Skip to main content

2018 | OriginalPaper | Buchkapitel

Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network

verfasst von : Yan Cui, Shijie Zhao, Han Wang, Li Xie, Yaowu Chen, Junwei Han, Lei Guo, Fan Zhou, Tianming Liu

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For decades, task-based functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for tfMRI data, including the general linear model (GLM), independent component analysis (ICA) and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependency features in the machine learning field, which might be suitable for tfMRI data modeling. To explore such possible advantages of RNNs for tfMRI data, we propose a novel framework of deep recurrent neural network (DRNN) to model the functional brain networks for tfMRI data. Experimental results on the motor task tfMRI data of Human Connectome Project 900 subjects data release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks of multiple time scales from tfMRI data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869 (2008)CrossRef Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869 (2008)CrossRef
2.
Zurück zum Zitat Duncan, J.: The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010)CrossRef Duncan, J.: The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010)CrossRef
3.
Zurück zum Zitat Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)CrossRef Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)CrossRef
4.
Zurück zum Zitat Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1994)CrossRef Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1994)CrossRef
5.
Zurück zum Zitat Biswal, B.B., Ulmer, J.L.: Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comput. Assist. Tomogr. 23, 265–271 (1999)CrossRef Biswal, B.B., Ulmer, J.L.: Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comput. Assist. Tomogr. 23, 265–271 (1999)CrossRef
6.
Zurück zum Zitat Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62, 1120–1131 (2015)CrossRef Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62, 1120–1131 (2015)CrossRef
7.
Zurück zum Zitat Zhao, S., et al.: Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts. Neuroinformatics 6, 309–324 (2018)CrossRef Zhao, S., et al.: Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts. Neuroinformatics 6, 309–324 (2018)CrossRef
8.
Zurück zum Zitat Ferrarini, L., et al.: Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 30, 2220–2231 (2009)CrossRef Ferrarini, L., et al.: Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 30, 2220–2231 (2009)CrossRef
9.
Zurück zum Zitat Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)MathSciNetCrossRef Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Zhao, Y., et al.: Automatic Recognition of fMRI-derived functional networks using 3D convolutional neural networks. IEEE Trans. Biomed. Eng. 65, 1975–1984 (2017) Zhao, Y., et al.: Automatic Recognition of fMRI-derived functional networks using 3D convolutional neural networks. IEEE Trans. Biomed. Eng. 65, 1975–1984 (2017)
11.
Zurück zum Zitat Zhao, Y., Ge, F., Liu, T.: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization. Med. Image Anal. 47, 111–126 (2018)CrossRef Zhao, Y., Ge, F., Liu, T.: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization. Med. Image Anal. 47, 111–126 (2018)CrossRef
12.
Zurück zum Zitat Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7) (2018) Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7) (2018)
13.
Zurück zum Zitat Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)CrossRef Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)CrossRef
14.
Zurück zum Zitat Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
15.
Zurück zum Zitat Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 190–198 (2013) Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 190–198 (2013)
16.
Zurück zum Zitat Güçlü, U., van Gerven, M.A.: Modeling the dynamics of human brain activity with recurrent neural networks. Front. Comput. Neurosci. 11, 7 (2017)CrossRef Güçlü, U., van Gerven, M.A.: Modeling the dynamics of human brain activity with recurrent neural networks. Front. Comput. Neurosci. 11, 7 (2017)CrossRef
17.
Zurück zum Zitat Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)CrossRef Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)CrossRef
18.
Zurück zum Zitat Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016) Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016)
Metadaten
Titel
Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network
verfasst von
Yan Cui
Shijie Zhao
Han Wang
Li Xie
Yaowu Chen
Junwei Han
Lei Guo
Fan Zhou
Tianming Liu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00931-1_33