Skip to main content

2021 | OriginalPaper | Buchkapitel

Ignition and Extinction of Hydrogen and Gasoline Blended Methanol Flames

verfasst von : Sayan Biswas

Erschienen in: Methanol

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical kinetics effects on fundamental laminar combustion processes were investigated for 20% methanol-blended gasoline and 20% hydrogen-blended methanol for a range of equivalence ratios, \( 0.5 < \phi < 2 \) using a detailed reaction mechanism comprising of 2027 species and 8619 reactions. Fundamental laminar combustion properties—flame speed, flame thickness, minimum ignition energy, ignition, and extinction strain rates of the two fuel blends were compared with base fuels, methanol, gasoline, and hydrogen. Mean extinction strain rates were nearly twice the ignition strain rates which indicated a hysteresis behaviour of laminar flames. An in-depth analysis of the thermal and chemical flame structure of lean fuel blends was conducted to explore the significance of intermediate products and radical species on flame behaviour. Chemical kinetics caused a greater impact on the ignition process compared to extinction. A sensitivity analysis of ignition and extinction strain rates showed the importance of key reactions and their role in the improvement of laminar flame characteristics of fuel blends. The sensitivity coefficients for ignition were greater compared to extinction signifying a stronger influence of chemical kinetics on the ignition process compared to extinction. The knowledge obtained from this study can be leveraged in creating tailored fuel blends with superior laminar combustion competencies enabling higher efficiency and lesser pollutant emission for automotive applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Smil V (2017) Energy transitions: global and national perspectives. & BP Statistical Review of World Energy. Praege Smil V (2017) Energy transitions: global and national perspectives. & BP Statistical Review of World Energy. Praege
3.
Zurück zum Zitat Shurpali N, Agarwal AK, Srivastava VK (eds) (2019) Greenhouse gas emissions: challenges, technologies and solutions. energy, environment, and sustainability. Springer, Singapore Shurpali N, Agarwal AK, Srivastava VK (eds) (2019) Greenhouse gas emissions: challenges, technologies and solutions. energy, environment, and sustainability. Springer, Singapore
4.
Zurück zum Zitat Beatrice C, Bertoli C, Giacomo ND (1998) New findings on combustion behavior of oxygenated synthetic diesel fuels. Combust Sci Technol 137:31–50CrossRef Beatrice C, Bertoli C, Giacomo ND (1998) New findings on combustion behavior of oxygenated synthetic diesel fuels. Combust Sci Technol 137:31–50CrossRef
5.
Zurück zum Zitat Agarwal AK, Gupta JG, Sharma N, Singh AP (eds) (2019) Advanced engine diagnostics. energy, environment, and sustainability. Springer, Singapore Agarwal AK, Gupta JG, Sharma N, Singh AP (eds) (2019) Advanced engine diagnostics. energy, environment, and sustainability. Springer, Singapore
6.
Zurück zum Zitat Biswas S, Ekoto I (2019) Ozone added spark assisted compression ignition. advanced combustion techniques and engine technologies for the automotive sector, ed Singh AP, Sharma N, Agarwal RA, Agarwal AK. Springer, Singapore Biswas S, Ekoto I (2019) Ozone added spark assisted compression ignition. advanced combustion techniques and engine technologies for the automotive sector, ed Singh AP, Sharma N, Agarwal RA, Agarwal AK. Springer, Singapore
7.
Zurück zum Zitat Zhang C, Wu H (2016) Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. J Energy Inst 89(3):346–353CrossRef Zhang C, Wu H (2016) Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. J Energy Inst 89(3):346–353CrossRef
8.
Zurück zum Zitat Rakopoulos CD, Kyritsis DC (2001) Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels. Energy 26(7):705–722CrossRef Rakopoulos CD, Kyritsis DC (2001) Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels. Energy 26(7):705–722CrossRef
9.
Zurück zum Zitat Agarwal RA, Agarwal AK, Gupta T, Sharma N (2019) Pollutants from energy sources. energy, environment, and sustainability. Springer, Singapore Agarwal RA, Agarwal AK, Gupta T, Sharma N (2019) Pollutants from energy sources. energy, environment, and sustainability. Springer, Singapore
10.
Zurück zum Zitat Wei J, Liu H, Li S, Yang R, Liu J, Wang Y (2008) Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energy Fuels 22(2):1254–1269CrossRef Wei J, Liu H, Li S, Yang R, Liu J, Wang Y (2008) Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energy Fuels 22(2):1254–1269CrossRef
11.
Zurück zum Zitat Shenghua L, Clemente E, Tiegang H, Yanjv W (2007) Study of spark ignition engine fueled with methanol/gasoline fuel blends. Appl Therm Eng 27:1904–1910CrossRef Shenghua L, Clemente E, Tiegang H, Yanjv W (2007) Study of spark ignition engine fueled with methanol/gasoline fuel blends. Appl Therm Eng 27:1904–1910CrossRef
12.
Zurück zum Zitat Bilgin A, Sezer I (2008) Effects of methanol addition to gasoline on the performance and fuel cost of a spark ignition engine. Energy Fuels 22:2782–2788CrossRef Bilgin A, Sezer I (2008) Effects of methanol addition to gasoline on the performance and fuel cost of a spark ignition engine. Energy Fuels 22:2782–2788CrossRef
13.
Zurück zum Zitat Altun S, Oztop H, Oner C, Varol Y (2013) Exhaust emissions of methanol and ethanol-unleaded gasoline blends in a spark ignition engine. Thermal Sci 17(1):291–297CrossRef Altun S, Oztop H, Oner C, Varol Y (2013) Exhaust emissions of methanol and ethanol-unleaded gasoline blends in a spark ignition engine. Thermal Sci 17(1):291–297CrossRef
14.
Zurück zum Zitat Sapre R (1989) Properties, performance and emissions of medium concentration methanol–gasoline blends in a single-cylinder, spark-ignition engine. SAE Trans 97(3):1105–1126 Sapre R (1989) Properties, performance and emissions of medium concentration methanol–gasoline blends in a single-cylinder, spark-ignition engine. SAE Trans 97(3):1105–1126
15.
Zurück zum Zitat Bardaie Z, Janius R (1984) Conversion of spark-ignition engine for alcohol usage - comparative performance. Agric Mech Asia, Africa Latin Am 15(2):31–40 Bardaie Z, Janius R (1984) Conversion of spark-ignition engine for alcohol usage - comparative performance. Agric Mech Asia, Africa Latin Am 15(2):31–40
16.
Zurück zum Zitat Abu-Zaid M, Badran O, Yamin J (2004) Effect of methanol addition on the performance of spark ignition engines. Energy Fuels 18(2):312–315CrossRef Abu-Zaid M, Badran O, Yamin J (2004) Effect of methanol addition on the performance of spark ignition engines. Energy Fuels 18(2):312–315CrossRef
17.
Zurück zum Zitat Hu Z, Zhang X (2019) Study on laminar combustion characteristic of low calorific value gas blended with hydrogen in a constant volume combustion bomb. Int J Hydrogen Energy 44(1):487–493CrossRef Hu Z, Zhang X (2019) Study on laminar combustion characteristic of low calorific value gas blended with hydrogen in a constant volume combustion bomb. Int J Hydrogen Energy 44(1):487–493CrossRef
18.
Zurück zum Zitat Huang Z, Zhanga Y, Zeng K, Liu B, Wang Q, Jiang D (2006) Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust Flame 146(1–2):302–311CrossRef Huang Z, Zhanga Y, Zeng K, Liu B, Wang Q, Jiang D (2006) Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust Flame 146(1–2):302–311CrossRef
19.
Zurück zum Zitat Ren F, Chu H, Xiang L, Han W, Gu M (2019) Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. J Energy Inst 92(4):1178–1190CrossRef Ren F, Chu H, Xiang L, Han W, Gu M (2019) Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. J Energy Inst 92(4):1178–1190CrossRef
20.
Zurück zum Zitat Hu E, Huang Z, He J, Jin C, Zheng J (2009) Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int J Hydrogen Energy 34(11):4876–4888CrossRef Hu E, Huang Z, He J, Jin C, Zheng J (2009) Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int J Hydrogen Energy 34(11):4876–4888CrossRef
21.
Zurück zum Zitat Al-Hamamre Z, Yamin J (2013) The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. Int J Hydrogen Energy 38(18):7499–7509CrossRef Al-Hamamre Z, Yamin J (2013) The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. Int J Hydrogen Energy 38(18):7499–7509CrossRef
22.
Zurück zum Zitat Gong C, Li Z, Chen Y, Liu J, Liu F, Han Y (2019) Influence of ignition timing on combustion and emissions of a spark-ignition methanol engine with added hydrogen under lean-burn conditions. Fuel 235(1):227–238CrossRef Gong C, Li Z, Chen Y, Liu J, Liu F, Han Y (2019) Influence of ignition timing on combustion and emissions of a spark-ignition methanol engine with added hydrogen under lean-burn conditions. Fuel 235(1):227–238CrossRef
23.
Zurück zum Zitat Zhang B, Ji C, Wang S, Xiao Y (2014) Investigation on the cold start characteristics of a hydrogen-enriched methanol engine. Int J Hydrogen Energy 39(26):14466–14471CrossRef Zhang B, Ji C, Wang S, Xiao Y (2014) Investigation on the cold start characteristics of a hydrogen-enriched methanol engine. Int J Hydrogen Energy 39(26):14466–14471CrossRef
24.
Zurück zum Zitat Zhen X, Li X, Wang Y, Liu D, Tian Z (2020) Comparative study on combustion and emission characteristics of methanol/hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel 267:CrossRef Zhen X, Li X, Wang Y, Liu D, Tian Z (2020) Comparative study on combustion and emission characteristics of methanol/hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel 267:CrossRef
25.
Zurück zum Zitat Ji C, Yang J, Liu X, Zhang B, Wang S, Gao B (2016) A quasi-dimensional model for combustion performance prediction of an SI hydrogen-enriched methanol engine. Int J Hydrogen Energy 41(39):17676–17686CrossRef Ji C, Yang J, Liu X, Zhang B, Wang S, Gao B (2016) A quasi-dimensional model for combustion performance prediction of an SI hydrogen-enriched methanol engine. Int J Hydrogen Energy 41(39):17676–17686CrossRef
26.
Zurück zum Zitat Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, Adigun O (2000) CHEMKIN Collection, Release 3.6. In: Reaction Design, Inc., San Diego, CA Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, Adigun O (2000) CHEMKIN Collection, Release 3.6. In: Reaction Design, Inc., San Diego, CA
27.
Zurück zum Zitat Reaction Design (2013) Reaction Workbench 15131 San Diego Reaction Design (2013) Reaction Workbench 15131 San Diego
28.
Zurück zum Zitat Lopez Pintor D, Dec J, Gentz G (2019) Φ-sensitivity for LTGC engines: understanding the fundamentals and tailoring fuel blends to maximize this property. SAE Technical Paper 2019-01-0961, p 24 Lopez Pintor D, Dec J, Gentz G (2019) Φ-sensitivity for LTGC engines: understanding the fundamentals and tailoring fuel blends to maximize this property. SAE Technical Paper 2019-01-0961, p 24
29.
Zurück zum Zitat Biswas S, Ekoto I (2019) Detailed investigation into the effect of ozone addition on spark assisted compression ignition engine performance and emissions characteristics. SAE Technical Paper 2019-01-0966 Biswas S, Ekoto I (2019) Detailed investigation into the effect of ozone addition on spark assisted compression ignition engine performance and emissions characteristics. SAE Technical Paper 2019-01-0966
30.
Zurück zum Zitat Biswas S, Ekoto I (2019) Spark assisted compression ignition engine with stratified charge combustion and ozone addition. JSAE 20199089 Biswas S, Ekoto I (2019) Spark assisted compression ignition engine with stratified charge combustion and ozone addition. JSAE 20199089
31.
Zurück zum Zitat Mehl M, Pitz W, Westbrook CK, Curran HJ (2011) Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst 33(1):193–200CrossRef Mehl M, Pitz W, Westbrook CK, Curran HJ (2011) Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst 33(1):193–200CrossRef
32.
Zurück zum Zitat Mehl M, Wagnon S, Tsang K, Kukkadapu G, Pitz WJ, Westbrook CK, Tsang Y, Curran HJ, Atef N, Rachidi MA, Sarathy MS, Ahmed A (2017) A comprehensive detailed kinetic mechanism for the simulation of transportation fuels. In: 10th US National combustion meeting, College Park, MD Mehl M, Wagnon S, Tsang K, Kukkadapu G, Pitz WJ, Westbrook CK, Tsang Y, Curran HJ, Atef N, Rachidi MA, Sarathy MS, Ahmed A (2017) A comprehensive detailed kinetic mechanism for the simulation of transportation fuels. In: 10th US National combustion meeting, College Park, MD
33.
Zurück zum Zitat Mehl M, Pitz WJ, Westbrook CK, Yasunaga K, Conroy C, Curran HJ (2011) Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions. Proc Combust Inst 33(1):201–208CrossRef Mehl M, Pitz WJ, Westbrook CK, Yasunaga K, Conroy C, Curran HJ (2011) Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions. Proc Combust Inst 33(1):201–208CrossRef
34.
Zurück zum Zitat Law CK (2006) Combustion physics, xviii edn. Cambridge University Press, Cambridge, New York, p 722CrossRef Law CK (2006) Combustion physics, xviii edn. Cambridge University Press, Cambridge, New York, p 722CrossRef
35.
Zurück zum Zitat Peters N (2000) Turbulent combustion. Cambridge monographs on mechanics Cambridge, England, xvi edn. Cambridge University Press, New York, p 304CrossRef Peters N (2000) Turbulent combustion. Cambridge monographs on mechanics Cambridge, England, xvi edn. Cambridge University Press, New York, p 304CrossRef
36.
Zurück zum Zitat Kee RJ, Miller JA, Evans GH, Dixon-Lewis G (1989) A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. In: Symposium (International) on combustion, vol 22(1), pp 1479–1494 Kee RJ, Miller JA, Evans GH, Dixon-Lewis G (1989) A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. In: Symposium (International) on combustion, vol 22(1), pp 1479–1494
37.
Zurück zum Zitat Egolfopoulos FN (1994) Geometric and radiation effects on steady and unsteady strained laminar flames. Proc Combust Inst 25:1375–1381CrossRef Egolfopoulos FN (1994) Geometric and radiation effects on steady and unsteady strained laminar flames. Proc Combust Inst 25:1375–1381CrossRef
38.
Zurück zum Zitat Giovangigli V, Smooke MD (1989) Adaptive continuation algorithms with application to combustion problems. Appl Num Math 5(4):305–331MathSciNetCrossRef Giovangigli V, Smooke MD (1989) Adaptive continuation algorithms with application to combustion problems. Appl Num Math 5(4):305–331MathSciNetCrossRef
39.
Zurück zum Zitat Vancoillie J, Verhelst S, Demuynck J (2011) Laminar burning velocity correlations for methanol-air and ethanol-air mixtures valid at SI engine conditions. SAE Technical Paper, 2011-01-0846 Vancoillie J, Verhelst S, Demuynck J (2011) Laminar burning velocity correlations for methanol-air and ethanol-air mixtures valid at SI engine conditions. SAE Technical Paper, 2011-01-0846
40.
Zurück zum Zitat Hu E, Xu Z, Gao Z, Xu J, Huang Z (2019) Experimental and numerical study on laminar burning velocity of gasoline and gasoline surrogates. Fuel:256 Hu E, Xu Z, Gao Z, Xu J, Huang Z (2019) Experimental and numerical study on laminar burning velocity of gasoline and gasoline surrogates. Fuel:256
41.
Zurück zum Zitat Dahoe AE (2005) Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions. J Loss Prev Process Ind 18(3):152–166CrossRef Dahoe AE (2005) Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions. J Loss Prev Process Ind 18(3):152–166CrossRef
42.
Zurück zum Zitat Saeed K, Stone CR (2004) Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust Flame 139:152–166CrossRef Saeed K, Stone CR (2004) Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust Flame 139:152–166CrossRef
43.
Zurück zum Zitat Dirrenberger P, Glaude PA, Bounaceur R, Le Gall H, Pires da Cruz A, Konnov AA, Battin-Leclerc F (2014) Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–169 Dirrenberger P, Glaude PA, Bounaceur R, Le Gall H, Pires da Cruz A, Konnov AA, Battin-Leclerc F (2014) Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–169
44.
Zurück zum Zitat Norton TS, Dryer FL (1991) The flow reactor oxidation of C1 − C4 alcohols and MTBE. In: Symposium (International) on combustion, vol 23(1), pp 179–185 Norton TS, Dryer FL (1991) The flow reactor oxidation of C1 − C4 alcohols and MTBE. In: Symposium (International) on combustion, vol 23(1), pp 179–185
Metadaten
Titel
Ignition and Extinction of Hydrogen and Gasoline Blended Methanol Flames
verfasst von
Sayan Biswas
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1224-4_9