Skip to main content

2019 | OriginalPaper | Buchkapitel

Hydrogen via Direct Solar Production

verfasst von : Shamindri M. Arachchige, Karen J. Brewer

Erschienen in: Fuel Cells and Hydrogen Production

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

BL
A ligand that is located between two metals in a supramolecule, bridging ligand.
bpy
A bidentate terminal ligand, 2,2′-bipyridine.
CAT
The site of a reaction that occurs via catalysis, facilitated by the catalyst without the destruction of this subunit occurring multiple times in a cycle.
dmgBF2
(Difluoroboryl) dimethylglyoximate.
dmgH
Dimethylglyoximate.
dpb
A bidentate bridging ligand, 2,3-bis(2-pyridyl) benzoquinoxaline.
dpgBF2
(Difluoroboryl)diphenylglyoximate.
dpp
A bidentate bridging ligand, 2,3-bis(2-pyridyl) pyrazine.
dpq
A bidentate bridging ligand, 2,3-bis(2-pyridyl) quinoxaline.
EA
A subunit that functions to accept an electron in a redox reaction, electron acceptor.
ED
A subunit that functions to donate an electron in a redox reaction, electron donor.
et
Excited state electron transfer, oxidation or reduction reaction involving the loss or gain of an electron that occurs in an electronic excited state.
GS
Electronic ground state of a molecule.
HOMO
Highest occupied molecular orbital for a molecule.
Ia
Intensity of incident light.
ic
Internal conversion, a non-radiative process that allows conversion between two electronic states of the same spin multiplicity.
isc
Intersystem crossing, a non-radiative process that allows conversion between two electronic states of different spin multiplicity.
k x
Rate constant of process “x.”
LA
Ground electronic state of a light absorber.
LA
Excited electronic state of a light absorber.
L-pyr
A monodentate terminal ligand, [(4-pyridine) oxazolo(4,5-f)phenanthroline].
LUMO
Lowest unoccupied molecular orbital for a molecule.
Me2bpy
A bidentate terminal ligand, 4,4′-dimethy-2,2′-bipyridine.
Me2phen
A bidentate terminal ligand, 4,7-dimethylphenanthroline.
MLCT
Metal-to-ligand charge-transfer, an electronic excited state.
MMCT
Metal-to-metal charge-transfer, an electronic excited state.
nr
Non-radiative decay or movement between electronic states via processes that do not involve the absorption or emission of light.
phen
A bidentate terminal ligand, 1,10-phenanthroline.
ppy
A monodentate terminal ligand, 2-phenylpyridine.
py
A N containing aromatic ring, pyridyl.
q
Bimolecular deactivation, a reaction of an electronic excited state of a molecule which results in relaxation to the ground state via interaction with another molecule without transfer of electrons or generation of an excited state.
Q
Quencher, a molecule that is engaged in a reaction with an electronic excited state of another molecule leading to generation of the ground state of the excited molecule.
rxn
Photochemical reaction from the electronic excited state of a molecule.
TL
A ligand that is located at the end of a supramolecule and bound to only one metal center, terminal ligand.
tpy
A tridentate terminal ligand, 2,2′:6′,2′′-terpyridine.
λmaxabs
Absorption maximum.
λmaxem
Emission maximum.
Φ
Quantum yield or a process provides the number of events of interest that occur from an electronic excited state as related to the number of excited molecules.
Φem
Quantum yield of emission providing the number of photons emitted by an electronic excited state of a molecule divided by the number of photons absorbed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRef Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRef
2.
Zurück zum Zitat DOE (2005) Report of the basic energy sciences workshop on solar utilization. Department of Energy, Washington, DC DOE (2005) Report of the basic energy sciences workshop on solar utilization. Department of Energy, Washington, DC
3.
Zurück zum Zitat Lewis NS (2009) A perspective on forward research and development paths for cost-effective solar energy utilization. ChemSusChem 2:383–386CrossRef Lewis NS (2009) A perspective on forward research and development paths for cost-effective solar energy utilization. ChemSusChem 2:383–386CrossRef
4.
Zurück zum Zitat Nocera DG (2009) Living healthy on a dying planet. Chem Soc Rev 38:13–15CrossRef Nocera DG (2009) Living healthy on a dying planet. Chem Soc Rev 38:13–15CrossRef
5.
Zurück zum Zitat Bockris JO’M (1999) Hydrogen economy in the future. Int J Hydrogen Energy 24:1–15CrossRef Bockris JO’M (1999) Hydrogen economy in the future. Int J Hydrogen Energy 24:1–15CrossRef
6.
Zurück zum Zitat Lubitz W, Tumas W (2007) Hydrogen: an overview. Chem Rev 107:3900–3903CrossRef Lubitz W, Tumas W (2007) Hydrogen: an overview. Chem Rev 107:3900–3903CrossRef
8.
Zurück zum Zitat Balzani V, Moggi L, Scandola F (1987) Towards a supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices. In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, pp 1–28CrossRef Balzani V, Moggi L, Scandola F (1987) Towards a supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices. In: Balzani V (ed) Supramolecular photochemistry. Reidel, Dordrecht, pp 1–28CrossRef
9.
Zurück zum Zitat Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRef Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRef
10.
Zurück zum Zitat Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemilu-minescence. Coord Chem Rev 84:85–277CrossRef Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemilu-minescence. Coord Chem Rev 84:85–277CrossRef
11.
Zurück zum Zitat Kirch M, Lehn J-M, Sauvage J-P (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384CrossRef Kirch M, Lehn J-M, Sauvage J-P (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384CrossRef
12.
Zurück zum Zitat Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–834CrossRef Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–834CrossRef
13.
Zurück zum Zitat Kawanishi Y, Kitamura N, Tazuke S (1989) Dependence of spectroscopic, electrochemical, and excited-state properties of tris chelate ruthenium(II) complexes on ligand structure. Inorg Chem 28:2968–2975CrossRef Kawanishi Y, Kitamura N, Tazuke S (1989) Dependence of spectroscopic, electrochemical, and excited-state properties of tris chelate ruthenium(II) complexes on ligand structure. Inorg Chem 28:2968–2975CrossRef
14.
Zurück zum Zitat Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of Ru(bpy)32+. J Am Chem Soc 104:4803–4810CrossRef Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of Ru(bpy)32+. J Am Chem Soc 104:4803–4810CrossRef
15.
Zurück zum Zitat Demas JN, Adamson AW (1971) A new photosensitizer. Tris (2,2′-bipyridine)ruthenium(II) chloride. J Am Chem Soc 93:1800–1801CrossRef Demas JN, Adamson AW (1971) A new photosensitizer. Tris (2,2′-bipyridine)ruthenium(II) chloride. J Am Chem Soc 93:1800–1801CrossRef
16.
Zurück zum Zitat Gafney HD, Adamson AW (1972) Excited state Ru(bipyr)32+ as an electron-transfer reductant. J Am Chem Soc 94:8238–8239CrossRef Gafney HD, Adamson AW (1972) Excited state Ru(bipyr)32+ as an electron-transfer reductant. J Am Chem Soc 94:8238–8239CrossRef
17.
Zurück zum Zitat Bock CR, Meyer TJ, Whitten DG (1974) Electron transfer quenching of the luminescent excited state of tris(2,2′-bipyridine)ruthenium(II). Flash photolysis relaxation technique for measuring the rates of very rapid electron transfer reactions. J Am Chem Soc 96:4710–4712CrossRef Bock CR, Meyer TJ, Whitten DG (1974) Electron transfer quenching of the luminescent excited state of tris(2,2′-bipyridine)ruthenium(II). Flash photolysis relaxation technique for measuring the rates of very rapid electron transfer reactions. J Am Chem Soc 96:4710–4712CrossRef
18.
Zurück zum Zitat Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1979) Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. J Am Chem Soc 101:4815–4824CrossRef Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1979) Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. J Am Chem Soc 101:4815–4824CrossRef
19.
Zurück zum Zitat Tinker LL, McDaniel ND, Bernhard S (2009) Progress towards solar-powered homogeneous water photolysis. J Mater Chem 19:3328–3337CrossRef Tinker LL, McDaniel ND, Bernhard S (2009) Progress towards solar-powered homogeneous water photolysis. J Mater Chem 19:3328–3337CrossRef
20.
Zurück zum Zitat Wang M, Na Y, Gorlov M, Sun L (2009) Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans 33:6458–6467CrossRef Wang M, Na Y, Gorlov M, Sun L (2009) Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans 33:6458–6467CrossRef
21.
Zurück zum Zitat Inagaki A, Akita M (2010) Visible-light promoted bimetallic catalysis. Coord Chem Rev 254:1220–1239CrossRef Inagaki A, Akita M (2010) Visible-light promoted bimetallic catalysis. Coord Chem Rev 254:1220–1239CrossRef
22.
Zurück zum Zitat Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58CrossRef Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58CrossRef
23.
Zurück zum Zitat Lin CT, Böttcher W, Chou M, Creutz C, Sutin N (1976) Mechanism of the quenching of the emission of substituted polypyridineruthenium(II) complexes by iron (III), chromium(III), and europium(III) ions. J Am Chem Soc 98:6536–6544CrossRef Lin CT, Böttcher W, Chou M, Creutz C, Sutin N (1976) Mechanism of the quenching of the emission of substituted polypyridineruthenium(II) complexes by iron (III), chromium(III), and europium(III) ions. J Am Chem Soc 98:6536–6544CrossRef
24.
Zurück zum Zitat Kober EM, Sullivan BP, Dressick WJ, Caspar JV, Meyer TJ (1980) Highly luminescent polypyridyl complexes of osmium (II). J Am Chem Soc 102:7383–7385CrossRef Kober EM, Sullivan BP, Dressick WJ, Caspar JV, Meyer TJ (1980) Highly luminescent polypyridyl complexes of osmium (II). J Am Chem Soc 102:7383–7385CrossRef
25.
Zurück zum Zitat Braunstein CH, Baker AD, Strekas TC, Gafney HD (1984) Spectroscopic and electrochemical properties of the dimer tetrakis (2,2′-bipyridine)(μ-2,3-bis(2-pyridyl)pyrazine)diruthenium(II) and its monomeric analogue. Inorg Chem 23:857–864CrossRef Braunstein CH, Baker AD, Strekas TC, Gafney HD (1984) Spectroscopic and electrochemical properties of the dimer tetrakis (2,2′-bipyridine)(μ-2,3-bis(2-pyridyl)pyrazine)diruthenium(II) and its monomeric analogue. Inorg Chem 23:857–864CrossRef
26.
Zurück zum Zitat Fuchs Y, Lofters S, Dieter T, Shi W, Morgan R, Strekas TC, Gafney HD, Baker AD (1987) Spectroscopic and electrochemical properties of dimeric ruthenium(II) diimine complexes and determination of their excited state redox properties. J Am Chem Soc 109:2691–2697CrossRef Fuchs Y, Lofters S, Dieter T, Shi W, Morgan R, Strekas TC, Gafney HD, Baker AD (1987) Spectroscopic and electrochemical properties of dimeric ruthenium(II) diimine complexes and determination of their excited state redox properties. J Am Chem Soc 109:2691–2697CrossRef
27.
Zurück zum Zitat Wallace AW, Murphy WR, Petersen JD (1989) Electrochemical and photophysical properties of mono-and bimetallic ruthenium(II) complexes. Inorg Chim Acta 166:47–54CrossRef Wallace AW, Murphy WR, Petersen JD (1989) Electrochemical and photophysical properties of mono-and bimetallic ruthenium(II) complexes. Inorg Chim Acta 166:47–54CrossRef
28.
Zurück zum Zitat Richter MM, Brewer KJ (1991) Synthesis and characterization of osmium(II) complexes incorporating polypyridyl bridging ligands. Inorg Chim Acta 180:125–131CrossRef Richter MM, Brewer KJ (1991) Synthesis and characterization of osmium(II) complexes incorporating polypyridyl bridging ligands. Inorg Chim Acta 180:125–131CrossRef
29.
Zurück zum Zitat Abdel-Shafi AA, Worrall DR, Ershov AY (2004) Photosensitized generation of singlet oxygen from ruthenium(II) and osmium (II) bipyridyl complexes. Dalton Trans 7:30–36CrossRef Abdel-Shafi AA, Worrall DR, Ershov AY (2004) Photosensitized generation of singlet oxygen from ruthenium(II) and osmium (II) bipyridyl complexes. Dalton Trans 7:30–36CrossRef
30.
Zurück zum Zitat Winkler JR, Netzel TL, Creutz C, Sutin N (1987) Direct observation of metal-to-ligand charge-transfer (MLCT) excited states of pentaammineruthenium(II) complexes. J Am Chem Soc 109:2381–2392CrossRef Winkler JR, Netzel TL, Creutz C, Sutin N (1987) Direct observation of metal-to-ligand charge-transfer (MLCT) excited states of pentaammineruthenium(II) complexes. J Am Chem Soc 109:2381–2392CrossRef
31.
Zurück zum Zitat Beley M, Collin J-P, Sauvage J-P, Sugihara H, Heisel F, Miehé A (1991) Photophysical and photochemical properties of ruthenium and osmium complexes with substituted terpyridines. J Chem Soc Dalton Trans 23:3157–3159CrossRef Beley M, Collin J-P, Sauvage J-P, Sugihara H, Heisel F, Miehé A (1991) Photophysical and photochemical properties of ruthenium and osmium complexes with substituted terpyridines. J Chem Soc Dalton Trans 23:3157–3159CrossRef
32.
Zurück zum Zitat Rillema DP, Mack KB (1982) The low-lying excited state in ligand p-acceptor complexes of ruthenium(II): mononuclear and binuclear species. Inorg Chem 21:3849–3854CrossRef Rillema DP, Mack KB (1982) The low-lying excited state in ligand p-acceptor complexes of ruthenium(II): mononuclear and binuclear species. Inorg Chem 21:3849–3854CrossRef
33.
Zurück zum Zitat Berger RM (1990) Excited-state absorption spectroscopy and spectroelectrochemistry of tetrakis(2,2′-bipyridine)(μ-2,3-bis (2-pyridyl)pyrazine)diruthenium(II) and its Monomeric counterpart: a comparative study. Inorg Chem 29:1920–1924CrossRef Berger RM (1990) Excited-state absorption spectroscopy and spectroelectrochemistry of tetrakis(2,2′-bipyridine)(μ-2,3-bis (2-pyridyl)pyrazine)diruthenium(II) and its Monomeric counterpart: a comparative study. Inorg Chem 29:1920–1924CrossRef
34.
Zurück zum Zitat Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes: light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34CrossRef Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes: light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34CrossRef
35.
Zurück zum Zitat Campagna S, Pietro CD, Loiseau F, Maubert B, McClenaghan N, Passalacqua R, Puntoriero F, Ricevuto V, Serroni S (2002) Recent advances in luminescent polymetallic dendrimers containing the 2,3-Bis(2′-pyridyl)pyrazine bridging ligand. Coord Chem Rev 229:67–74CrossRef Campagna S, Pietro CD, Loiseau F, Maubert B, McClenaghan N, Passalacqua R, Puntoriero F, Ricevuto V, Serroni S (2002) Recent advances in luminescent polymetallic dendrimers containing the 2,3-Bis(2′-pyridyl)pyrazine bridging ligand. Coord Chem Rev 229:67–74CrossRef
36.
Zurück zum Zitat Molnar SM, Nallas GNA, Bridgewater JS, Brewer KJ (1994) Photoinitiated electron collection in a mixed-metal trimetallic complex of the form [{(bpy)2Ru(dpb)}2IrCl2](PF6)5 (bpy = 2,2′-bipyridine and dpb = 2,3-bis(2-pyridyl)benzoquinoxaline). J Am Chem Soc 116:5206–5210CrossRef Molnar SM, Nallas GNA, Bridgewater JS, Brewer KJ (1994) Photoinitiated electron collection in a mixed-metal trimetallic complex of the form [{(bpy)2Ru(dpb)}2IrCl2](PF6)5 (bpy = 2,2′-bipyridine and dpb = 2,3-bis(2-pyridyl)benzoquinoxaline). J Am Chem Soc 116:5206–5210CrossRef
37.
Zurück zum Zitat Konduri R, Ye H, MacDonnell FM, Serroni S, Campagna S, Rajeshwar K (2002) Ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand: a step closer to artificial photosynthesis. Angew Chem Int Ed 41:3185–3187CrossRef Konduri R, Ye H, MacDonnell FM, Serroni S, Campagna S, Rajeshwar K (2002) Ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand: a step closer to artificial photosynthesis. Angew Chem Int Ed 41:3185–3187CrossRef
38.
Zurück zum Zitat Konduri R, de Tacconi NR, Rajeshwar K, MacDonnell FM (2004) Multielectron photoreduction of a bridged ruthenium dimer, [(phen)2Ru(tatpp)Ru(phen)2](PF6)4: aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts. J Am Chem Soc 126:11621CrossRef Konduri R, de Tacconi NR, Rajeshwar K, MacDonnell FM (2004) Multielectron photoreduction of a bridged ruthenium dimer, [(phen)2Ru(tatpp)Ru(phen)2](PF6)4: aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts. J Am Chem Soc 126:11621CrossRef
39.
Zurück zum Zitat Polyansky DE, Cabelli D, Muckerman JT, Fukushima T, Tanaka K, Fujita E (2008) Mechanism of hydride donor generation using a Ru(II) complex containing an NAD+ model ligand: pulse and steady-state radiolysis studies. Inorg Chem 47:3958–3968CrossRef Polyansky DE, Cabelli D, Muckerman JT, Fukushima T, Tanaka K, Fujita E (2008) Mechanism of hydride donor generation using a Ru(II) complex containing an NAD+ model ligand: pulse and steady-state radiolysis studies. Inorg Chem 47:3958–3968CrossRef
40.
Zurück zum Zitat Fukushima T, Fujita E, Muckerman JT, Polyansky DE, Wada T, Tanaka K (2009) Photochemical stereospecific hydrogenation of a Ru complex with an NAD+/NADH−Type ligand. Inorg Chem 48:11510–11512CrossRef Fukushima T, Fujita E, Muckerman JT, Polyansky DE, Wada T, Tanaka K (2009) Photochemical stereospecific hydrogenation of a Ru complex with an NAD+/NADHType ligand. Inorg Chem 48:11510–11512CrossRef
41.
Zurück zum Zitat Lomoth R, Ott S (2009) Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton Trans 7:9952–9959CrossRef Lomoth R, Ott S (2009) Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton Trans 7:9952–9959CrossRef
42.
Zurück zum Zitat Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160CrossRef Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160CrossRef
43.
Zurück zum Zitat Capon J-F, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord Chem Rev 253:1476–1494CrossRef Capon J-F, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord Chem Rev 253:1476–1494CrossRef
44.
Zurück zum Zitat Wolpher H, Borgström M, Hammarström L, Bergquist J, Sundström V, Styring S, Sun L, Åkermark B (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg Chem Commun 6:989–991CrossRef Wolpher H, Borgström M, Hammarström L, Bergquist J, Sundström V, Styring S, Sun L, Åkermark B (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg Chem Commun 6:989–991CrossRef
45.
Zurück zum Zitat Ott S, Kritikos M, Åkermark B, Sun L (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew Chem Int Ed 42:3285–3288CrossRef Ott S, Kritikos M, Åkermark B, Sun L (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew Chem Int Ed 42:3285–3288CrossRef
46.
Zurück zum Zitat Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Åkermark B, Hammarström L, Sun L (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium pho-tosensitizer: synthesis and photophysical properties. Inorg Chem 43:4683–4692CrossRef Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Åkermark B, Hammarström L, Sun L (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium pho-tosensitizer: synthesis and photophysical properties. Inorg Chem 43:4683–4692CrossRef
47.
Zurück zum Zitat Ekström J, Abrahamsson M, Olson C, Bergquist J, Kaynak FB, Eriksson L, Sun L, Becker H-C, Åkermark B, Hammarström L, Ott S (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans 38:4599–4606CrossRef Ekström J, Abrahamsson M, Olson C, Bergquist J, Kaynak FB, Eriksson L, Sun L, Becker H-C, Åkermark B, Hammarström L, Ott S (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans 38:4599–4606CrossRef
48.
Zurück zum Zitat Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation. J Phys Chem B 112:8198–8202CrossRef Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation. J Phys Chem B 112:8198–8202CrossRef
49.
Zurück zum Zitat Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans 21:4158–4163CrossRef Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans 21:4158–4163CrossRef
50.
Zurück zum Zitat Lubner CE, Grimme R, Bryant DA, Goldbeck JH (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49:404–414CrossRef Lubner CE, Grimme R, Bryant DA, Goldbeck JH (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49:404–414CrossRef
51.
Zurück zum Zitat Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg Chem 47:2805–2810CrossRef Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg Chem 47:2805–2810CrossRef
52.
Zurück zum Zitat Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarström L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16:60–63CrossRef Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarström L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16:60–63CrossRef
53.
Zurück zum Zitat Zhang P, Wang M, Na Y, Li X, Jiang Y, Sun L (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans 39:1204–1206CrossRef Zhang P, Wang M, Na Y, Li X, Jiang Y, Sun L (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans 39:1204–1206CrossRef
54.
Zurück zum Zitat Elvington M, Brown J, Arachchige SM, Brewer KJ (2007) Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc 129:10644–10645CrossRef Elvington M, Brown J, Arachchige SM, Brewer KJ (2007) Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc 129:10644–10645CrossRef
55.
Zurück zum Zitat Arachchige SM, Brown J, Brewer KJ (2008) Photochemical hydrogen production from water using the new photocatalyst [{(bpy)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A Chem 197:13–17CrossRef Arachchige SM, Brown J, Brewer KJ (2008) Photochemical hydrogen production from water using the new photocatalyst [{(bpy)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A Chem 197:13–17CrossRef
56.
Zurück zum Zitat Arachchige SM, Brown JR, Chang E, Jain A, Zigler DF, Rangan K, Brewer KJ (2009) Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection. Inorg Chem 48:1989–2000CrossRef Arachchige SM, Brown JR, Chang E, Jain A, Zigler DF, Rangan K, Brewer KJ (2009) Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection. Inorg Chem 48:1989–2000CrossRef
57.
Zurück zum Zitat Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. Energy Environ Sci 2:410–419CrossRef Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. Energy Environ Sci 2:410–419CrossRef
58.
Zurück zum Zitat Miyake Y, Nakajima K, Sasaki K, Saito R, Nakanishi H, Nishibayashi Y (2009) Design and synthesis of diphosphine ligands bearing an osmium(II) bis(terpyridyl) moiety as a lightharvesting unit: application to photocatalytic production of dihydrogen. Organometallics 28:5240–5243CrossRef Miyake Y, Nakajima K, Sasaki K, Saito R, Nakanishi H, Nishibayashi Y (2009) Design and synthesis of diphosphine ligands bearing an osmium(II) bis(terpyridyl) moiety as a lightharvesting unit: application to photocatalytic production of dihydrogen. Organometallics 28:5240–5243CrossRef
59.
Zurück zum Zitat Heyday AF, Nocera DG (2001) Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293:1639–1641CrossRef Heyday AF, Nocera DG (2001) Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293:1639–1641CrossRef
60.
Zurück zum Zitat Brown GM, Chan SF, Creutz C, Schwarz HA, Sutin N (1979) Mechanism of the formation of dihydrogen from the photoinduced reactions of tris(bipyridine)ruthenium(II) with tris (bipyridine)rhodium(III). J Am Chem Soc 101:7638–7640CrossRef Brown GM, Chan SF, Creutz C, Schwarz HA, Sutin N (1979) Mechanism of the formation of dihydrogen from the photoinduced reactions of tris(bipyridine)ruthenium(II) with tris (bipyridine)rhodium(III). J Am Chem Soc 101:7638–7640CrossRef
61.
Zurück zum Zitat Cline ED, Adamson SE, Bernhard S (2008) Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg Chem 47:10378–10388CrossRef Cline ED, Adamson SE, Bernhard S (2008) Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg Chem 47:10378–10388CrossRef
62.
Zurück zum Zitat Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Ed 47:564–567CrossRef Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Ed 47:564–567CrossRef
63.
Zurück zum Zitat Fihri A, Artero V, Pereira A, Fontecave M (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium-and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans:5567–5569 Fihri A, Artero V, Pereira A, Fontecave M (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium-and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans:5567–5569
64.
Zurück zum Zitat Li C, Wang M, Pan J, Zhang P, Zhang R, Sun L (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J Organomet Chem 694:2814–2819CrossRef Li C, Wang M, Pan J, Zhang P, Zhang R, Sun L (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J Organomet Chem 694:2814–2819CrossRef
65.
Zurück zum Zitat Brown GM, Brunschwig BS, Creutz C, Endicott JF, Sutin N (1979) Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) macrocycle system. J Am Chem Soc 101:1298–1300CrossRef Brown GM, Brunschwig BS, Creutz C, Endicott JF, Sutin N (1979) Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) macrocycle system. J Am Chem Soc 101:1298–1300CrossRef
66.
Zurück zum Zitat Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510CrossRef Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510CrossRef
67.
Zurück zum Zitat Du P, Schneider J, Luo G, Brennessel WW, Eisenberg R (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem 48:4952–4962CrossRef Du P, Schneider J, Luo G, Brennessel WW, Eisenberg R (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem 48:4952–4962CrossRef
68.
Zurück zum Zitat Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R (2009) Making hydrogen from water using a homogeneous system without noble metals. J Am Chem Soc 131:9192–9194CrossRef Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R (2009) Making hydrogen from water using a homogeneous system without noble metals. J Am Chem Soc 131:9192–9194CrossRef
69.
Zurück zum Zitat Probst B, Kolano C, Hamm P, Alberto R (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg Chem 48:1836–1843CrossRef Probst B, Kolano C, Hamm P, Alberto R (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg Chem 48:1836–1843CrossRef
70.
Zurück zum Zitat Ozawa H, Haga M-A, Sakai K (2006) A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc 128:4926–4927CrossRef Ozawa H, Haga M-A, Sakai K (2006) A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc 128:4926–4927CrossRef
71.
Zurück zum Zitat Knoll JD, Arachchige SM, Brewer KJ (2011) A structurally diverse Ru(II), Pt(II) tetrametallic motif for photoinitiated electron collection and photocatalytic hydrogen production. ChemSusChem 4:252–261 Knoll JD, Arachchige SM, Brewer KJ (2011) A structurally diverse Ru(II), Pt(II) tetrametallic motif for photoinitiated electron collection and photocatalytic hydrogen production. ChemSusChem 4:252–261
72.
Zurück zum Zitat Miao R, Zigler DF, Brewer KJ Manuscript to be submitted to Inorg Chem Miao R, Zigler DF, Brewer KJ Manuscript to be submitted to Inorg Chem
73.
Zurück zum Zitat Okazaki R, Masaoka S, Sakai K (2009) Photo-hydrogen-evolving activity of chloro(terpyridine)platinum(II): a single-component molecular photocatalyst. Dalton Trans:6127–6133 Okazaki R, Masaoka S, Sakai K (2009) Photo-hydrogen-evolving activity of chloro(terpyridine)platinum(II): a single-component molecular photocatalyst. Dalton Trans:6127–6133
74.
Zurück zum Zitat Rau S, Schäfer B, Gleich D, Anders E, Rudolph M, Friedrich M, Görls H, Henry W, Vos JG (2006) A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew Chem Int Ed 45:6215–6218CrossRef Rau S, Schäfer B, Gleich D, Anders E, Rudolph M, Friedrich M, Görls H, Henry W, Vos JG (2006) A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew Chem Int Ed 45:6215–6218CrossRef
75.
Zurück zum Zitat Schwartz L, Singh PS, Eriksson L, Lomoth R, Ott S (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate) (CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. C R Chim 11:875–889CrossRef Schwartz L, Singh PS, Eriksson L, Lomoth R, Ott S (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate) (CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. C R Chim 11:875–889CrossRef
76.
Zurück zum Zitat Sutin N, Creutz C, Fujita E (1997) Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments Inorg Chem 19:67–92CrossRef Sutin N, Creutz C, Fujita E (1997) Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments Inorg Chem 19:67–92CrossRef
77.
Zurück zum Zitat Balzani V, Credi A, Venturi M (1998) Photochemistry and photophysics of coordination compounds: an extended view. Coord Chem Rev 171:3–16CrossRef Balzani V, Credi A, Venturi M (1998) Photochemistry and photophysics of coordination compounds: an extended view. Coord Chem Rev 171:3–16CrossRef
78.
Zurück zum Zitat Venturi M, Credi A, Balzani V (1999) Electrochemistry of coordination compounds: an extended view. Coord Chem Rev 185:233–256CrossRef Venturi M, Credi A, Balzani V (1999) Electrochemistry of coordination compounds: an extended view. Coord Chem Rev 185:233–256CrossRef
79.
Zurück zum Zitat Scandola F, Argazzi R, Bignozzi CA, Indelli MT (1994) Photoinduced energy and electron transfer in inorganic covalently linked systems. J Photochem Photobiol A Chem 82:191–202CrossRef Scandola F, Argazzi R, Bignozzi CA, Indelli MT (1994) Photoinduced energy and electron transfer in inorganic covalently linked systems. J Photochem Photobiol A Chem 82:191–202CrossRef
80.
Zurück zum Zitat Serroni S, Juris A, Campagna S, Venturi M, Denti G, Balzani V (1994) Tetranuclear bimetallic complexes of ruthenium, osmium, rhodium and iridium. Synthesis, absorption spectra, luminescence and electrochemical properties. J Am Chem Soc 116:9086–9091CrossRef Serroni S, Juris A, Campagna S, Venturi M, Denti G, Balzani V (1994) Tetranuclear bimetallic complexes of ruthenium, osmium, rhodium and iridium. Synthesis, absorption spectra, luminescence and electrochemical properties. J Am Chem Soc 116:9086–9091CrossRef
81.
Zurück zum Zitat Indelli MT, Scandola F, Collin J-P, Sauvage J-P, Sour A (1996) Photoinduced electron and energy transfer in rigidly bridged Ru(II)-Rh(III) binuclear complexes. Inorg Chem 35:303–312CrossRef Indelli MT, Scandola F, Collin J-P, Sauvage J-P, Sour A (1996) Photoinduced electron and energy transfer in rigidly bridged Ru(II)-Rh(III) binuclear complexes. Inorg Chem 35:303–312CrossRef
82.
Zurück zum Zitat Elvington M, Brewer K (2006) Photoinitiated electron collection at a metal in a rhodium-centered mixed-metal supramolecular complex. Inorg Chem 45:5242–5244CrossRef Elvington M, Brewer K (2006) Photoinitiated electron collection at a metal in a rhodium-centered mixed-metal supramolecular complex. Inorg Chem 45:5242–5244CrossRef
83.
Zurück zum Zitat White TA, Rangan K, Brewer KJ (2010) Synthesis, characterization, and study of the photophysics and photocatalytic properties of the photoinitiated electron collector [{(phen)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A Chem 209:203–209CrossRef White TA, Rangan K, Brewer KJ (2010) Synthesis, characterization, and study of the photophysics and photocatalytic properties of the photoinitiated electron collector [{(phen)2Ru(dpp)}2RhBr2](PF6)5. J Photochem Photobiol A Chem 209:203–209CrossRef
84.
Zurück zum Zitat Kalyanasundaram K, Nazeeruddin MK (1990) Photophysics and photoredox reactions of ligand-bridged binuclear polypyridyl complexes of ruthenium(II) and of their monomeric analogs. Inorg Chem 29:1888–1897CrossRef Kalyanasundaram K, Nazeeruddin MK (1990) Photophysics and photoredox reactions of ligand-bridged binuclear polypyridyl complexes of ruthenium(II) and of their monomeric analogs. Inorg Chem 29:1888–1897CrossRef
85.
Zurück zum Zitat Kew G, DeArmond K, Hanck K (1974) Electrochemistry of rhodium-dipyridyl complexes. J Phys Chem 78:727–734CrossRef Kew G, DeArmond K, Hanck K (1974) Electrochemistry of rhodium-dipyridyl complexes. J Phys Chem 78:727–734CrossRef
86.
Zurück zum Zitat Anton DR, Crabtree RH (1983) Dibenzo[a, e]cyclooctatetraene in a proposed test for heterogeneity in catalysts formed from soluble platinum-group metal complexes. Organometallics 2:855–859CrossRef Anton DR, Crabtree RH (1983) Dibenzo[a, e]cyclooctatetraene in a proposed test for heterogeneity in catalysts formed from soluble platinum-group metal complexes. Organometallics 2:855–859CrossRef
87.
Zurück zum Zitat Baba R, Nakabayashi S, Fujishima A, Honda K (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semi-conductor powders. J Phys Chem 89:1902–1905CrossRef Baba R, Nakabayashi S, Fujishima A, Honda K (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semi-conductor powders. J Phys Chem 89:1902–1905CrossRef
88.
Zurück zum Zitat Arachchige SM, Shaw R, White TA, Shenoy V, Tsui H-M, Brewer KJ (2011) Modification of system parameters for high turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru, Rh, Ru photoinitiated electron collector. ChemSusChem 4:514–518CrossRef Arachchige SM, Shaw R, White TA, Shenoy V, Tsui H-M, Brewer KJ (2011) Modification of system parameters for high turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru, Rh, Ru photoinitiated electron collector. ChemSusChem 4:514–518CrossRef
89.
Zurück zum Zitat Esswein AJ, Veige AS, Nocera DG (2005) A photocycle for hydrogen production from two-electron mixed-valence complexes. J Am Chem Soc 127:16641–16651CrossRef Esswein AJ, Veige AS, Nocera DG (2005) A photocycle for hydrogen production from two-electron mixed-valence complexes. J Am Chem Soc 127:16641–16651CrossRef
90.
Zurück zum Zitat Esswein AJ, Dempsey JL, Nocera DG (2007) A RhII – AuII bimetallic core with a direct metal-metal bond. Inorg Chem 46:2362–2364CrossRef Esswein AJ, Dempsey JL, Nocera DG (2007) A RhII – AuII bimetallic core with a direct metal-metal bond. Inorg Chem 46:2362–2364CrossRef
91.
Zurück zum Zitat Cook TR, Esswein AJ, Nocera DG (2007) Metal – halide bond photoactivation from a PtIIIAuII complex. J Am Chem Soc 129:10094–10095CrossRef Cook TR, Esswein AJ, Nocera DG (2007) Metal – halide bond photoactivation from a PtIIIAuII complex. J Am Chem Soc 129:10094–10095CrossRef
92.
Zurück zum Zitat Chou M, Creutz C, Mahajan D, Sutin N, Zipp AP (1982) Nature of bis(2,20-bipyridine)rhodium(I) in aqueous solutions. Inorg Chem 21:3989–3997CrossRef Chou M, Creutz C, Mahajan D, Sutin N, Zipp AP (1982) Nature of bis(2,20-bipyridine)rhodium(I) in aqueous solutions. Inorg Chem 21:3989–3997CrossRef
93.
Zurück zum Zitat Schwarz HA, Creutz C (1983) Reactions of tris-and bis(2,20-bipyridine)rhodium(II) complexes in aqueous solution. Inorg Chem 22:707–713CrossRef Schwarz HA, Creutz C (1983) Reactions of tris-and bis(2,20-bipyridine)rhodium(II) complexes in aqueous solution. Inorg Chem 22:707–713CrossRef
94.
Zurück zum Zitat Fujita E, Brunschwig BS, Creutz C, Muckerman JT, Sutin N, Szalda D, van Eldik R (2006) Transition state characterization for the reversible binding of dihydrogen to Bis(2,20-bipyridine) rhodium(I) from temperature-and pressure-dependent experimental and theoretical studies. Inorg Chem 45:1595–1603CrossRef Fujita E, Brunschwig BS, Creutz C, Muckerman JT, Sutin N, Szalda D, van Eldik R (2006) Transition state characterization for the reversible binding of dihydrogen to Bis(2,20-bipyridine) rhodium(I) from temperature-and pressure-dependent experimental and theoretical studies. Inorg Chem 45:1595–1603CrossRef
95.
Zurück zum Zitat Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004CrossRef Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004CrossRef
96.
Zurück zum Zitat Kölle U (1992) Transition metal-catalyzed proton reduction. New J Chem 16:157–169 Kölle U (1992) Transition metal-catalyzed proton reduction. New J Chem 16:157–169
97.
Zurück zum Zitat Hawecker J, Lehn JM, Ziessel R (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim 7:271–277 Hawecker J, Lehn JM, Ziessel R (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim 7:271–277
98.
Zurück zum Zitat Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719CrossRef Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719CrossRef
99.
Zurück zum Zitat Du P, Knowles K, Eisenberg R (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J Am Chem Soc 130:12576–12577CrossRef Du P, Knowles K, Eisenberg R (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J Am Chem Soc 130:12576–12577CrossRef
100.
Zurück zum Zitat Dempsey JL, Winkler JR, Gray HB (2010) Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. J Am Chem Soc 132:1060–1065CrossRef Dempsey JL, Winkler JR, Gray HB (2010) Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. J Am Chem Soc 132:1060–1065CrossRef
101.
Zurück zum Zitat Sakai K, Ozawa H (2007) Homogeneous catalysis of platinum (II) complexes in photochemical hydrogen production from water. Coord Chem Rev 251:2753–2766CrossRef Sakai K, Ozawa H (2007) Homogeneous catalysis of platinum (II) complexes in photochemical hydrogen production from water. Coord Chem Rev 251:2753–2766CrossRef
102.
Zurück zum Zitat Ozawa H, Yokoyama Y, Haga M-A, Sakai K (2007) Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,20-bipyridine)ruthenium(II) derivatives tethered to a cis-Pt(II)Cl2 unit: insights into the structure–activity relationship. Dalton Trans:1197–1206 Ozawa H, Yokoyama Y, Haga M-A, Sakai K (2007) Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,20-bipyridine)ruthenium(II) derivatives tethered to a cis-Pt(II)Cl2 unit: insights into the structure–activity relationship. Dalton Trans:1197–1206
103.
Zurück zum Zitat Lei P, Hedlund M, Lomoth R, Rensmo H, Johansson O, Hammarström L (2008) The role of colloid formation in the photoinduced H2 production with a RuII-PdII supramolecular complex: a study by GC, XPS, and TEM. J Am Chem Soc 130:26–27CrossRef Lei P, Hedlund M, Lomoth R, Rensmo H, Johansson O, Hammarström L (2008) The role of colloid formation in the photoinduced H2 production with a RuII-PdII supramolecular complex: a study by GC, XPS, and TEM. J Am Chem Soc 130:26–27CrossRef
104.
Zurück zum Zitat Du P, Schneider J, Li F, Zhao W, Patel U, Castellano FN, Eisenberg R (2008) Bi-and terpyridyl platinum(II) chloro complexes: molecular catalysts for the photogeneration of hydrogen from water or simply precursors for colloidal platinum? J Am Chem Soc 130:5056–5058CrossRef Du P, Schneider J, Li F, Zhao W, Patel U, Castellano FN, Eisenberg R (2008) Bi-and terpyridyl platinum(II) chloro complexes: molecular catalysts for the photogeneration of hydrogen from water or simply precursors for colloidal platinum? J Am Chem Soc 130:5056–5058CrossRef
105.
Zurück zum Zitat Masaoka S, Mukawa Y, Sakai K (2010) Frontier orbital engineering of photo-hydrogen-evolving molecular devices: a clear relationship between the H2-evolving activity and the energy level of the LUMO. Dalton Trans 39:5868–5876CrossRef Masaoka S, Mukawa Y, Sakai K (2010) Frontier orbital engineering of photo-hydrogen-evolving molecular devices: a clear relationship between the H2-evolving activity and the energy level of the LUMO. Dalton Trans 39:5868–5876CrossRef
106.
Zurück zum Zitat Ozawa H, Kobayashi M, Balan B, Masaoka S, Sakai K (2010) Photo-hydrogen-evolving molecular catalysts consisting of polypyridyl ruthenium(II) photosensitizers and platinum(II) catalysts: insights into the reaction mechanism. Chem Asian J 5:1860–1869CrossRef Ozawa H, Kobayashi M, Balan B, Masaoka S, Sakai K (2010) Photo-hydrogen-evolving molecular catalysts consisting of polypyridyl ruthenium(II) photosensitizers and platinum(II) catalysts: insights into the reaction mechanism. Chem Asian J 5:1860–1869CrossRef
107.
Zurück zum Zitat Tschierlei S, Presselt M, Kuhnt C, Yartsev A, Pascher T, Sundström V, Karnahl M, Schwalbe M, Schäfer B, Rau S, Schmitt M, Dietzek B, Popp J (2009) Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst. Chem Eur J 15:7678–7688CrossRef Tschierlei S, Presselt M, Kuhnt C, Yartsev A, Pascher T, Sundström V, Karnahl M, Schwalbe M, Schäfer B, Rau S, Schmitt M, Dietzek B, Popp J (2009) Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst. Chem Eur J 15:7678–7688CrossRef
Metadaten
Titel
Hydrogen via Direct Solar Production
verfasst von
Shamindri M. Arachchige
Karen J. Brewer
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7789-5_515