163219 A Wyant RE, Perkins TK, Moore TF (1964) Borate-gum gel breakers. US Patent No. US 3163219 A
Zurück zum Zitat Xuewu (2016) An oil well fracturing, acidizing flowback treatment equipment. Chinese Patent Application No. CN205473156U Xuewu (2016) An oil well fracturing, acidizing flowback treatment equipment. Chinese Patent Application No. CN205473156U
Zurück zum Zitat Yusof MAM, Mahadzir NA (2014) Development of mathematical model for hydraulic fracturing design. J Pet Explor Prod Technol 5:269–276CrossRef Yusof MAM, Mahadzir NA (2014) Development of mathematical model for hydraulic fracturing design. J Pet Explor Prod Technol 5:269–276CrossRef
Zurück zum Zitat Zoveidavianpoor M, Samsuri A, Shadizadeh SR (2012) Fuzzy logic in candidate-well selection for hydraulic fracturing in oil and gas wells: a critical review. Int J Phys Sci 7:4049–4060 Zoveidavianpoor M, Samsuri A, Shadizadeh SR (2012) Fuzzy logic in candidate-well selection for hydraulic fracturing in oil and gas wells: a critical review. Int J Phys Sci 7:4049–4060
Metadaten
Titel
Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow
verfasst von
M. P. Kreipl
A. T. Kreipl
Publikationsdatum
01.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 4/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6480-5

Weitere Artikel der Ausgabe 4/2017

Environmental Earth Sciences 4/2017 Zur Ausgabe